第4讲:二次函数几何问题重难点题型
二次函数图像与性质重难点题型(答案)
专题:二次函数图像与性质重难点题型考点一 二次函数的图像及性质1.对于抛物线y =-12(x +1)2+3,下列结论:①抛物线的开口向下; ②对称轴为直线x =1;③顶点坐标为(-1,3); ④x >1时,y 随x 的增大而减小. 其中正确结论的个数为( C ) A .1个 B .2个 C .3个 D .4个2.在函数y =ax 2-2ax -7上有A (-4,y 1),B (2,y 2),C (3,y 3)三点,若抛物线有最大值,则y 1,y 2和y 3的大小关系为( A ) A .y 1<y 3<y 2 B .y 3<y 2<y 1 C .y 2<y 1<y 3 D .y 1<y 2<y 3 3.若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( A )A .b <1且b ≠0B .b >1C .0<b <1D .b <14.二次函数y =kx 2-6x +3的图象与x 轴有两个交点,则k 的取值范围是 k <3且k ≠0 . 5.当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,求实数m 的值.解:当m >1时,∴当x =1时,y 取得最大值, 即-(1-m )2+m 2+1=4,解得m =2;当-2≤m ≤1时,∵-2≤x ≤1,∴当x =m 时,y 取得最大值,即m 2+1=4,解得m =-3或3(不合题意,舍去); 当m <-2时,∵-2≤x ≤1,∴当x =-2时,y 取得最大值,即-(-2-m )2+m 2+1=4,解得m =-74(不合题意,舍去).综上,实数m 的值为2或-3.考点二 二次函数的表达式的确定1.已知一个二次函数,当x =1时,y 有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( D )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +62.已知矩形ABCD 的两条对称轴为坐标轴和点A (2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( A ) A .y =x 2+8x +14 B .y =x 2-8x +14 C .y =x 2+4x +3 D .y =x 2-4x +33.将抛物线y =x 2-2x -1向上平移,使它经过点A (0,3),那么所得新抛物线对应的函数表达式是 y =x 2-2x +3 .4.已知点P (-1,5)在抛物线y =-x 2+bx +c 的对称轴上,且与该抛物线的顶点的距离是4,则该抛物线的表达式为 y =-x 2-2x 或y =-x 2-2x +8 .5.已知抛物线l :y =ax 2+bx +c (abc ≠0)的顶点为M ,与y 轴的交点为N ,我们称以N 为顶点,对称轴是y 轴且过点M 的抛物线为抛物线l 的衍生抛物线,直线MN 为抛物线l 的衍生直线.(1)抛物线y =x 2-2x -3的衍生抛物线是 y =-x 2-3 ,衍生直线是 y =-x -3 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是y =-2x 2+1和y =-2x +1,求这条抛物线的表达式.解:由题可知,衍生抛物线和衍生直线的两交点分别为原抛物线与衍生抛物线的顶点,将y =-2x 2+1和y =-2x +1联立,得⎩⎨⎧y =-2x 2+1,y =-2x +1,解得⎩⎨⎧x =0,y =1或⎩⎨⎧x =1,y =-1.∵衍生抛物线y =-2x 2+1的顶点为(0,1), ∴原抛物线的顶点为(1,-1).设原抛物线的表达式为y =t (x -1)2-1,∵抛物线过(0,1),∴1=t (0-1)2-1,解得t =2,∴原抛物线的表达式为y =2(x -1)2-1=2x 2-4x +1.考点三 二次函数的图像应用1.已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( D )A .有最大值0,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 2.在同一平面直角坐标系中,函数y =mx +m 和y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( D )3.已知a ,b 是非零实数,|a |>|b |,在同一坐标系中,函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是( D )4.如图1,一次函数y 1=x 与二次函数y 2=ax 2+bx +c的图象相交于P ,Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能( A )图1 图25.如图2,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y =a (x -m )2+n 的顶点在线段AB 上运动,与x 轴交于C ,D 两点(点C 在点D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为 8 .考点四 二次函数与方程、不等式的关系1.抛物线y=ax 2+bx+c 的图象如图3,下列结论正确是( C ) A .abc>0 B .2a+b>0 C .3a+c<0 D .ax 2+bx+c -3=0有两个不相等的实数根 2.二次函数y =ax 2+bx +c (a ≠0)的图象如图4,下列结论: ①b 2>4ac , ②abc <0, ③2a +b -c >0, ④a +b +c <0. 其中正确的是( A ) A .①④ B .②④ C .②③ D .①②③④图3 图4 图53.二次函数y =ax 2+bx +c (a ≠0)的图象如图5,下列四个结论: ①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b ≤a , 其中正确结论的个数是( B )A .4个B .3个C .2个D .1个4.若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( A ) A .m <a <b <n B .a <m <n <b C .a <m <b <n D .m <a <n <b 5.一次函数y =kx +4与二次函数y =ax 2+c 的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点. (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图象相交于B ,C 两点,O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值. 解:(1)∵点(1,2)在一次函数y =kx +4的图象上, ∴2=k +4,即k =-2.∵一次函数y =kx +4与二次函数y =ax 2+c 图象的另一个交点是该二次函数图象的顶点,∴(0,c )在一次函数y =kx +4的图象上,即c =4, ∵点(1,2)也在二次函数y =ax 2+c 的图象上, ∴2=a +c ,∴a =-2.(2)∵点A 的坐标为(0,m )(0<m <4),过点A 且垂直于y 轴的直线与二次函数y =-2x 2+4的图象交于点B ,C ,∴可设点B 的坐标为(x 0,m ),由对称性得点C 的坐标为(-x 0,m ),∴BC =2|x 0|.∴BC 2=4x 20.∵点B 在二次函数y =-2x 2+4的图象上,∴-2x 20+4=m ,即x 20=2-m 2,∴BC 2=4x 20=8-2m . ∵OA =m ,∴W =OA 2+BC 2=m 2-2m +8=(m -1)2+7(0<m <4). ∴m =1时,W 有最小值,最小值为7.※课后练习1.在同一平面直角坐标系中,一次函数y=kx -2和二次函数y=kx 2+2x -4(k 是常数且k ≠0)的图象可能是 ( A )2.在同一平面直角坐标系内,二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的大致图象,正确的是 ( C )A .B .C .D . 3.已知m >0,关于x 的一元二次方程(x +1)(x -2)-m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( A ) A .x 1<-1<2<x 2 B .-1<x 1<2<x 2 C .-1<x 1<x 2<2 D .x 1<-1<x 2<24.函数y =ax 2+bx +c 图象如图1,下列结论正确的有( B ) ①abc <0 ② b 2-4ac >0 ③ 2a >b ④ (a +c )2<b 2 A .1个 B .2个 C .3个 D .4个图1 图2 5.二次函数y =ax2+bx +c 的部分图象如图2所示,有以下结论:①3a -b =0;②b 2-4ac >0;③5a -2b +c >0;④4b +3c >0. 其中错误的结论( A ) A .1个 B .2个 C .3个 D .4个 6.已知二次函数的图象经过点P (2,2),顶点为O (0,0),将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为_ y =12x 2-4x +8__.7.同一坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n )x +n 关于y 轴对称,则m =5 ,n =-6 .8.当0≤x ≤3时,直线y =a 与抛物线y =(x -1)2-3有交点,则a 的取值范围是__-3≤a ≤1____.9.已知二次函数y =x 2-2x +3,当0≤x ≤m 时,y 最大值为3,最小值为2,则m 的取值范围是 1≤m ≤2 .10.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:x ﹣1 0 1 3y ﹣1 3 5 3下列结论: ①ac <0; ②当x >1时,y 的值随x 值的增大而减小.③3是方程ax 2+(b ﹣1)x +c =0的一个根; ④当﹣1<x <3时,ax 2+(b ﹣1)x +c >0. 其中正确的结论有 ①③④ .11.已知抛物线y=-12x 2+mx 过点( 8,0 ).(1)求m 的值;(2)如图,在抛物线内作矩形ABCD , 使点C ,D 落在抛物线上,点A ,B 落 在x 轴上,设矩形ABCD 的周长为L , 求L 的最大值.解:(1)由条件可得-12×82+8m=0,解得m=4.(2)∵m=4,∴抛物线的表达式为y=-12x 2+4x .∵抛物线和矩形都是轴对称图形,∴点A 与点B ,点C 与点D 都关于抛物线的对称轴x=4对称,设点A (n ,0),则点D (n ,-12n 2+4n ),点B (8-n ,0),AB=8-2n .∴L=2(-12n 2+4n )+2(8-2n )=-n 2+4n+16=-(n -2)2+20,∴L 的最大值为20.12.已知二次函数y =34(x -m )2+m ,当2m -3≤x ≤2m 时,y的最小值是1.求m 的值. 解:若2m <m 即m <0,则在x =2m 时,y 取得最小值1,即有y =34(2m -m )2+m =1.解得m 1=-2,m 2=23(不合题意,舍去);若2m -3≤m ≤2m ,即0≤m ≤3时,则x=m时,y的最小值是1,此时m=1;若2m-3>m,即m>3时,则x=2m-3时y取得最小值1,此时32+m=1,4(2m-3-m)此方程无实数根;综上所述,m的值为1或-2.。
二次函数专题知识点常考(典型)题型重难点题型(含详细答案)
⼆次函数专题知识点常考(典型)题型重难点题型(含详细答案)⼆次函数和基本性质专题知识点+常考题型+重难点题型(含详细答案)⼀、⽬录⼀、⽬录 (1)⼆、基础知识点 (2)1.⼆次函数的概念 (2)2.⼆次函数y=的图像和性质 (2)3.⼆次函数y=a()()的性质 (4)4,⽤配⽅法求() (6)5.⼆次函数图像性质总结 (7)6.⼆次函数解析式的求法 (7)7.⼆次函数图像的平移 (9)三、重难点题型 (11)1.由抛物线的位置确定系数的符号 (11)2.⽤待定系数法求⼆次函数的解析式 (13)3.运⽤抛物线的对称性解题 (17)4.⽤⼆次函数解决最值问题 (18)5.⼆次函数的图像 (20)6.⼆次函数与应⽤问题 (21)⼆、基础知识点1.⼆次函数的概念形如y=(a≠0)的函数叫作⼆次函数。
注:①a、b、c为常数,且a≠0,即⼆次项必须有,⼀次项和常数项可以没有②⼆次函数为函数的⼀种,满⾜函数的所有性质。
即在定义域内,⾃变量x有且仅有唯⼀应变量y与之对应例1.下列各项中,y是x的⼆次函数的有:①y=;②y=()(m为常数);③y=(m为常数);④y=答案:①是⼆次函数,⼆次项系数不为0;②不应定,当m=1时,⼆次项为0,则不是⼆次函数;③是⼆次函数,⼆次项系数不为0;④化简得:-x-2,因此不是⼆次函数例2.已知y=()是⼆次函数,求k的值。
答案:因为y=()是⼆次函数所以解得:k=22.⼆次函数y=的图像和性质y=(a≠0,b=0,c=0,即⼀次项和常数项皆为0)的性质:①图形为抛物线形状②a>0,开⼝向上;a<0,开⼝向下③过原点(顶点),为最⼤值或最⼩值(由a的正负决定)④关于y轴对称,即关于x=0对称⑤越⼤,开⼝越⼩,即上升或下降越快注:关于y轴对称的前提条件是:函数定义域关于y轴对称例1.求等边三⾓形⾯积S与边长a的函数关系式。
答案:由等边三⾓形性质可知S=例2.根据抛物线y=(a≠0)的性质回答下列问题;(1)抛物线的开⼝向上,则a:(2)当x<0时,抛物线y值随x的增⼤⽽减⼩,则a:(3)除顶点外,抛物线上的点都在x轴的下⽅,则a:(4)当x>0且a<0时,则抛物线的y值随x的增⼤⽽:答案:(1)因为抛物线开⼝向上所以a>0(2)因为当x<0时,抛物线y值随x的增⼤⽽减⼩所以抛物线开⼝向上所以a>0(3)因为除顶点外,抛物线上的点都在x轴的下⽅。
二次函数重点难点总结
二次函数重点难点总结二次函数是高中数学中的重要内容,它应用广泛、内容较多,容易出现一些难点。
下面将从求解二次函数的根、图像的性质、应用题目等方面,总结二次函数的重点和难点。
一、求解二次函数的根1.求解一元二次方程的根(1)利用配方法,将一元二次方程化为完全平方形式,并求得根的解;(2)利用求根公式,即根的公式:x = (-b±√(b²-4ac))/(2a),求得根的解;(3)利用因式分解法,将二次方程因式分解,并求得根的解。
2.利用二次函数图像求解二次方程的根(1)通过二次函数图像的顶点坐标、对称轴及判别式,求得一元二次方程的根;(2)通过二次函数图像的交点,求得一元二次方程的根。
二、二次函数图像的性质1.几何意义(1)根的性质:当一元二次方程有根时,根相等,则二次函数图像与x轴有且仅有一交点;根不相等,则二次函数图像与x轴有两个交点。
(2)极值点的性质:当二次函数开头系数为正时,函数的最小值对应极值点;当二次函数开头系数为负时,函数的最大值对应极值点。
2.求解顶点坐标(1)利用函数的顶点公式,顶点坐标为(-b/2a,f(-b/2a));(2)利用函数变形和求顶点的方法,求解顶点坐标;(3)通过二次函数图像的顶点坐标,确定一元二次方程的根。
三、二次函数的应用题目1.最值问题(1)通过求解顶点坐标,确定二次函数的最大值或最小值;(2)通过二次函数图像的几何特点,确定特定区间内二次函数的最大值或最小值。
2.奇偶性问题(1)二次函数的对称轴与y轴平行,则函数是偶函数,开头系数为正;(2)二次函数的对称轴与x轴平行,则函数是奇函数。
3.求解焦点坐标(1)通过函数变形和顶点坐标求解焦点坐标;(2)通过求解焦距和顶点坐标求解焦点坐标。
4.范围问题(1)利用二次函数图像的开启方向和极值,确定二次函数的定义域和值域;(2)利用二次函数图像的顶点坐标和对称性,确定二次函数的定义域和值域。
以上是二次函数的重点和难点的总结,包括求解根的方法、二次函数图像的性质以及应用题目的解法。
人教初三数学二次函数知识点及难点总结
初三数学二次函数知识点总结二次项系数a决定二次函数图像的开口方向和大小.当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口.|a|越大,则二次函数图像的开口越小.1、决定对称轴位置的因素一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右.事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到.2、决定二次函数图像与y轴交点的因素常数项c决定二次函数图像与y轴交点.二次函数图像与y轴交于(0,c)一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
Array 2. 2=+的性质:上加下减。
y ax c3. ()2=-的性质:左加右减。
