苏科版八年级数学下册双休日作业(15)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:

1.在3

16x 、3

2

-

、5.0-、x a 、325中,最简二次根式的个数是( )

A 、1

B 、2

C 、3

D 、4 2.2(21)12a a -=-,则( ) A .12a <

B.12a ≤

C.12a > D .1

2

a ≥ 3.下列运算正确的是( ) 532 11

4

293

822 2(25)25-= 4.如果1≤a ≤2,则2122

-++-a a a 的值是( )

A 、a +6

B 、a --6

C 、a -

D 、1 5.下列等式不成立的是( ) A 、

()

a a =2

B 、a a =2

C 、33a a -=-

D 、a a

a -=-

1

6.式子3

ax --(a >0)化简的结果是( )

A 、ax x -

B 、ax x --

C 、ax x

D 、ax x - 7.下列运算正确的是( )

A 、()ππ-=-332

B 、(

)

122

11

-=--

C 、

(

)0230

=-

D 、()

620832

235

2

-=-

8.若方程(m -1)x 2+m x =1是关于x 的一元二次方程,则m 的取值范围是( )

A .m ≠1

B .m ≥0

C . m ≥0且m ≠1

D .m 为任意实数 9.下列说法正确的是( )

A .一元二次方程的一般形式为ax 2+bx +c =0

B .一元二次方程ax 2+bx +c =0的根是x =

-b ±

b 2-4ac

2a

C .方程x 2=x 的解是x =1

D .方程x (x +3)(x -2)=0的根有三个 10.如图,A 、B 是反比例函数y=

x

1

上的两个点,AC ⊥x 轴于点C ,BD ⊥y 轴交于点D ,连接AD 、BC ,则△ABD 与△ACB 的面积大小关系是( ) A.S ADB ∆>S ACB ∆ B.S ADB ∆<S ACB ∆

C.S ACB ∆=S ADB ∆

D.以上都有可能

11.定义新运算:a ⊕b =()()10a a b a a b b b

⎧-⎪

⎨-⎪⎩≤,>且≠.则函数y =3⊕x 的图象大致是( )

二、填空题:

12.已知:23a =+,23

b =-则a 与b 的关系为_______________。 13.若实数a ,b 满足40a b b ++-=,则2

a b

=________________。

14. 关于x 的方程(m -

3 )x m 2-1-x +3=0是一元二次方程,则m =___________。

15. 等腰三角形的底和腰是方程x 2-6x +8=0的两根,则此三角形的周长是 。 16.把根号外的因式移到根号内:当b >0时,

x x

b

= ;

a a --11)1(= 。 17. 当x= 时,最简根式x x 32

+与15+x 是同类根式。

18. 设a 、b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角

三角形的斜边长为____________。

19. 若关于x 的方程(k -2)x 2+4x +4=0有实数根,则k 的取值范围是 _______ 。 20.如图,在第一象限内,点P (2,3)、M ()2,a 是双曲线)0(≠=

k x

k

y

上的两点,PA ⊥x 轴于点A ,MB ⊥x 轴于点B ,PA 与OM 交于点C ,则 四边形ABMC 的面积为 _______。 21.如图,直线)>0(b b x y +-=与双曲线)

>0(x x

k

y =

交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ,有以下结论: ①OA=OB ;②△AOM ≌△BON ;③若∠AOB=45 º,则k S AOB =∆; ④当AB=2时,ON-BN=1。其中结论正确的是 。 三、解答题: 22.计算:

(1)a b b a ab b 3)23(235

÷-⋅ (2) 22 (212 +418

-3

48 )

(3)

13

2

x y 2y x

)÷162x y (4)673)3

2272(-⋅++

(5)62332)(62332(+--+) (6))54)(54()523(2

-+-+

23.用不同的方法解下列方程:

(1)04)1(2

=-+x (直接开平方法) (2)0762

=--x x (配方法)

(3)0622=-+x x (公式法) (4)0)2(25)3(42

2

=---x x (因式分解法)

24.化简求值:2

2

132

3322+-

++÷

+++a a a a a a a ,其中,3=a 。

25.数a 、b 在数轴上的位置如图所示,化简:

()()()2

2

2

11b a b a --

-+

+

26.将1、

2、

3、

6按右侧方式排列.若规定

(m ,n )表示第m 排从左向右第n 个数,则 (1)(5,4)与(15,7)表示的两数之积是多少? (2)(100,10)是多少?

27.将a 、b 、c 、d 这4个数排成2行、2列,两边各加一条竖线,记成

|a c

b d |,现规定新

1

2

3

-1 -2

-3

111122663

2633

23第1排

第2排第3排第4排第5排

相关文档
最新文档