y a x h Array 4. ()2=-+的性质:y a x h k三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小; 当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1、考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是 2、综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D1、考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数的重难点
二次函数的重难点引言在高中数学中,二次函数是重要的内容之一。
二次函数的学习,不仅涉及到基本的定义和性质,还包括二次函数的图像、解析式、变形等方面的知识。
在学习二次函数的过程中,学生往往会遇到一些重难点,需要认真对待和克服。
本文将从多个方面来探讨二次函数的重难点,帮助学生更好地理解和掌握这一知识点。
二次函数的基本定义和性质二次函数的定义二次函数是一个形如y=ax2+bx+c的函数,其中a、b、c是常数且a≠0。
二次函数的性质•二次函数的图像是一个抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
•二次函数的对称轴是垂直于x轴的一条直线,其方程为x=−b2a。
•二次函数的顶点是抛物线的最低点或最高点,其坐标为(−b2a ,f(−b2a))。
•二次函数的图像关于对称轴对称。
二次函数的图像二次函数的图像是理解和掌握二次函数的重要途径之一。
下面将介绍二次函数图像的关键要素和常见变形。
顶点坐标和对称轴二次函数的顶点坐标可以通过将二次函数化简为顶点形式来获得,即y=a(x−ℎ)2+k,其中(ℎ,k)就是顶点坐标。
对称轴的方程可以通过将二次函数化简为顶点形式时得到的x=ℎ获得。
开口方向二次函数的开口方向与二次函数的系数a的正负有关。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
平移和伸缩通过改变二次函数的参数,可以实现平移和伸缩。
当改变顶点坐标(ℎ,k)时,可以实现图像的平移;当改变系数a的值时,可以实现图像的伸缩。
常见变形•平移:左右平移(水平方向变化横坐标)、上下平移(垂直方向变化纵坐标)。
•伸缩:纵向伸缩(改变系数a的绝对值)、横向伸缩(改变系数a的倒数)。
•翻转:关于x轴翻转、关于y轴翻转。
二次函数的解析式标准形式和一般形式一般来说,二次函数的解析式可以表示为y=ax2+bx+c。
但由于二次函数的图像和平移、翻转等变形有关,可以表示为多种形式。
常见的形式有标准形式和一般形式。
中考数学重难点专题讲座一元二次方程与二次函数含答案
中考数学重难点专题讲座第四讲 一元二次方程与二次函数前言前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难;几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了;相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求;中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的;所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析;一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察;但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法;第一部分 真题精讲例12010,西城,一模已知:关于x 的方程23(1)230mx m x m --+-=.⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称.①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.思路分析本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式;由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断;第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式;第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可;事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点1,0;根据这个信息,第三问的函数如果要取不等式等号,也必须过该点;于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.解析解:1分两种情况:当0m =时,原方程化为033=-x ,解得1x =, 不要遗漏∴当0m =,原方程有实数根.当0≠m 时,原方程为关于x 的一元二次方程,∵()()()222[31]4236930m m m m m m =----=-+=-△≥.∴原方程有两个实数根. 如果上面的方程不是完全平方式该怎样办再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了综上所述,m 取任何实数时,方程总有实数根.2①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称,∴0)1(3=-m .关于Y 轴对称的二次函数一次项系数一定为0∴1=m .∴抛物线的解析式为121-=x y .②∵()()221212210y y x x x -=---=-≥,判断大小直接做差∴12y y ≥当且仅当1x =时,等号成立.3由②知,当1x =时,120y y ==.∴1y 、2y 的图象都经过()1,0. 很重要,要对那个等号有敏锐的感觉∵对于x 的同一个值,132y y y ≥≥,∴23y ax bx c =++的图象必经过()1,0.又∵23y ax bx c =++经过()5,0-,∴()()231545y a x x ax ax a =-+=+-. 巧妙的将表达式化成两点式,避免繁琐计算设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=. ∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立,∴320y y -≥,图7∴2(42)(25)0y ax a x a =+-+-≥.又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a---=最小≥.a>0时,顶点纵坐标就是函数的最小值 ∴2(42)4(25)0a a a ---≤.∴2(31)0a -≤.而2(31)0a -≥.只有013=-a ,解得13a =. ∴抛物线的解析式为35343123-+=x x y .例22010,门头沟,一模 关于x 的一元二次方程22(1)2(2)10m x m x ---+=.1当m 为何值时,方程有两个不相等的实数根;2点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; 3在2的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.思路分析第一问判别式依然要注意二次项系数不为零这一条件;第二问给点求解析式,比较简单;值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.解析:1由题意得[]22224(1)0m m ∆=---->()解得54m <210m -≠ 解得1m ≠± 当54m <且1m ≠±时,方程有两个不相等的实数根. 2由题意得212(2)11m m -+-+=-解得31m m =-=,舍 始终牢记二次项系数不为0 28101y x x =++3抛物线的对称轴是58x = 由题意得114B ⎛⎫-- ⎪⎝⎭, 关于对称轴对称的点的性质要掌握 14x =-与抛物线有且只有一个交点B 这种情况考试中容易遗漏 另设过点B 的直线y kx b =+0k ≠把114B ⎛⎫-- ⎪⎝⎭,代入y kx b =+,得14k b -+=-,114b k =- 114y kx k =+- 28101114y x x y kx k ⎧=++⎪⎨=+-⎪⎩ 整理得218(10)204x k x k +--+= 有且只有一个交点,21(10)48(2)04k k ∆=--⨯⨯-+= 解得6k =162y x =+ 综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,162y x =+例3已知P 3,m -和Q1,m 是抛物线221y x bx =++上的两点. 1求b 的值;2判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由; 3将抛物线221y x bx =++的图象向上平移k k 是正整数个单位,使平移后的图象与x 轴无交点,求k 的最小值.思路分析 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组,十分麻烦,计算量大,浪费时间并且可能出错;但是仔细看题,发现P,Q 纵坐标是一样的,说明他们关于抛物线的对称轴对称;而抛物线只有一个未知系数,所以轻松写出对称轴求出b; 第二问依然是判别式问题,比较简单;第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察;考生一定要把握平移后解析式发生的变化,即左加右减单独的x,上加下减表达式整体然后求出结果;解析1因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.所以,抛物线对称轴3142b x -+=-=,所以,4b =. 2由1可知,关于x 的一元二次方程为2241x x ++=0.因为,24b ac =-=16-8=8>0.所以,方程有两个不同的实数根,分别是1122b xa -+==-+,2122b x a -==--. 3由1可知,抛物线2241y x x =++的图象向上平移k k 是正整数个单位后的解析式为2241y x x k =+++. 若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实数解即可. 由24b ac =-=168(1)k -+=88k -<0,得1k >又k 是正整数,所以k 得最小值为2.例42010,昌平,一模已知抛物线2442y ax ax a =-+-,其中a 是常数.1求抛物线的顶点坐标;2若25a >,且抛物线与x 轴交于整数点坐标为整数的点,求此抛物线的解析式. 思路分析本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a 提出来,里面就是一个关于X 的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X 轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给25a >,合理变换以后代入判别式,求得整点的可能取值. 1依题意,得0a ≠,∴2442y ax ax a =-+-()()224422 2.a x x a x =-+-=--∴抛物线的顶点坐标为(2,2)-2∵抛物线与x 轴交于整数点,∴24420ax ax a -+-=的根是整数.∴2x == ∵0a >,∴2x = ∴2a是整数的完全平方数. ∵25a >, ∴25a <. 很多考生想不到这种变化而导致后面无从下手 ∴2a 取1,4, 当21a =时,2a =; 当24a =时,12a = . ∴a 的值为2或12. ∴抛物线的解析式为2286y x x =-+或2122y x x =-.例52010,平谷,一模已知:关于x 的一元二次方程()()21210m x m x -+--=m 为实数1若方程有两个不相等的实数根,求m 的取值范围;2在1的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x 轴上的一个固定点;3若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()2121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.思路分析本题第一问比较简单,直接判别式≥0就可以了,依然不能遗漏的是m -1≠0;第二问则是比较常见的题型.一般来说求固定点既是求一个和未知系数无关的X,Y 的取值.对于本题来说,直接将抛物线中的m 提出,对其进行因式分解得到y=mx -x -1x+1就可以看出当x=-1时,Y=0,而这一点恰是抛物线横过的X 轴上固定点.如果想不到因式分解,由于本题固定点的特殊性在X 轴上,也可以直接用求根公式求出两个根,标准答案既是如此,但是有些麻烦,不如直接因式分解来得快.至于第三问,又是整数根问题+平移问题,因为第二问中已求出另一根,所以直接令其为整数即可,比较简单.解:1()()22241m m m ∆=-+-=∵方程有两个不相等的实数根,∴0m ≠∵10m -≠,∴m 的取值范围是0m ≠且1m ≠.2证明:令0y =得()()21210m x m x -+--=.∴()()()()222121m m m x m m --±--±==--. ∴()()12221121211m m m m x x m m m -+--++==-==---, 这样做是因为已经知道判别式是2m ,计算量比较小,如果根号内不是完全平方就需要注意了∴抛物线与x 轴的交点坐标为()11001m ⎛⎫- ⎪-⎝⎭,,,, ∴无论m 取何值,抛物线()()2121y m x m x =-+--总过定点()10-,3∵1x =-是整数 ∴只需11m -是整数. ∵m 是整数,且01m m ≠≠,, ∴2m =当2m =时,抛物线为21y x =-.把它的图象向右平移3个单位长度,得到的抛物线解析式为()223168y x x x =--=-+总结 中考中一元二次方程与二次函数几乎也是必考内容,但是考点无非也就是因式分解,判别式,对称轴,两根范围,平移以及直线与抛物线的交点问题;总体来说这类题目不难,但是需要计算认真,尤其是求根公式的应用一定要注意计算的准确性;这种题目大多包涵多个小问;第一问往往是考验判别式大于0,不要忘记二次项系数为0或者不为0的情况;第2,3问基于函数或者方程对其他知识点进行考察,考生需要熟记对称轴,顶点坐标等多个公式的直接应用;至于根与系数的关系韦达定理近年来中考已经尽量避免提及,虽不提倡但是应用了也不会扣分,考生还是尽量掌握为好,在实际应用中能节省大量的时间;第二部分 发散思考思考1. 2010,北京中考已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.1求k 的值;2当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;3在2的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围. 思路分析去年中考原题,相信有些同学已经做过了.第一问自不必说,判别式大于0加上k 为正整数的条件求k 很简单.第二问要分情况讨论当k 取何值时方程有整数根,一个个代进去看就是了,平移倒是不难,向下平移就是整个表达式减去8.但是注意第三问,函数关于对称轴的翻折,旋转问题也是比较容易在中考中出现的问题,一定要熟练掌握关于对称轴翻折之后函数哪些地方发生了变化,哪些地方没有变.然后利用画图解决问题.思考22009,东城,一模已知:关于x 的一元二次方程222(23)41480x m x m m --+-+= 1若0,m >求证:方程有两个不相等的实数根;2若12<m <40的整数,且方程有两个整数根,求m 的值.思路分析本题也是整根问题,但是不像上题,就三个值一个个试就可以试出来结果;本题给定一个比较大的区间,所以就需要直接用求根公式来计算.利用已知区间去求根的判别式的区间,也对解不等式做出了考察.思考32009,海淀,一模已知: 关于x 的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2-bx+kcc ≠0的图象与x 轴一个交点的横坐标为1.1若方程①的根为正整数,求整数k 的值;2求代数式akcab b kc +-22)(的值; 3求证: 关于x 的一元二次方程ax2-bx+c=0 ②必有两个不相等的实数根.思路分析本题有一定难度,属于拉分题目;第一问还好,分类讨论K 的取值即可;第二问则需要将k 用a,b 表示出来,然后代入代数式进行转化.第三问则比较繁琐,需要利用题中一次方程的根为正实数这一条件所带来的不等式,去证明二次方程根的判别式大于0.但是实际的考试过程中,考生在化简判别式的过程中想不到利用已知条件去套未知条件,从而无从下手导致失分.思考42009,顺义,一模. 已知:关于x 的一元二次方程22(21)20x m x m m -+++-=.1求证:不论m 取何值,方程总有两个不相等的实数根;2若方程的两个实数根12x x ,满足12211m x x m +-=+-,求m 的值.思路分析这一题第二问有些同学想到直接平方来去绝对值,然后用韦达定理进行求解,但是这样的话计算量就会非常大,所以此题绕过韦达定理,直接用根的判别式写出12x x ,,发现12x x ,都是关于m 的一次表达式, 做差之后会得到一个定值.于是问题轻松求解. 这个题目告诉我们高级方法不一定简单,有的时候最笨的办法也是最好的办法.第三部分 思考题解析思考1解析解:1由题意得,168(1)0k ∆=--≥.∴3k ≤.∵k 为正整数,∴123k =,,.2当1k =时,方程22410x x k ++-=有一个根为零;当2k =时,方程22410x x k ++-=无整数根;当3k =时,方程22410x x k ++-=有两个非零的整数根.综上所述,1k =和2k =不合题意,舍去;3k =符合题意.当3k =时,二次函数为2242y x x =++,把它的图象向下平移8个单位得到的图象的解析式为2246y x x =+-.3设二次函数2246y x x =+-的图象与x 轴交于A B 、两点,则(30)A -,,(10)B ,. 依题意翻折后的图象如图所示. 当直线12y x b =+经过A 点时,可得32b =; 当直线12y x b =+经过B 点时,可得12b =-. 由图象可知,符合题意的(3)b b <的取值范围为1322b -<<.思考2解析证明: []22=2(23)-4414884m m m m ---++()= 0,m > 840.m ∴+>∴方程有两个不相等的实数根;22(23)=(23)2m x m -±-±=∵方程有两个整数根,且m 为整数. 又∵12<m <40,252181.m ∴<+<∴ 59.356,.27,24.638,.2m m m =∴==∴==∴=∴m=24思考3解析解:由 kx=x+2,得k -1 x=2.依题意 k -1≠0.∴ 12-=k x . ∵ 方程的根为正整数,k 为整数,∴ k -1=1或k -1=2.∴ k1= 2, k2=3.2解:依题意,二次函数y=ax2-bx+kc 的图象经过点1,0,∴ 0 =a -b+kc, kc = b -a . ∴222222222a ab ab b a ab b a b a ab b a b akc ab b kc -+-+-=-+--=+-)()()( =.122-=--aab ab a 3证明:方程②的判别式为 Δ=-b2-4ac= b2-4ac.由a ≠0, c ≠0, 得ac ≠0.i 若ac<0, 则-4ac>0. 故Δ=b2-4ac>0. 此时方程②有两个不相等的实数 根.ii 证法一: 若ac>0, 由2知a -b+kc =0, 故 b=a+kc.Δ=b2-4ac= a+kc2-4ac=a2+2kac+kc2-4ac = a2-2kac+kc2+4kac -4ac =a -kc2+4ack -1.∵ 方程kx=x+2的根为正实数,∴ 方程k -1 x=2的根为正实数.由 x>0, 2>0, 得 k -1>0.∴ 4ack -1>0.∵ a -kc20,∴Δ=a -kc2+4ack -1>0. 此时方程②有两个不相等的实数根. 证法二: 若ac>0,∵ 抛物线y=ax2-bx+kc 与x 轴有交点,∴ Δ1=-b2-4akc =b2-4akc0.b2-4ac - b2-4akc=4ack -1.由证法一知 k -1>0,∴ b2-4ac> b2-4akc0.∴ Δ= b2-4ac>0. 此时方程②有两个不相等的实数根. 综上, 方程②有两个不相等的实数根.思考4解析1[]22(21)4(2)m m m ∆=-+-+-22441448m m m m =++--+90=> ∴不论m 取何值,方程总有两个不相等实数根2由原方程可得12(21)32m x +±==, ∴ 1221x m x m =+=-, -- ∴ 123x x -=又∵ 12211m x x m +-=+- ∴ 2311m m +=+- ∴ 4m = - 经检验:4m =符合题意. ∴ m 的值为4.。
初中数学《二次函数》重难点题型汇编含解析
二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。
二次函数 相关概念难点及答案解析
二次函数1.二次函数的相关概念1.1二次函数的定义一般地,形如:y=ax2+bx+c(a,b,c是常数,且a≠0)的函数,叫做.其中,a叫做,b叫做,c叫做.【答案】二次函数;二次项系数,一次项系数,常数项.2.二次函数的图象与性质2.1二次函数的顶点式的图象与性质y轴;抛物线的顶点的.一般地,二次项系数a决定了抛物线的,|a|,抛物线的开口越小.【答案】(1)向上;y轴;增大而减小;增大而增大(2)向下;y轴;增大而增大;增大而减小(3)开口方向和开口大小;越大【答案】完全相同;不同;向上;向下2.1.4二次函数y=ax2+k的图象和性质:【答案】向上;(0,k);向下;(0,k)2.1.5比较二次函数y=x 2,y=(x+1)2和y=(x−1)2的图象:从形状上看,二次函数y=(x+1)2和y=(x−1)2的图象与二次函数y=x 2的图象是的,但它们的位置.可以知道,二次函数y=a(x−h)2的图象可以由y=ax2的图象作如下平移得到:当h>0时,平移h个单位长度;当h<0时,平移|hl个单位长度.【答案】完全相同;不同;向右;向左2.1.6二次函数y=a(x−h)2的图象与性质:【答案】向上;(h,0);向下;(h,0)【答案】完全相同;不同向左;向上;向右;向上;向右;向下;向左;向下【答案】向上;(h,k);向下;(h,k)2.1.9平移规律【答案】h;k;左加右减,上加下减2.2二次函数的一般式的图象与性质(2)描点:在直角坐标系中描出相应的点(3)连线:用平滑曲线顺次连接各点,得到二次函数y=x²+2x+3的图象2.2.2二次函数y=ax²+bx+c的图象和性质函数y=ax²+bx+c(a>0)y=ax²+bx+c(a<0)开口方向向上向下对称轴直线顶点坐标( b2a ,4ac b^24a )增减性当x< b 2a 时,y 随x 的增大而减小;当x> b2a 时,y 随x 的增大而增大当x< b2a 时,y 随x 的增大而增大;当x> b2a 时,y 随x 的增大而减小最值当x= b2a 时,y 最小值=当x= b 2a 时,y 最大值=【答案】【答案】【答案】【答案】1.顶点;2. b 2a ;4ac b^24a ;(1)ax22+bx2+c;ax12+bx1+c;(2)ax12+bx1+c;ax22+bx2+c【答案】开口向上;开口向下;对称轴为y 轴;对称轴在y 轴左侧;对称轴在y 轴右侧;图象过原点;与y 轴正半轴相交;与y 轴负半轴相交第四步,还原:将求出的待定系数还原到解析式中.【答案】【答案】ax²+bx+c=0;y=ax²+bx+c3.2.2由一元二次方程的根的情况,可以确定相应的二次函数的图象与x轴的位置关系:【答案】【答案】横坐标3.2.5二次函数与x轴的交点【答案】(1)上方;(2)下方;(3)x<a或x>b;x≠a;全体实数;a<x<b;无解;无解3.2.6二次函数与直线的交点二次函数y1=ax²+bx+c的与一次函数y2=kx+b的函数值y1>y2,y1<y2时函数图象的特征:【答案】(1)上方;(2)下方;(3)x<a 或x>c;a<x<c.。
二次函数重难题含答案
学科教师辅导讲义教学内容(一)元二次方程的解法题型1二次函数的图像和性质例题1(2012•贵港一模)若直线y=b(b为实数)与函数y=|x2﹣4x+3|的图象至少有三个公共点,则实数b的取值范围是0<b≤1.考点:二次函数的性质.分析:先求x2﹣4x+3=0时x的值,再求x2﹣4x+3>0和x2﹣4x+3<0时,自变量的取值范围及对应的函数式,求函数式的取值范围,判断符合条件的b的值的范围.解答:解:∵当x2﹣4x+3=0时,x=1或x=3,∴当x<1或x>3时,x2﹣4x+3>0,即:y=|x2﹣4x+3|,函数值大于0,当1<x<3时,﹣1≤x2﹣4x+3<0,即:y=|﹣x2+4x﹣3|,函数最大值为1,故符合条件的实数b的取值范围是0<b≤1.点评:本题是分段函数的问题,按照绝对值里的数的符号,分段求函数,再求符合条件的b值范围.例题2(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=0.考点:二次函数的性质.专题:常规题型.分析:根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0),由此求出a+b+c的值.解答:解:∵抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,∴y=ax2+bx+c与x轴的另一交点为(1,0),∴a+b+c=0.故答案为:0.点评:本题考查了二次函数的性质,根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0)是解题的关键.我来试一试!(2014•武汉模拟)直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c <0的解集是1<x<2.考点:二次函数的图象;一次函数的图象.分析:从图上可知,mx+n <ax 2+bx+c ,则有x >1或x <﹣;根据ax 2+bx+c <0,可知﹣1<x <2;综上,不等式mx+n <ax 2+bx+c <0的解集是1<x <2.解答: 解:因为mx+n <ax 2+bx+c <0,由图可知,1<x <2.点评: 此题将图形与不等式相结合,考查了同学们对不等式组的解集的理解和读图能力,有一定的难度,读图时要仔细.题型2二次函数与一元二次方程根据下列表格中的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的根的个数是( ) x 6.17 6.18 6.19 6.20 y=ax 2+bx+c 0.02 ﹣0.01 0.02 0.04 A . 0 B . 1 C . 2 D . 1或2考点: 图象法求一元二次方程的近似根. 专题: 计算题.分析: 由表格中的对应值可得出,方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间. 解答: 解:∵当x=6.17时,y=0.02;当x=6.18时,y=﹣0.01; 当x=6.19时,y=0.02;∴方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间, 故选C .点评: 本题考查了用图象法求一元二次方程的近似根,当函数值由正变为负或由负变为正时,方程的根在这两个自变量之间.我来试一试!观察下列表格,求一元二次方程x 2﹣x=1.1的一个近似解是( ) x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 x 2﹣x 0.11 0.24 .39 0.56 0.75 0.96 1.19 1.44 1.71 A . 0.11 B . 1.6 C . 1.7 D . 1.19考点: 图象法求一元二次方程的近似根.分析: 设y=x 2﹣x ,根据表格,可以看出y=x 2﹣x 在区间【1.1,1.9】上是增函数,根据函数是单调性,来确定一元二次方程x 2﹣x=1.1的一个近似解.例题1解答: 解:令y=x 2﹣x ,根据表格,可以看出y=x 2﹣x 在区间【1.1,1.9】上是增函数,∴当x 2﹣x=1.1,即y=1.1时,y=x 2﹣x 的值域是【0.96,1.19】上,它对应的定义域是【1.6,1.7】, ∵与0.96相比,y=1.1更接近于1.19, ∴方程x 2﹣x=1.1的定义域更接近于1.7. 故选C点评: 本题的考查的是二次函数与一元二次方程,在解题过程中,根据表格,来判断函数的单调性,然后根据单调性来解答问题.题型3实际问题与二次函数运动会上,某运动员掷铅球时,所掷的铅球的高y (m )与水平的距离x (m )之间的函数关系式为y=﹣x 2+x+,则该运动员的成绩是( ) A . 6m B . 12m C . 8m D .10m考点: 二次函数的应用. 专题: 应用题. 分析:铅球落地才能计算成绩,此时y=0,即﹣x 2+x+=0,解方程即可.在实际问题中,注意负值舍去.解答: 解:由题意可知,把y=0代入解析式得:﹣x 2+x+=0,解方程得x 1=10,x 2=﹣2(舍去), 即该运动员的成绩是10米. 故选D .点评: 本题考查二次函数的实际应用,搞清楚铅球落地时,即y=0,测量运动员成绩,也就是求x 的值,此题为数学建模题,借助二次函数解决实际问题.(2014•仙桃)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为 米.例题2例题1考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.我来试一试!(2014•杨浦区一模)如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值===2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.题型4二次函数压轴题定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n)(n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…A n+1(x n+1,0)(n为正整数).若x1=d(0<d<1),当d为()时,这组抛物线中存在美丽抛物线.A .或B.或C.或D.考点:二次函数综合题.专题:压轴题;新定义.分析:由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半.又0<d<1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的定点纵坐标必定小于1.例题1解答:解:直线l:y=x+b经过点M(0,),则b=;∴直线l:y=x+.由抛物线的对称性知:抛物线的顶点与x轴的两个交点构成的直角三角形必为等腰直角三角形;∴该等腰三角形的高等于斜边的一半.∵0<d<1,∴该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1);∵当x=1时,y1=×1+=<1,当x=2时,y2=×2+=<1,当x=3时,y3=×3+=>1,∴美丽抛物线的顶点只有B1、B2.①若B1为顶点,由B1(1,),则d=1﹣=;②若B2为顶点,由B2(2,),则d=1﹣[(2﹣)﹣1]=,综上所述,d的值为或时,存在美丽抛物线.故选B.点评:考查了二次函数综合题,该题是新定义题型,重点在于读懂新定义或新名词的含义.利用抛物线的对称性找出相应的等腰直角三角形是解答该题的关键.我来试一试!如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A .B.C.﹣2 D.考点:二次函数综合题.专题:压轴题.分析:连接OB,过B作BD⊥x轴于D,若OC与x轴正半轴的夹角为15°,那么∠BOD=30°;在正方形OABC中,已知了边长,易求得对角线OB的长,进而可在Rt△OBD中求得BD、OD的值,也就得到了B点的坐标,然后将其代入抛物线的解析式中,即可求得待定系数a的值.解答:解:如图,连接OB,过B作BD⊥x轴于D;则∠BOC=45°,∠BOD=30°;已知正方形的边长为1,则OB=;Rt△OBD中,OB=,∠BOD=30°,则:BD=OB=,OD=OB=;故B(,﹣),代入抛物线的解析式中,得:()2a=﹣,解得a=﹣;故选B.点评:此题主要考查了正方形的性质、直角三角形的性质以及用待定系数法确定函数解析式的方法,能够正确地构造出与所求相关的直角三角形,是解决问题的关键.(2013秋•禹州市校级月考)二次函数y=x2+bx+c的图象如图所示,则函数值y<0时,对应x的取值范围是﹣3<x<1.考点:二次函数的性质;二次函数的图象.专题:常规题型.分析:由图象知抛物线顶点坐标为(﹣1,﹣4),二次项系数为1,直接写出抛物线的顶点式,展开可求出b,c值,先求出y=0时,对应x的值,再求函数值y<0时,对应x的取值范围.解答:解:∵抛物线顶点坐标为(﹣1,﹣4),二次项系数为1,∴抛物线的解析式为:y=(x+1)2﹣4即y=x2+2x﹣3=(x+3)(x﹣1)∴抛物线与x轴两交点坐标为(﹣3,0),(1,0)故当函数值y<0时,对应x的取值范围上是﹣3<x<1.本题答案为﹣3<x<1.点评:本题考查了二次函数解析式与顶点坐标的联系,图象与x轴交点坐标的求法,函数值与对应自变量取值范围的关系,需要形数结合解题.11.(2013•邵阳模拟)关于x的不等式组有解,则关于x的二次函数y=ax2+(a+1)x+1的顶点所在象限是第三象限.考点:二次函数的性质;解一元一次不等式组.专题:计算题;压轴题.分析:先解①得,x>2,解②得,x<,根据题意得到原不等式组的解集为2<x<,得到a>4;然后根据抛物线的顶点坐标公式计算出y=ax2+(a+1)x+1的顶点的横纵坐标,再判断它们的正负,即可得到顶点所在的象限.解答:解:,解①得,x>2,解②得,x<,∵原不等式组有解,∴2<x<,∴a>4;∴二次函数y=ax2+(a+1)x+1的顶点的横坐标=﹣<0;顶点的纵坐标==﹣<0,所以关于x的二次函数y=ax2+(a+1)x+1的顶点所在象限是第三象限.故答案为第三象限.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,).(2015•黄冈中学自主招生)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.考点:二次函数的性质;根的判别式;根与系数的关系.分析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m的值.(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x12+x22=(x1+x2)2﹣2x1x2=4(m﹣2)2﹣2(m2﹣3m+3)=2m2﹣10m+10=6∴,∵﹣1≤m<1,∴;(2)==(﹣1≤m<1).∴当m=﹣1时,式子取最大值为10.点评:本题的计算量比较大,需要很细心的求解.用到一元二次方程的根的判别式△=b2﹣4ac来求出m的取值范围;利用根与系数的关系x1+x2=,x1x2=来化简代数式的值.知识结构小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:复习日记卡片内容:元二次方程解法归纳时间:2007年6月×日举例:求一元二次方程x2﹣x﹣1=0的两个解方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解解方程:x2﹣x﹣1=0.解:方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2﹣x﹣1=0的解看成是二次函数y=的图象与x轴交点的横坐标,即x1,x2就是方程的解.方法三:利用两个函数图象的交点求解(1)把方程x2﹣x﹣1=0的解看成是一个二次函数y=的图象与一个一次函数y=图象交点的横坐标;(2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解.考点:图象法求一元二次方程的近似根.分析:本题是用二次函数看一元二次方程的一个典型题型,通过三种方法的解题发现,一元二次方程即可以用常规方法解,又可以函数的角度解;用函数方法解题,也有多种方法,如可看作求函数y=x2﹣x﹣1图形与x轴交点的横坐标,也可看作求一个一次函数与一个二次函数图象的交点横坐标.解答:解:(1)∵a=1,b=﹣1,c=﹣1,∴b2﹣4ac=5.∴.∴原方程的解是x1=,x2=;(2)x2﹣x﹣1;(3)x2与x+1或x2﹣1与x等.点评:是一道“课题学习”,采用“学生复习日记卡片”的形式,针对一元二次方程解法的多样性的探究,在考查学生解题思维能力广阔性、深刻性的同时,还给学生提供了数学学习方法的样例,是对新教材现状难以考查学生学习过程、方法的一种新尝试.本题将代数、几何解法有机融合,借助数形结合,在考查学生学习方法探究归纳的同时,引导学生反思性学习,是一道亮点题型.[常见错误]方法一:没有选择最优的方法,能直接用公式法而去用配方法求解,以至配方时移项、开平方的错误.方法二、三:对利用图象法求方程的近似解没有掌握,无法将一元二次方程转化为函数的图象的交点求解.方法二中填写或的错误结果;方法三随意拆成二个函数,但不能转化为规定的方程.题型1二次函数的实际运用例题1(2013•内江校级一模)仁寿某商场服装柜在销售中发现:“爱童”牌童装平均每天可售出20件,每件盈利40元.为迎接“元旦”节,商场决定采取适当的降价措施扩大销量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,则平均每天就可多售出8件.(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?(2)如果你是老总,请算一下每件童装应降价多少元可使一天的盈利最大?最大盈利是多少?考点:二次函数的性质;一元二次方程的应用.专题:销售问题.分析:(1)设每件童装应降价x元,那么现在可售出(20+2x),利润每件为(40﹣x),然后利用盈利1200元就可以列出方程解决问题;(2)设每件童装应降价x元,利用(1)的结果知道利润w=(40﹣x)(20+2x),此时w是关于x的二次函数,利用二次函数的性质即可求出最大盈利.解答:解:(1)设每件童装应降价x元,根据题意得(40﹣x)(20+2x)=1200,∴x1=10,x2=20,根据题意,x1=10不合题意,应取x=20.答:每件童装应降价20元;(2)设每件童装降价x元,则可盈利:w=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵﹣2∵≤0,∴当x=15时,盈利最大,最大盈利为1250元.点评:此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.(2015•广西自主招生)如图,要设计一个等腰梯形的花坛,花坛上底120米,下底180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?考点:二次函数的应用;一元二次方程的应用.专题:压轴题.分析:(1)首先要根据题意表示出甬道的上底与下底的长,进而得出的函数关系式.(2)根据题意得出甬道总面积为各甬道面积之和,即150x+160x﹣2x2=310x﹣2x2,(3)花坛总费用y=甬道总费用+绿化总费用:y=5.7x+(12000﹣S)×0.02,即可求出.解答:解:(1)横向甬道的面积为:x=150x(m2);(2)横向甬道的面积为:x=150x(m2);甬道总面积为150x+160x﹣2x2=310x﹣2x2,依题意:310x﹣2x2=××80,整理得:x2﹣155x+750=0,x1=5,x2=150(不符合题意,舍去),∴甬道的宽为5米;(3)∵花坛上底120米,下底180米,上下底相距80米,∴等腰梯形的面积为:(120+180)×80=12000,∵甬道总面积为S=310x﹣2x2,绿化总面积为12000﹣S,花坛总费用y=甬道总费用+绿化总费用:∴y=5.7x+(12000﹣S)×0.02,=5.7x﹣0.02S+240,=5.7x﹣0.02(310x﹣2x2)+240,=0.04x2﹣0.5x+240,当x=﹣=6.25时,y的值最小.∵根据设计的要求,甬道的宽不能超过6米,∴当x=6米时,总费用最少.即最少费用为:0.04×62﹣3+240=238.44万元.点评:此题主要考查了属于几何型二次函数的应用题,二次函数的应用题中考的必考的知识点,往往以压轴题的身份出现,解决这类问题的关键是函数思想的确立、函数模型的建立.考查的能力有转化能力、阅读理解能力;考查的数学思想主要是数学建模思想、数形结合思想.(2015•保康县模拟)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.考点:二次函数的应用.分析:(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.解答:解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,所以,当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大;(3)方案A:由题可得20<x≤30,因为a=﹣10<0,对称轴为x=35,抛物线开口向下,在对称轴左侧,w随x的增大而增大,所以,当x=30时,w取最大值为2000元,方案B:由题意得,解得:45≤x≤49,在对称轴右侧,w随x的增大而减小,所以,当x=45时,w取最大值为1250元,因为2000元>1250元,所以选择方案A.点评:本题考查了二次函数的应用,难度较大,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.(2015•泗洪县校级模拟)有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.考点:二次函数的应用.分析:(1)设该抛物线的解析式是y=ax2,结合图象,只需把(10,﹣4)代入求解;(2)根据(1)中求得的函数解析式,把x=9代入求得y的值,再进一步求得水深超过多少米时就会影响过往船只在桥下的顺利航行.解答:解:(1)设该抛物线的解析式是y=ax2,结合图象,把(10,﹣4)代入,得100a=﹣4, a=﹣,则该抛物线的解析式是y=﹣x 2.(2)当x=9时,则有y=﹣×81=﹣3.24,4+2﹣3.24=2.76(米).所以水深超过2.76米时就会影响过往船只在桥下的顺利航行.点评: 此题考查了二次函数在实际问题中的应用,能够熟练运用待定系数法求得二次函数的解析式.(2015•黄冈中学自主招生)已知抛物线经过点A (4,0).设点C (1,﹣3),请在抛物线的对称轴上确定一点D ,使得|AD ﹣CD|的值最大,则D 点的坐标为 (2,﹣6) .考点: 二次函数综合题.例题1分析:首先利用待定系数法求得抛物线的解析式,然后可求得抛物线的对称轴方程x=2,又由作点C关于x=2的对称点C′,直线AC′与x=2的交点即为D,求得直线AC′的解析式,即可求得答案.解答:解:∵抛物线经过点A(4,0),∴×42+4b=0,∴b=﹣2,∴抛物线的解析式为:y=x2﹣2x=(x﹣2)2﹣2,∴抛物线的对称轴为:直线x=2,∵点C(1,﹣3),∴作点C关于x=2的对称点C′(3,﹣3),直线AC′与x=2的交点即为D,因为任意取一点D(AC与对称轴的交点除外)都可以构成一个△ADC.而在三角形中,两边之差小于第三边,即|AD﹣CD|<AC′.所以最大值就是在D是AC′延长线上的点的时候取到|AD﹣C′D|=AC′.把A,C′两点坐标代入,得到过AC′的直线的解析式即可;设直线AC′的解析式为y=kx+b,∴,解得:,∴直线AC′的解析式为y=3x﹣12,当x=2时,y=﹣6,∴D点的坐标为(2,﹣6).故答案为:(2,﹣6).点评:此题考查了待定系数法求二次函数的解析式,二次函数的对称轴,以及距离差最小问题.此题综合性很强,解题的关键是数形结合思想的应用.(2015•黄冈中学自主招生)已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为(2,﹣6).考点:二次函数综合题.分析:首先利用待定系数法求得抛物线的解析式,然后可求得抛物线的对称轴方程x=2,又由作点C关于x=2的对称点C′,直线AC′与x=2的交点即为D,求得直线AC′的解析式,即可求得答案.解答:解:∵抛物线经过点A(4,0),∴×42+4b=0,∴b=﹣2,∴抛物线的解析式为:y=x2﹣2x=(x﹣2)2﹣2,∴抛物线的对称轴为:直线x=2,∵点C(1,﹣3),∴作点C关于x=2的对称点C′(3,﹣3),直线AC′与x=2的交点即为D,因为任意取一点D(AC与对称轴的交点除外)都可以构成一个△ADC.而在三角形中,两边之差小于第三边,即|AD﹣CD|<AC′.所以最大值就是在D是AC′延长线上的点的时候取到|AD﹣C′D|=AC′.把A,C′两点坐标代入,得到过AC′的直线的解析式即可;设直线AC′的解析式为y=kx+b,∴,解得:,∴直线AC′的解析式为y=3x﹣12,当x=2时,y=﹣6,∴D点的坐标为(2,﹣6).故答案为:(2,﹣6).点评:此题考查了待定系数法求二次函数的解析式,二次函数的对称轴,以及距离差最小问题.此题综合性很强,解题的关键是数形结合思想的应用.例题214.(2015•江阴市二模)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=.考点:二次函数综合题.分析:设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出BC的长度,再根据CD∥y轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E的坐标,从而得到DE的长度,然后求出比值即可得解.解答:解:设A点坐标为(0,a),(a>0),则x2=a,解得x=,∴点B(,a),=a,则x=,∴点C(,a),∴BC=﹣.∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=()2=3a,∴点D的坐标为(,3a).∵DE∥AC,∴点E的纵坐标为3a,∴=3a,∴x=3,∴点E的坐标为(3,3a),∴DE=3﹣,∴==.故答案是:.点评:本题是二次函数综合题型,主要利用了二次函数图象上点的坐标特征,根据平行与x轴的点的纵坐标相同,平行于y轴的点的横坐标相同,求出用点A的纵坐标表示出各点的坐标是解题的关键.例题3(2015•余姚市模拟)已知抛物线y=ax2+bx+c(a≠0)过点A(﹣3,0),B(1,0),C(0,3)三点.(1)求该抛物线的函数关系式;(2)若抛物线的顶点为P,连接PA、AC、CP,求△PAC的面积;(3)过点C作y轴的垂线,交抛物线于点D,连接PD、BD,BD交AC于点E,判断四边形PCED的形状,并说明理由.考点:二次函数综合题.分析:(1)根据待定系数法将A(﹣3,0),B(1,0),C(0,3)三点代入解析式求出即可;(2)利用两点之间距离公式求出,,,进而得出△PAC为直角三角形,求出面积即可;(3)首先求出点D的坐标为(﹣2,3),PC=DP,进而得出四边形PCED是菱形,再利用∠PCA=90°,得出答案即可.解答:(1)由题意得:,解得:,∴y=﹣x2﹣2x+3;(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴P(﹣1,4),∵A(﹣3,0),B(1,0),C(0,3),∴,,,∵PA2=PC2+AC2,∴∠PCA=90°,∴;(3)四边形PCED是正方形,∵点C与点D关于抛物线的对称轴对称,点P为抛物线的顶点,∴点D的坐标为(﹣2,3),PC=DP,∵A(﹣3,0),C(0,3),代入y=ax+b,,解得:,∴直线AC的函数关系式是:y=x+3,同理可得出:直线DP的函数关系式是:y=x+5,∴AC∥DP,同理可得:PC∥BD,∴四边形PCED是菱形,又∵∠PCA=90°,∴四边形PCED是正方形.点评:此题考查了二次函数解析式的确定、函数图象交点坐标的求法以及菱形与正方形的判定方法,难度不大,细心求解即可.例题1作业(2012•廛河区校级一模)二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2011在y 轴的正半轴上,点B1,B2,B3,…,B2011在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2010B2011A2011都为等边三角形,则△A2010B2011A2011的边长=.(2012•贵阳模拟)如图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象(如图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么范围时,输出的y的值满足3≤y≤6.(2015•福建模拟)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以13元/千克的价格销售,那么每天可获取利润750元.【利润=(销售价﹣进价)×销售量】(1)请根据他们的对话填写下表:销售单价x(元/kg)10 11 13销售量y(kg)300250150(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?考点:二次函数的应用;一次函数的应用.专题:应用题.分析:(1)根据题意得到每涨一元就少50千克,则以13元/千克的价格销售,那么每天售出150千克;(2)先判断y是x的一次函数.利用待定系数法求解析式,设y=kx+b,把x=10,y=300;x=11,y=250代。
初三数学二次函数重难点复习
初三数学二次函数重难点复习1、二次函数:形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数.2、二次函数的图像与性质1)二次函数y=ax2+bx+c(a≠0)的图像是一条抛物线,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;2)抛物线的顶点坐标为; 3)抛物线的对称轴为;4)当时,二次函数有最小值;当时,二次函数有最大值;3、二次函数一般有三种形式:1)一般式:;2)顶点式:y=a(x-h)2+k,顶点坐标为(h,k);3)交点式:,x1、x2为抛物线与x轴交点的横坐标.例1、已知二次函数的图象,则点在第_____象限.例2、如下图,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()(例1)例3、函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是()A.有两个不相等的实数根 B.有两个异号的实数根C.有两个相等的实数根 D.没有实数根1、已知函数222y≥成立的x的取值范围是()=--求得使1y x xA.13x-x≥≥D.1≤或3-≤≤C.3xx--≤≤B.31x2.在图中,函数y=-ax2与y=ax+b的图象可能是()B x y x y xyx y A C D O O O O3、已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .4、已知函数y =(m 2-m )x 2+(m -1)x +m +1.1)若这个函数是一次函数,求m 的值2)若这个函数是二次函数,则m 的值应怎样?5. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.(第5题) (第6题) 6.如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过__________秒,四边形APQC 的面积最小.7、某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式(0<t≤2),其中重力加速度g以10米/秒2计算.这种爆竹点燃后以v0=20米/秒的初速度上升,1)这种爆竹在地面上点燃后,经过多少时间离地15米?2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.8、如图,已知二次函数的图像经过点A和点B.1)求该二次函数的表达式; 2)写出该抛物线的对称轴及顶点坐标;3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离.9、红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).1)当每吨售价是240元时,计算此时的月销售量;2)求出y与x的函数关系式(不要求写出x的取值范围);3)该建材店要获得最大月利润,售价应定为每吨多少元?4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.10、已知抛物线与x 轴有两个交点.1)求k 的取值范围; 2)设抛物线与x 轴交于A 、B 两点,且点A 在点B 的左侧,点D 是抛物线的顶点,如果△ABD 是等腰直角三角形,求抛物线的解析式;3)在(2)的条件下,抛物线与y 轴交于点C ,点E 在y 轴的正半轴上,且以A 、O 、E 为顶点的三角形和以B 、O 、C 为顶点的三角形相似,求点E 的坐标.11、已知:如图在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根。
重难点 二次函数图象性质及其综合应用(学生版)
重难点二次函数图象性质及其综合应用考点一:二次函数的图象与性质二次函数是中考三大函数中内容最多,考察难度最大的一个函数。
而二次函数的图象更是其庞大内容的核心,初中数学中需要我们详细的掌握抛物线的画法、特征、性质、与系数的关系、几何变换等几个方面的知识,进而在多变的题型中快速找到解决它们的方法。
题型01二次函数图象与性质易错点01:对于二次函数y=ax2+bx+c(a≠0)的图象:形状:抛物线;对称轴:直线x=−b2a;顶点坐标:−b2a,4ac−b24a;其中抛物线的顶点坐标的纵坐标与一元二次方程解法中的公式法的表达式比较相似,需要重点加以区分;易错点02:抛物线的增减性问题,由a的正负和对称轴同时确定,单一的直接说y随x的增大而增大(或减小)是不对的,必须在确定a的正负后,附加一定的自变量x取值范围;解题大招:对于y=ax2+bx+c上的各个点,当a>0时,抛物线开口向上,图象有最低点,函数有最小值,哪个点离对称轴越近,哪个点的纵坐标越小;当a <0时,抛物线开口向下,图象有最高点,函数有最大值,哪个点离对称轴越近,哪个点的纵坐标越大;【中考真题练】1(2023•台州)抛物线y =ax 2-a (a ≠0)与直线y =kx 交于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2<0,则直线y =ax +k 一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限2(2023•邵阳)已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2+4ax +3(a 是常数,a ≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x =-2;②点(0,3)在抛物线上;③若x 1>x 2>-2,则y 1>y 2;④若y 1=y 2,则x 1+x 2=-2,其中,正确结论的个数为()A.1个B.2个C.3个D.4个3(2023•扬州)已知二次函数y =ax 2-2x +12(a 为常数,且a >0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x <0时,y 随x 的增大而减小;④当x >0时,y 随x的增大而增大.其中所有正确结论的序号是()A.①②B.②③C.②D.③④4(2023•安徽)下列函数中,y 的值随x 值的增大而减小的是()A.y =x 2+1B.y =-x 2+1C.y =2x +1D.y =-2x +15(2023•枣庄)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线x =1,下列结论:①abc <0;②方程ax 2+bx +c =0(a ≠0)必有一个根大于2且小于3;③若(0,y 1),(32,y 2)是抛物线上的两点,那么y 1<y 2;④11a +2c >0;⑤对于任意实数m ,都有m (am +b )≥a +b ,其中正确结论的个数是()A.5B.4C.3D.26(2023•呼和浩特)关于x 的二次函数y =mx 2-6mx -5(m ≠0)的结论:①对于任意实数a ,都有x 1=3+a 对应的函数值与x 2=3-a 对应的函数值相等.②若图象过点A (x 1,y 1),点B (x 2,y 2),点C (2,-13),则当x 1>x 2>92时,y 1-y 2x 1-x 2<0.③若3≤x ≤6,对应的y 的整数值有4个,则-49<m ≤-13或13≤m <49.④当m >0且n ≤x ≤3时,-14≤y ≤n 2+1,则n =1.其中正确的结论有()A.1个B.2个C.3个D.4个7(2023•福建)已知抛物线y=ax2-2ax+b(a>0)经过A(2n+3,y1),B(n-1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1<y2,则n的取值范围是.8(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.【中考模拟练】9(2024•虹口区二模)已知二次函数y=-(x-4)2,如果函数值y随自变量x的增大而减小,那么x的取值范围是()A.x≥4B.x≤4C.x≥-4D.x≤-410(2024•郑州模拟)已知二次函数y=ax2+bx(a≠0)的图象如图所示,则一次函数y=ax+b(a≠0)的图象大致为()A. B.C. D.11(2024•霍邱县模拟)函数y=kx2-4x+3和y=kx-k(k是常数,且k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.12(2024•余姚市一模)已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在二次函数y =-x 2+c (c >0)的图象上,点A ,C 是该函数图象与正比例函数y =kx (k 为常数且k >0)的图象的交点.若x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系为()A.y 3<y 2<y 1B.y 1<y 2<y 3C.y 2<y 1<y 3D.y 1<y 3<y 213(2024•武威二模)已知二次函数y =a (x +1)(x -m )(a 为非零常数,1<m <2),当x <-1时,y 随x 的增大而增大,则下列结论正确的是()①若x >2时,则y 随x 的增大而减小;②若图象经过点(0,1),则-1<a <0;③若(-2023,y 1),(2023,y 2)是函数图象上的两点,则y 1<y 2;④若图象上两点14,y 1 ,14+n ,y 2 对一切正数n .总有y 1>y 2,则32<m <2.A.①②B.①③C.①④D.③④14(2024•福田区模拟)已知函数y =|x 2-4|的大致图象如图所示,对于方程|x 2-4|=m (m 为实数),若该方程恰有3个不相等的实数根,则m 的值是.15(2024•合肥模拟)在平面直角坐标系中,G (x 1,y 1)为抛物线y =x 2+4x +2上一点,H (-3x 1+1,y 1)为平面上一点,且位于点G 右侧.(1)此抛物线的对称轴为直线;(2)若线段GH 与抛物线y =x 2+4x +2(-6≤x <1)有两个交点,则的x 1取值范围是1.16(2024•碑林区校级一模)如图,抛物线y =14x 2-12x -3的对称轴l 与x 轴交于点A ,与y 轴交于点B .(1)求点A 、B 的坐标;(2)C 为该抛物线上的一个动点,点D 为点C 关于直线l 的对称点(点D 在点C 的左侧),点M 在坐标平面内,请问是否存在这样的点C ,使得四边形ACMD 是正方形?若存在,请求出点C 的坐标;若不存在,请说明理由.题型02二次函数与几何变换易错点:抛物线平移步骤:①将一般式转化为顶点式,②根据“左加右减(x ),上加下减(整体)”来转化平移所得函数解析式;解题大招:y =ax 2+bx +c 的轴对称变换规律y =ax 2+bx +c 关于x 轴对称:y =−ax 2−bx −c 关于x 轴对称:y =ax 2−bx +c关于原点对称:y =−ax 2+bx −c【中考真题练】17(2023•无锡)将二次函数y =2(x -1)2+2的图象向右平移2个单位长度,所得函数图象的顶点坐标为()A.(-1,2)B.(3,2)C.(1,3)D.(1,-1)18(2023•徐州)在平面直角坐标系中,将二次函数y =(x +1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y =(x +3)2+2B.y =(x -1)2+2C.y =(x -1)2+4D.y =(x +3)2+419(2023•西藏)将抛物线y =(x -1)2+5平移后,得到抛物线的解析式为y =x 2+2x +3,则平移的方向和距离是()A.向右平移2个单位长度,再向上平移3个单位长度B.向右平移2个单位长度,再向下平移3个单位长度C.向左平移2个单位长度,再向上平移3个单位长度D.向左平移2个单位长度,再向下平移3个单位长度20(2023•牡丹江)将抛物线y =(x +3)2向下平移1个单位长度,再向右平移个单位长度后,得到的新抛物线经过原点.21(2023•上海)在平面直角坐标系xOy 中,已知直线y =34x +6与x 轴交于点A ,y 轴交于点B ,点C 在线段AB 上,以点C 为顶点的抛物线M :y =ax 2+bx +c 经过点B ,点C 不与点B 重合.(1)求点A ,B 的坐标;(2)求b ,c 的值;(3)平移抛物线M 至N ,点C ,B 分别平移至点P ,D ,联结CD ,且CD ∥x 轴,如果点P 在x 轴上,且新抛物线过点B ,求抛物线N 的函数解析式.【中考模拟练】22(2024•津市市一模)将二次函数y =x 2-6的图象向右平移1个单位长度,再向下平移3个单位长度,所得图象的解析式为()A.y =x 2-2x -5B.y =x 2+2x -9C.y =x 2-2x -8D.y =x 2+2x -523(2024•秦都区一模)已知抛物线C 1:y =x 2-3x +m ,抛物线C 2与C 1关于直线y =l 轴对称,两抛物线的顶点相距5,则m 的值为()A.-34B.234C.-34或234D.234或3424(2024•济南模拟)将抛物线y =(x +1)2的图象位于直线y =9以上的部分向下翻折,得到如图图象,若直线y =x +m 与此图象有四个交点,则m 的取值范围是()A.54<m <7 B.34<m <5 C.45<m <9 D.34<m <725(2024•松江区二模)平移抛物线y =x 2+2x +1,使得平移后的抛物线经过原点,且顶点在第四象限,那么平移后的抛物线的表达式可以是2.(只需写出一个符合条件的表达式)26(2024•新北区校级模拟)如图,将抛物线y =2(x +1)2+1绕原点O 顺时针旋转45°得到新曲线,新曲线与直线y =x 交于点M ,则点M 的坐标为.27(2024•廉江市一模)已知抛物线C1:y=ax2+2ax+a-2 3.(1)写出抛物线C1的对称轴:.(2)将抛物线C1平移,使其顶点是坐标原点O,得到抛物线C2,且抛物线C2经过点A(-2,-2)和点B(点B在点A的左侧),若△ABO的面积为4,求点B的坐标.(3)在(2)的条件下,直线l1:y=kx-2与抛物线C2交于点M,N,分别过点M,N的两条直线l2,l3交于点P,且l2,l3与y轴不平行,当直线l2,l3与抛物线C2均只有一个公共点时,请说明点P在一条定直线上.题型03二次函数图象与系数的关系解题大招01:二次函数图象与系数a、b、c的关系解题大招02:二次函数图象题符号判断类问题大致分为以下几种基本情形∶①a、b、c单个字母的判断,a由开口判断,b由对称轴判断(左同右异),c由图象与y轴交点判断;②含有a、b两个字母时,考虑对称轴;③含有a、b、c三个字母,且a和b系数是平方关系,给x取值,结合图像判断,例如∶二次函数y=ax2+bx+c(a≠0),当x=1时,y=a+b+c,当x=-1时,y=a-b+c,当x=2时,y=4a+2b+c当x=-2时,y=4a-2b+c;另:含有a、b、c三个字母,a和b系数不是平方关系,想办法消掉一到两个字母再判断∶④含有b2和4ac,考虑顶点坐标,或考虑△.⑤其他类型,可考虑给x取特殊值,联立方程进行判断;也可结合函数最值,图像增减性进行判断。
九年纪二次函数难点重点题
九年级二次函数的难点和重点题
难点:
函数的图像和性质:二次函数的图像和性质是该部分内容的重点和难点,需要学生掌握如何画出二次函数的图像,并理解函数的开口方向、对称轴、顶点坐标等性质。
抛物线与系数的关系:二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
需要学生理解并掌握如何根据二次项系数a的值来判断抛物线的开口方向和大小。
求解二次函数的解析式:根据一个二次函数的图像或者已知的二次函数的一些条件,求出该二次函数的解析式也是该部分内容的难点之一。
需要学生掌握如何根据不同的条件选择不同的方法来求解二次函数的解析式。
重点:
二次函数的定义:二次函数的定义是该部分内容的基础和重点,需要学生掌握如何根据一个函数的图像或者已知的函数的一些条件来判断是否为二次函数,并理解二次函数的定义和表达式。
求解二次函数的值域或最值:根据一个二次函数的图像或者已知的二次函数的一些条件,求出该二次函数的值域或最值也是该部分内容的重要知识点之一。
需要学生掌握如何根据不同的条件选择不同的方法来求解二次函数的值域或最值。
二次函数的应用:二次函数的应用是该部分内容的重点和难点之一,需要学生掌握如何利用二次函数解决实际问题,如利润最大化、面积最值等问题。
具体的重点题目可以参考相关的数学教材或练习册中的相关题目。
二次函数重点难点总结
二次函数重点难点总结二次函数是高中数学的一个重要章节,也是数学中最基础、最直观的一类函数之一、在学习二次函数的过程中,可能会遇到一些难点和重点。
下面我将从定义、图像、性质及应用等方面总结二次函数的难点和重点。
一、定义1. 二次函数的定义:二次函数是一种形如y = ax² + bx + c 的函数,其中 a、b、c 是常数,且a ≠ 0。
难点在于理解二次函数的定义及其与一次函数之间的区别。
二、图像1. 二次函数的图像特点:二次函数的图像是抛物线。
方程y = ax² + bx + c 描述了抛物线在坐标平面上的图像。
难点在于理解二次函数图像的基本形状,包括开口方向、顶点位置和对称轴等。
2.顶点、对称轴和焦点:顶点是二次函数图像的最高点或最低点。
对称轴是通过顶点并且垂直于x轴的直线。
焦点是指离顶点最近的点。
难点在于求解顶点、对称轴和焦点的具体方法。
3.平移、缩放和翻转:二次函数图像可以通过改变a、b、c来进行平移、缩放和翻转。
平移是指将图像在坐标平面上移动。
缩放是指将图像在坐标平面上拉伸或收缩。
翻转是指将图像在坐标平面上关于一些轴翻转。
难点在于理解平移、缩放和翻转对二次函数图像的影响。
三、性质1.零点和判别式:二次函数的零点是指使函数取值为0的x坐标。
判别式可以用来判断二次函数的根的情况。
难点在于求解二次函数的零点和判别式。
3.最大值和最小值:二次函数图像的最大值和最小值分别是顶点的y 坐标。
难点在于求解二次函数图像的最大值和最小值。
四、应用1.最优化问题:二次函数常常用于解决最优化问题,如求解最大值和最小值。
这类问题涉及到对二次函数图像进行分析和优化。
难点在于将最优化问题转化为二次函数,以及求解最优解的方法。
2.抛射问题:二次函数也可以用于解决抛射问题。
这类问题涉及到对二次函数图像的判读和应用。
难点在于将抛射问题转化为二次函数,并求解相关信息。
五、推广综上所述,二次函数的难点和重点主要包括定义、图像、性质及应用等方面。
二次函数重难点题型最新整理归纳
二次函数题型重难点突破知识梳理一、二次函数的定义1.定义:一般地,形如2y ax bx c =++(a ,b ,c 是常数,0a ≠)的函数,叫做二次函数.其中x 是自变量,a ,b ,c 分别是二次函数的二次项系数、一次项系数和常数项. 二、二次函数的图象和性质1.二次函数的图象为抛物线,图象注意以下几点:开口方向,对称轴,顶点. 2.二次函数2y ax =(0)a ≠的性质: (1)函数2y ax =的图象与a 的符号关系.①当0a >时⇔抛物线开口向上⇔顶点为其最低点; ②当0a <时⇔抛物线开口向下⇔顶点为其最高点;③||a 决定抛物线的开口大小:||a 越大,抛物线开口越小;||a 越小,抛物线开口越大. (2)抛物线2y ax =的顶点是坐标原点(0, 0),对称轴是0x =(y 轴).3.二次函数2(0)y ax c a =+≠的性质:4.二次函数2()y a x h k =-+(0a ≠)的性质:5.二次函数2y ax bx c =++(0a ≠)的性质:配方:二次函数2224()24b ac b y ax bx c a x a a-=++=++注意:二次函数2y ax bx c =++与坐标轴的交点:(1)与y 轴的交点:(0,)c ;(2)与x 轴的交点:使方程20ax bx c ++=成立的x 值. 三、二次函数的解析式1.一般式:2(0)y ax bx c a =++≠已知图象上三点11()x y ,、22()x y ,、33()x y ,,可用一般式求解二次函数解析式. 2.顶点式:2()(0)y a x h k a =-+≠已知抛物线的顶点或对称轴,可用顶点式求解二次函数解析式. 3.两点式:12()()(0)y a x x x x a =--≠已知抛物线与x 轴的两个交点坐标,可用交点式求解二次函数解析式. 4.对称式:12()()(0)y a x x x x k a =--+≠已知抛物线经过点1(,)x k 、2(,)x k 时,可以用对称式来求二次函数的解析式. 注意:(1)二次函数的解析式求解,最后结果一般写成一般式或顶点式,不写成交点式; (2)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 四、二次函数的图象判断(一).二次函数图象与系数的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b :在二次项系数a 确定的前提下,b 决定了抛物线的对称轴 ⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵在0a <的前提下,结论刚好与上述相反, 即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. (3)ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c :⑴当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. (二).二次函数的图象信息(1)根据抛物线的开口方向判断a 的正负性. (2)根据抛物线的对称轴判断b 的正负性. (3)根据抛物线与y 轴的交点,判断c 的正负性. (4)根据抛物线与x 轴有无交点,判断24b ac -的正负性. (5)根据抛物线的对称轴可得2ba-与1±的大小关系,可得2a b ±的正负性. (6)根据抛物线所经过的已知坐标的点,可得到关于a ,b ,c 的等式.(7)根据抛物线的顶点,判断244ac b a-的大小.五、二次函数的几何变换1.二次函数图象的平移平移规律:在原有函数的基础上“左加右减”,“上加下减”.2.二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达. (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---. 2()y a x h k =-+关于x 轴对称后,得到的解析式是2()y a x h k =---. (2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+. 2()y a x h k =-+关于y 轴对称后,得到的解析式是2()y a x h k =++. (3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-. 2()y a x h k =-+关于原点对称后,得到的解析式是2()y a x h k =-+-. (4)关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-.2()y a x h k =-+关于顶点对称后,得到的解析式是2()y a x h k =--+ (5)关于点(,)m n 对称2()y a x h k =-+关于点(,)m n 对称后,得到的解析式是2(2)2y a x h m n k =-+-+- 3.二次函数图象的翻折函数|()|y f x =的图象可以由函数()y f x =通过关于x 轴的翻折变换得到.具体规则为函数()y f x =图象在x 轴上方的部分不变,在x 轴下方的部分翻折到x 轴上方 六、二次函数和方程综合1.函数11y a x b =+和二次函数222y a x b x c =++的交点 (1)交点求解,联立方程组11222y a x b y a x b x c=+⎧⎪⎨⎪=++⎩,并代入求解.(2)交点个数,联立方程组11222y a x b y a x b x c =+⎧⎪⎨⎪=++⎩,消元得到一元二次方程,看判别式(△).(3)交点关系,联立方程组11222y a x b y a x b x c=+⎧⎪⎨⎪=++⎩,看判别式(△),再用韦达定理.2.一元二次方程21122a x b a x b x c +=++的解也可以看成函数11y a x b =+和二次函数222y a x b x c =++的交点的横坐标.3. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.4. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 5. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系 七、二次函数和不等式综合1.数形结合,可以通过二次函数和其它函数的图象解不等式.2.根的分布:一元二次方程根的分布问题,即一元二次方程的实根在什么区间内的问题,实质就是其相应二次函数的零点(图象与x 轴的交点)问题,因此,借助于二次函数及其图象利用数形结合的方法来研究是非常有益的. (1)0分布或k 分布120x x << 120x x << 120x x <<12x k x << 12x x k << 12k x x << (2)区间分布12m x x n <<< 12m x n p x q <<<<<例题分析题型一 二次函数的定义例题1 (1)在函数①21312y x x ++;②2(32)(43)12y x x x =+--;③2y ax bx c =++(a 、b 、c 是常数);④220y x kx =++(k 为常数);⑤2256y x x =++中,y 关于x 二次函数是_____ (2)当m =________时,函数224(4)3mm y m x x --=-++是二次函数.(3)下列函数关系中,可以看作二次函数2y ax bx c =++(0)a ≠模型的是( ) A .圆的周长与半径之间的关系B .在一定距离内,汽车行驶的速度与行驶的时间的关系C .矩形周长一定时,矩形面积和矩形边长之间的关系D .我国人口的自然增长率为1%,这样我国总人口数随年份变化的关系 【分析】这道题主要讲解二次函数的定义,判断是否是二次函数满足以下三点: (1)函数解析式在等号两边都是整式;(2)含有一个自变量,且自变量的最高次数时2; (3)二次项系数不等于零. (1)①④;(2)3;(3)C . 巩固1: (1)下列函数:①21y x=;②(1)(3)y x x =-+;③2y x bx c =++(b 、c 是常数);④2+3y ax x =+(a 为常数);⑤2(1)(1)(1)y x x x =--+-,其中是二次函数的是__________ (2)当m =________时,函数256(4)3m m y m x x -+=-+是关于x 的二次函数.(3)已知函数2222()(32)2m m y m m x m m x m m -=++++++是二次函数,则函数为_________ (1)②③④;(2)1;(3)26128y x x =++.题型二 二次函数的图象和性质例题2 (1)若二次函数222y ax bx a =++-(a ,b 为常数)图象如图2-1,则a 值_____ (2)如图2-2,抛物线①②③④对应的解析式为21y a x =,22y a x =,23y a x =,24y a x =,将1a 、2a 、3a 、4a 从小到大排列为______.图2-1 图2-2【分析】这道题主要讲解二次函数中a 的作用:a 的正负性决定抛物线的开口方向;0a >,开口向上;0a <,开口向下. 1)(2)4321a a a a <<<.例题3 (1)抛物线223y x bx =++对称轴是直线2x =-,则b 的值为____,顶点坐标为____ (2)抛物线223(0)y ax ax a a =--≠的对称轴是直线_____,与x 轴的交点为_____和___.(3)二次函数22(1)4y x k x =-++的顶点在y 轴上,则k =__,若顶点在x 轴上,则k =_. 【分析】这道题主要讲解二次函数的对称轴和顶点的求解:(1)对称轴2b x a =-,顶点(2b a -,244ac b a -),记住套用;2)配方求解.(1)8,(2,5)--;(2)1x =,(1,0)-,(3,0); (3)1-,1或3-.例题4 (1)若点1(2,)A y ,2(3,)B y -,3(5,)C y 三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .321y y y >>(2)已知二次函数24(0)y ax ax c a =-+<,当自变量x 3,0时,对应的值分别为1y ,2y ,3y ,则1y ,2y ,3y 的大小关系正确的是( )A .321y y y <<B .123y y y <<C .213y y y <<D .312y y y << (3)已知二次函数2(1)1y x m x =---+,当1x <时,y 随x 的增大而增大,则m 范围是___. 【分析】这道题主要讲解二次函数的增减性,增减性和抛物线的对称轴、开口方向有关. 1)C ;(2)A ;(3)1m ≤-.巩固2: (1)已知抛物线经过点(2,7)A -,(6,7)B ,(3,8)C -,()8D m -,,则m =________. (2)已知抛物线221y x x =++经过点(,)A m n ,(6,)B m n +,则n =__________. (3)已知点1(,5)A x ,2(,5)B x 是函数23y x mx =-+上两点,则当12x x x =+和x =________时的函数值相等.【分析】这道题主要讲解二次函数的对称性,纵坐标相同的点关于对称轴对称. 【答案】(1)1;(2)9;(3)0.巩固3: (1)已知二次函数2(3)1y x =-+.下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =;③其图象顶点坐标为(3,1)-;④当3x <时,y 随x 的增大而减小.则正确的有( ) A .1个B .2个C .3个D .4个(2)对于二次函数223(0)y x mx m =-+>,有下列说法: ①如果2m =,则y 有最小值1-;②如果当1x ≤时,y 随x 的增大而减小,则1m =;③如果当1x =时的函数值与2015x =时的函数值相等,则当2016x =时的函数值为3. 其中正确的说法是________________.(把你认为正确的结论的序号都填上)(3)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )DA B C D【分析】这道题主要是二次函数的综合考查,相对综合,锻炼孩子们的综合能力. 【答案】(1)B ;(2)①③;(3)D .题型三 二次函数的解析式例题5 (1)一个二次函数图象经过(1,0)A 、(2,3)B 、(3,28)C 三点,求二次函数解析式. (2)已知一个二次函数的图象经过(0,1)A -、(1,5)B 、(1,3)C --三点,求此二次函数的解析式并把二次函数转化成顶点式.【分析】这道题主要考查利用一般式求解析式. 【答案】(1)设二次函数的解析式为2y ax bx c =++,则由题意得,04239328a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得113019a b c =⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为2113019y x x =-+.(2)设二次函数的解析式为2y ax bx c =++,则由题意得,153c a b c a b c =-⎧⎪++=⎨⎪-+=-⎩,解得241a b c =⎧⎪=⎨⎪=-⎩,∴二次函数的解析式为2241y x x =--.222412(1)3y x x x =--=--.例题6 (1)已知二次函数过点(0,1)-,且顶点为(1,2)-,求二次函数的解析式. (2)已知二次函数的顶点坐标为(2,2)-,且其图象经过点(3,1),求此二次函数的解析式,并求出该函数图象与x 轴的交点坐标.【分析】这道题主要考查利用顶点式求二次函数的解析式. 【答案】(1)设二次函数的解析式为:2(1)2y a x =++,∵二次函数过点(0,1)-,∴21(01)2a -=++,即:12a -=+.∴3a =-. ∴二次函数的解析式为23(1)2y x =-++. (2)设二次函数的解析式为:2(2)2y a x =--,则由题意得,21a -=,解得3a =,∴二次函数的解析式为23(2)2y x =--.令0y =,则23(2)20x --=,解得12x =+22x =,∴与x 轴的交点坐标为2⎛⎫ ⎪ ⎪⎝⎭和2⎛⎫- ⎪ ⎪⎝⎭. 巩固4: (1)若抛物线过(3,0)-,(1,0),且与y 轴交点为04(,),求二次函数的解析式. (2)二次函数2y ax bx c =++对称轴为2x =,且经过点(1,4)、(5,0),求二次函数的解析式. 【分析】这道题主要考查利用两点式求二次函数的解析式.【答案】(1)设二次函数的解析式为:(3)(1)y a x x =+-, 由题意得,34a -=,解得43a =-, ∴二次函数的解析式为4(3)(1)3y x x =-+-248433x x =--+.(2)∵二次函数的对称轴为2x =,且经过点(5,0),∴二次函数与x 轴的另一个交点坐标是(10)-,,设二次函数的解析式为:(1)(5)y a x x =+-,又∵图象经过点(1,4),∴4(11)(15)a =+-,∴12a =-.∴二次函数的解析式为1(1)(5)2y x x =-+-215222x x =-++巩固5: (1)已知二次函数图象经过点(1,3)A 、(0,2)B 、(5,3)C 三点,求二次函数解析式. (2)已知函数2||12y x x =--的图象与x 轴交于相异两点A 、B ,另一抛物线2y ax bx c =++过A 、B ,顶点为P ,且APB △是等腰直角三角形,求a 、b 、c . 【答案】(1)解法一:设对称点式 ∵抛物线经过(1,3)A 、(5,3)C ,∴设抛物线的解析式为:(1)(5)3y a x x =--+. 将(0,2)B 代入得:532a +=,解得15a =-,∴抛物线的解析式为1(1)(5)35y x x =---+,化为一般式得216255y x x =-++.解法二:设顶点式∵抛物线经过(1,3)A 、(5,3)C , ∴抛物线的对称轴为3x =. 设抛物线的解析式为:2(3)y a x h =-+,将(1,3)A 、(0,2)B 代入得:4392a h a h +=⎧⎨+=⎩,解得15195a h ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的解析式为2119(3)55y x =--+,化为一般式为:216255y x x =-++.解法三:设一般式设此二次函数解析式为:2y ax bx c =++,由已知得:322553a b c c a b c ++=⎧⎪=⎨⎪++=⎩,解得15652a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩∴解析式为216255y x x =-++.(2)由已知得(4,0)A 、(4,0)B -,故设另一抛物线为(4)(4)y a x x =-+. 又APB △是等腰直角三角形,则P 点坐标为(0,4)或(0,4)-, ∴1404a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,,,或1404.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,,∴解析式为216255y x x =-++.题型四 二次函数的图象综合例题7 (1)二次函数2y ax bx c =++的图象如图1-1,则一次函数()y a b x ac =++的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 (2)二次函数2y ax bx c =++的图象如图1-2,则下列六个代数式:ab 、ac 、a b c ++、a b c -+、2a b +、2a b -、24b ac -中,其值为正的式子的个数是( )A .5个B .4个C .3个D .2个(3)二次函数2y ax bx c =++的图象如图1-3,则22a b c a b c ab a b ++--+++--_______0.(填“>”、“<”或“=”).图1-1 图1-2 图1-3【分析】这道题主要讲解基本式子的正负性的判断,主要包括a ,b ,c ,2a b +,2a b -,24b ac -,a b c ++,a b c -+等的正负性的判断.【答案】(1)B;(2)C ; (3)由题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>, 故原式()()(2)(2)2()0a b c a b c a b a b a b c =-++--+++--=--+<例题8 (1)已知二次函数2y ax bx c =++的图象如图2-1所示,有下列结论:①240b ac ->;②0abc >;③20a b +>;④930a b c ++<;⑤80a c +>.正确的是________(2)如图2-2,抛物线2y ax bx c =++的图象交x 轴于1(,0)A x 、(2,0)B ,交y 轴正半轴于C ,且OA OC =.下列结论:①0a b c ->;②1ac b =-;③12a =-;④22bc +=,其中结论正确的是________.图2-1 图2-2【答案】(1)①②④⑤;(2)②③④.O yx1-1yOxyOx1例题9 (1)已知二次函数y ax bx c 2=+++2的图象如图4-1所示,顶点为(,)-10,下列结论:①abc <0;②b ac 2-4=0;③a >2;④a b c 4-2+>0.其中正确结论的个数是________ (2)二次函数2y ax bx c =++的图象如图4-2所示,给出下列结论:①20a b +>;②若11m n -<<<,则bm n a+<-;③3||||2||a c b +<;④b a c >>,其中正确的结论有_________y -112Ox11yxO图4-1 图4-2【答案】(1)③④;(2)①②③.例题10 (1)二次函数2y ax bx c =++的图象如图1-1,则一次函数b y ax c=-的图象不经过第________象限.(2)如图1-2,二次函数2y ax bx c =++的图象经过点(1,2)-和(1,0),给出五个结论:①0abc <;②20a b +>;③1a c +=;④1a >;⑤9640a b c ++>.其中结论正确的是________. (3)二次函数2y ax bx c =++的图象如图1-3,小丹观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,其中结论正确的是________.Oyx图1-1 图1-2 图1-3【答案】(1)由图象可知,0a >,0b >,0c <.∴0bc <.∴一次函数by ax c=-的图象不经过第四象限.(2)②③④⑤;(3)①②③⑤.巩固6: (1)如图2-1,二次函数2y ax bx c =++的图象经过点(1,2)-,下列结论:①420a b c -+<;②20a b -<;③2b <-;④22()a c b +<,其中正确的结论有________.(填序号)(2)如图2-2,已知二次函数2y ax bx c =++的图象经过点(1,2),下列结论:①20a b +<;②0abc <;③1a c +<-;④284b a ac +<,其中正确结论的有________.(填序号) (3)(成外半期)二次函数2(0)y ax bx c a =++≠的图象如图2-3所示,有下列5个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->;⑤()a b m am b +>+,(1m ≠的实数),其中正确的结论的有________.(填序号)图2-1 图2-2 图2-3【分析】这道题主要讲解第二类常见式子的情况判断,42a b c ±+,a c +,b 以及244ac b a- 及变形的式子.【答案】(1)①②④;(2)①②;(3)由图象可知,0a <,0b >,0c >,∴0abc <,故①准确; 当1x =-时,0y a b c =-+<,即b a c >+,故②错误;由题意得,二次函数的对称轴为1x =,则0x =和2x =时的函数值一样的, ∴当2x =时,4+20y a b c c =+=>,故③准确;由图象知,二次函数的图像和x 轴有两个不同的交点,故240b ac ->,故④准确; 由题意对称轴为1x =,则12bx a=-=,得2b a =-,所以a b a +=-,()(2)m am b m m a +=-, ∴2()(=(1)0m am b a b m a +-+-<),故⑤准确.故①③④⑤. 巩固7: (1)已知二次函数2(0)y ax bx c a =++≠的图像如图3-1所示,它与x 轴两个交点分别为(1,0)-,30(,).对于下列命题:①20b a -=;②0abc <;③102a b c --+<;④80a c +>.其中正确的有________.(填序号) (2)如图3-2,抛物线2(0)y ax bx c a =++≠的对称轴是1x =-,且过点1,02⎛⎫⎪⎝⎭,有下列结论:①0abc >;②240a b c -+=;③251040a b c -+=;④320b c +>.其中正确的结论有________.(填序号)(3)如图3-3,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(10A -,),对称轴为直线1x =,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当3x >时,0y <;②30a b +<;③213a -≤≤-;④248acb a ->;其中正确的结论是_________.(填序号)yAOxx =1图3-1 图3-2 图3-3【分析】这道题主要讲解通常题目中给定某些信息,然后去判断只含有a 和b ,a 和c ,b 和c 的式子的情况,消元. 【答案】(1)③④;(2)①③;(3)由题意得,(1,0)A -,对称轴为直线1x =,∴另外一个交点为(3,0),故①准确; 由题意得,对称轴为12bx a=-=,∴2b a =-,30a b a +=<,故②准确; 由抛物线与x 轴的两个交点坐标分别是(1,0)A -,(3,0),∴0930a b c a b c -+=⎧⎨++=⎩,解得323c a b c⎧=-⎪⎪⎨⎪=⎪⎩,又23c ≤≤,∴213a -≤≤-,故③准确;2424ac b a ->,故248ac b a -<,故④错误;故选①②③.题型五 二次函数的图形变换例题11 (1)二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( ). A .向左移动1个单位,向上移动3个单位 B .向右移动1个单位,向上移动3个单位 C .向左移动1个单位,向下移动3个单位 D .向右移动1个单位,向下移动3个单位 (2)一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.(3)如果将抛物线228y x =-+向右平移a 个单位后,恰好过点(3,6),那么a 值为_______.【分析】这道题主要讲解二次函数的平移,二次函数的平移转化为顶点式,二次函数的平移即为顶点的平移,也可以按照平移的规律.【答案】(1)将2241y x x =-++配方得:22(1)3y x =--+,要将二次函数22(1)3y x =--+的图象平移得到到22y x =-,应选C .(2)先将得到的函数转化为顶点式22(1)2y x =--+,则先向上平移2个单位,再向左平移3个单位得到原抛物线解析式22(2)4y x =-++,即2284y x x =---. (3)2或4例题12 已知二次函数221y x x =--,求:(1)与此二次函数关于x 轴对称的二次函数解析式为_____________________; (2)与此二次函数关于y 轴对称的二次函数解析式为_____________________; (3)与此二次函数关于原点对称的二次函数解析式为_____________________.【分析】这道题主要讲解二次函数的对称,二次函数的对称转化为顶点式,二次函数的对称即为顶点的对称,也可以按照对称的规律.【答案】(1)221y x x =-++;(2)221y x x =+-;(3)221y x x =--+.例题13 已知二次函数2441y ax ax a =++-的图象是1C . (1)求1C 关于点(1,0)R 中心对称的图象2C 的解析式;(2)设曲线1C 、2C 与y 轴的交点分别为A ,B ,当||18AB =时,求a 的值.【分析】这道题主要讲解二次函数的对称,关于某点对称,可以按照顶点的对称,也可以按照点的对称规律.【答案】(1)设1C 上任意一点为11(,)x y ,2C 上关于(1,0)R 中心对称的点为22(,)x y , 则有1212121212202x x x x y y y y +⎧=⎪=-⎧⎪⇒⎨⎨+=-⎩⎪=⎪⎩由点11(,)x y 在2441y ax ax a =++-的图象上可知,2111441y ax ax a =++-, 即2222(2)4(2)41y a x a x a -=-+-+-. 即2222(2)4(2)14y a x a x a =--+-+-.故图象2C 的解析式为:22(2)4(2)148116y a x a x a ax ax a =--+-+-=-++-.(2)令2441y ax ax a =++-中0x =,可得41y a =-,故(0,41)A a -; 令28116y ax ax a =-++-中0x =,可得116y a =-,故(0,116)B a -. 又||18AB =,故202181a a -=⇒=或45a =-.巩固8: (1)如图6-1所示,已知抛物线0C 的解析式为22y x x =-,则抛物线0C 的顶点坐标____________;将抛物线0C 每次向右平移2个单位,平移n 次,依次得到抛物线1C 、2C 、3C 、…、n C (n 为正整数),则抛物线n C 的解析式为___________. (2)如图6-2,把抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和原点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q ,则图中阴影部分的面积为________.xyO…C nC 1C 0图6-1 图6-2(1)(1,1)-,22(42)44y x n x n n =-+++.(2)过点P 作PM ⊥y 轴于点M ,∵抛物线平移后经过原点O 和点(6,0)A -, ∴平移后的抛物线对称轴为3x =-, 得出二次函数解析式为:21(3)2y x h =++,将(6,0)A -代入得:902h +=,解得:92h =-,∴点P 的坐标是932⎛⎫-- ⎪⎝⎭,, 根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴272S =. 巩固9: 已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1()2y x b b k =+<与此图象有两个公共点时,b 的取值范围. 【分析】这道题主要讲解二次函数的翻折.【答案】(1)由题意得,168(1)0k =--△≥.∴3k ≤.∵k 为正整数,∴1k =,2,3. (2)当1k =时,方程22410x x k ++-=有一根为零; 当2k =时,方程22410x x k ++-=无整数根;当3k =时,方程22410x x k ++-=有两个非零的整数根. 综上所述,1k =和2k =不合题意,舍去;3k =符合题意.当3k =时,二次函数为2242y x x =++,把它的图象向下平移8个单位得到的图象的解析式为2246y x x =+-.(3)设二次函数2246y x x =+-的图象与x 轴交于A 、B 两点,则(3,0)A -,(10)B ,. 依题意翻折后的图象如图所示.当直线12y x b =+经过A 点时,可得32b =;当直线12y x b =+经过B 点时,可得12b =-.由图象可知,符合题意的(3)b b <的取值范围为1322b -<<.题型六 二次函数在闭区间上的最值例题14 分别求出在下列条件下,函数2231y x x =-++的最值:(1)x 取任意实数;(2)当20x -≤≤时;(3)当13x ≤≤时;(4)当12x -≤≤时. 【答案】(1)2317248y x ⎛⎫=--+ ⎪⎝⎭,∴当34x =时,函数的最大值为178,无最小值; (2)∵34x =在20x -≤≤右侧,∴当0x =时,函数取得最大值1;当2x =-时,函数取得最小值13-; (3)∵34x =在13x ≤≤左侧, ∴当1x =时,函数取得最大值2;当3x =时,函数取得最小值8-;(4)∵3124-≤≤,且331244-->-,∴当34x =时,函数取得最大值178;当1x =-时,函数取得最小值4-.巩固10:(1)求函数221y x x =-+的最小值;(2)若12x ≤≤,求221y x x =-+的最大值、最小值; (3)若01x ≤≤,求221y x x =-+的最大值、最小值; (4)若20x -≤≤,求221y x x =-+的最大值、最小值.【答案】(1)当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=; (2)由图像可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.(3)当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>,∴当1x =时,y 最大,且2y = (4)由函数图像开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1. 巩固11:试求(1)(2)(3)(4)5y x x x x =+++++在33x -≤≤的最值.【答案】令25t x x =+,则有222(54)(56)5(4)(6)51029y x x x x t t t t =+++++=+++=++∵当33x -≤≤时,t 的取值范围是25244t -≤≤,∴原题转化为当25244t -≤≤时,求21029y t t =++的最大值和最小值.∵()254y t =++,故当5t =-时,min 4y =.而当255x x -=+解得:1,2x =,又∵33x -≤≤,∴当x 时,min 4y =. 当254t =-时,9516y =;当24t =时,845y =,而9845516>, ∴当24t =时,即3x =时,max 845y =.例题15 已知函数222y x x =-+在1t x t +≤≤范围内的最小值为s ,写出函数s 关于t 的函数解析式.【答案】二次函数222y x x =-+的对称轴是1x =, ①当1t >时,对称轴在x t =左边,∴222s t t =-+;②当11t t +≤≤,即01t ≤≤时,最小值s 在顶点处取得,∴1s =; ③当11t +<,即0t <时,对称轴在1x t =+右边,∴21s t =+.综上所述:221(0)1(01)22(1)t t s t t t t ⎧+<⎪=⎨⎪-+>⎩≤≤.例题16 已知函数22962y x ax a a =---+在区间1133x -≤≤有最大值3-,求实数a 的值.【分析】这道题主要讲解动轴最值的求法,和动区间最值求法一样.【答案】因为2923a y x a ⎛⎫=-++ ⎪⎝⎭,1133x -≤≤,它的对称轴是直线3a x =-, (1)当133a -<-时,即1a >时,y 在区间1133x -≤≤随着x 的增加而减少,这时,当13x =-时,函数的最大值是241a a -+-,∴2413a a -+-=-.得2a =1a >,故2a =(2)当11333a -≤-≤时,即11a -≤≤时,这时,当3ax =-时,函数的最大值是2a ,∴23a =-得32a =-,这与11a -≤≤矛盾.(3)当133a ->,即1a <-时,y 在区间1133x -≤≤随着x 增加而增加,这时,当13x =时,函数的最大值是21a --, ∴213a --=-,得a =1a <-,故a = 综上所述,满足题意的a为2+巩固12:已知函数221y x ax a =-++-在01x ≤≤上有最大值2,求a 的值.【答案】按对称轴进行讨论:当对称轴0x a =<时,如左图所示.当0x =时,y 有最大值,max 1y a =-, ∴12a -=,即1a =-,且满足0a <,∴1a =-. 当对称轴01x a =≤≤时,如中图所示,当x a =时,y 有最大值,222max 21y a a a a =-++-=1a -+.∴212a a -+=.解得a =01a ≤≤,舍去).当对称轴1x a =>时,如右图所示.当1x =时,y 有最大值,max 22y a a =-=,且满足1a >,∴2a =.综上可知:1a =-或2a =. 巩固13:设23y x ax a =++-,当22x -≤≤时,y 的最小值不小于0,求实数a 范围.【答案】22324a a y x a ⎛⎫=++-- ⎪⎝⎭,对称轴是2a x =-.①当22a-<-,即4a >时,二次函数在2x =-时取得最小值73a -.由730a -≥,得73a ≤,这与4a >矛盾,此时a 不存在.②当222a --≤≤,即44a -≤≤时,二次函数在2a x =-时取得最小值234a a --.由22304120624a a a a a --⇔+-⇔-≥≤≤≤,此时42a -≤≤.③当22a->,即4a <-时,二次函数在2x =时取得最小值7a +.由70a +≥,得7a -≥,此时74a -<-≤.综上所述,a 的取值范围是72a -≤≤. 巩固14: 若函数211322y x =-+在区间()a x b b a ≤≤>上的最小值为2a ,最大值为2b .求a 、b 的值.【答案】函数的对称轴为0x =,下面分三种情况加以讨论: (1)若0a b <≤时,即函数在区间a x b ≤≤上单调递减, 有22113222113222a b b a⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得13a b =⎧⎨=⎩.(2)若0a b <<时,则由函数图象知,在a x ≤≤0上单调递增,在x b 0≤≤上单调递减, 因此在0x =处有最大值2b ,即1322b =,得134b =.而函数的最小值在x a =或x b =处取得,又由于0a <,并且当x b =时,21131339024232y ⎛⎫=-+=> ⎪⎝⎭, 故函数的最小值在x a =处取得,有2113222a a =-+,得2a =-或2a =-.从而2134a b ⎧=-⎪⎨=⎪⎩.(3)当0a b <≤时,即函数在区间a x b ≤≤上单调递增,有 22113222113222a ab b ⎧-+=⎪⎪⎨⎪-+=⎪⎩. 由于a 、b 是方程2113222x x -+=的两个根,又因为两根之积为负数,即两根异号,这与0a b <≤矛盾,故不存在.综上所述,得13a b =⎧⎨=⎩或2134a b ⎧=--⎪⎨=⎪⎩.题型七 二次函数应用例题17 某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,当销售单价定为多少元时,可获得最大利润,最大利润是多少元? 【答案】设销售单价应定为x 元,销售利润为y 元,根据题意可得: (20)[40010(30)]y x x =---(20)(70010)x x =--21090014000x x =-+-210(45)6250x =--+,∵超市要完成不少于300件的销售任务,∴40010(30)300x --≥, 解得:40x ≤,即40x =时,销量为300件,此时利润最大为:210(4045)62506000--+=(元), 故销售单价应定为40元时,销售利润最大,最大为6000元.例题18 某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树. (1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系; (2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<; (2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则(6005)(100)w x x =-+2510060000x x =-++25(10)60500x =--+, 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.巩固15: 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第(190)x x ≤≤天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元. (1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 【分析】这道题主要锻炼孩子们分类讨论及综合计算能力.【答案】(1)当150x ≤<时,2(2002)(4030)21802000y x x x x =-+-=-++,当5090x ≤≤时,(2002)(9030)12012000y x x =--=-+, 综上所述:221802000(150)12012000(5090)x x x y x x ⎧-++≤<=⎨-+≤≤⎩;(2)当150x ≤<时,二次函数开口向下,二次函数对称轴为45x =, 当45x =时,22451804520006050y =-⨯+⨯+=最大, 当5090x ≤≤时,y 随x 的增大而减小, 当50x =时,6000y =最大,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元; (3)当150x ≤<时,2218020004800y x x =-++≥,解得2070x ≤≤, 因此利润不低于4800元的天数是2050x ≤<,共30天; 当5090x ≤≤时,120120004800y x =-+≥,解得60x ≤, 因此利润不低于4800元的天数是5060x ≤≤,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元. 巩固16:某集团公司试销一种成本为每件60元的节能产品,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y (万件)与销售单价x (元)之间的函数图象如图.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.。
二次函数重难点题型
二次函数重难点题型
- 二次函数是高中数学中重要的内容之一。
对于学生来说,掌握二次函数的重难点题型是非常关键的。
- 本文将介绍几种常见的二次函数重难点题型,并提供解题思路和技巧。
1. 二次函数图像的性质
- 对于给定的二次函数$f(x) = ax^2 + bx + c$,学生需要了解其图像的常见性质,包括顶点坐标、开口方向、对称轴以及与坐标轴的交点等。
2. 二次函数的最值问题
- 最值问题是二次函数中的一个重要问题类型。
学生需要掌握如何求解二次函数的最值以及最值对应的$x$值。
3. 二次函数的零点问题
- 零点问题也是二次函数中的一个常见问题类型。
学生需要学会如何求解二次函数的零点,并且理解零点与方程的根的关系。
4. 二次函数与其他函数的关系
- 学生需要了解二次函数与其他函数的关系,例如线性函数、指数函数等。
理解二次函数与其他函数的相同点和不同点,有助于学生更深入地掌握二次函数。
5. 实际问题与二次函数的建模
- 学生需要学会将实际问题转化为二次函数模型,并且能够通过二次函数模型解决实际问题。
这需要学生对于实际问题的理解能力和数学建模能力。
6. 实战演练题
- 通过大量的实战演练题,学生可以巩固和提高对于二次函数重难点题型的理解和解题能力。
以上是关于二次函数重难点题型的简要介绍。
希望这份文档能够帮助学生更好地掌握二次函数,提高数学解题能力。
参考文献:。
初三数学二次函数重难点题型梳理总结
二次函数重难点题型汇总【考点1二次函数的概念】【方法点拨】掌握二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【例1】(2020•涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式1-1】(2020春•西湖区校级月考)下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y 3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax2+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个【变式1-2】(2020•凉山州一模)若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m =.(2020秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,【变式1-3】它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【考点2一次函数与二次函数图象】【方法点拨】判断一次函数与二次函数图象的问题关键在于掌握数形结合的思想,通过图象可以逐一去判断一次函数及二次函数的系数关系.【例2】(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.【变式2-1】(2020•泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A.B.C.D.【变式2-2】(2020•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【变式2-3】(2020•淮南模拟)下面所示各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象.正确的是()A.B.C.D.【考点3二次函数图象上点的坐标特征】【方法点拨】二次函数图象上点的坐标特征,解题时,需熟悉抛物线的有关性质:抛物线的开口向上,则抛物线上的点离对称轴越远,对应的函数值就越大.【例3】(2020•开封一模)已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1【变式3-1】(2020•三明二模)已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D( ,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1【变式3-2】(2020•黄石)若二次函数y=a2x2﹣bx﹣c的图象,过不同的六点A(﹣1,n)、B(5,n﹣1)、C(6,n+1)、D( ,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y3【变式3-3】(2020•鼓楼区校级模拟)已知抛物线y x2﹣mx+c(m>0)过两点A(x0,y0)和B(x1,y1),若x0<1<x1,且x0+x1=3.则y0与y1的大小关系为()A.y0<y1B.y0=y1C.y0>y1D.不能确定【考点4二次函数图象与几何变换】【方法点拨】解决二次函数图象与几何变换类型题,需要掌握平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.【例4】(2020春•天心区校级期末)抛物线y=﹣(x﹣1)2﹣3是由抛物线y=﹣x2经过怎样的平移得到的()A.先向右平移1个单位,再向上平移3个单位B.先向左平移1个单位,再向下平移3个单位C.先向右平移1个单位,再向下平移3个单位D.先向左平移1个单位,再向上平移3个单位【变式4-1】(2020春•岳麓区校级期末)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣5【变式4-2】(2020•平房区一模)已知二次函数y=(x+2)2﹣1向左平移h个单位,再向下平移k个单位,得到二次函数y=(x+3)2﹣4,则h和k的值分别为()A.1,3B.3,﹣4C.1,﹣3D.3,﹣3【变式4-3】(2020春•海淀区校级期末)将抛物线y=(x﹣3)(x﹣5)先绕原点O旋转180°,再向右平移2个单位长度,所得抛物线的解析式为()A.y=﹣x2﹣4x﹣3B.y=﹣x2﹣12x﹣35C.y=x2+12x+35D.y=x2+4x+3【考点5二次函数图象与系数关系】【方法点拨】二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置.【例5】(2020•龙岩模拟)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:其中正确结论的个数有()①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.A.1个B.2个C.3个D.4个【变式5-1】(2020春•岳麓区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②若m为任意实数,则a+b≥am2+bm;③a﹣b+c>0;④3a+c <0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为()A.2B.3C.4D.5【变式5-2】(2020•会昌县模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根,其中正确结论的个数为个.【变式5-3】(2020•鼎城区四模)函数y=x2+bx+c与y=x的图象如图所示,有以上结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的是(填序号).【考点6二次函数与一元二次方程的关系】【例6】(2020•富阳区一模)已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c 0的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根【变式6-1】(2020•贵阳)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4【变式6-2】(2020•安丘市一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0【变式6-3】(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0< <1B. >1C.0< <1D. >1【考点7二次函数与解不等式】【方法点拨】二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.【例7】(2020春•渝中区期末)数形结合是一种重要的数学思想方法,我们可以借助函数的图象求某些较为复杂不等式的解集.比如,求不等式x﹣1> 的解集,可以先构造两个函数y1=x﹣1和y2 ,再在同一平面直角坐标系中画出这两个函数的图象(如图1所示),通过观察所画函数的图象可知:它们交于A(﹣1,﹣2)、B(2,1)两点,当﹣1<x<0或x>2时,y1>y2,由此得到不等式x﹣1> 的解集为﹣1<x<0或x>2.根据上述说明,解答下列问题:(1)要求不等式x2+3x>x+3的解集,可先构造出函数y1=x2+3x和函数y2=;(2)图2中已作出了函数y1=x2+3x的图象,请在其中作出函数y2的图象;(3)观察所作函数的图象,求出不等式x2+3x>x+3的解集.【变式7-1】(2020秋•宝安区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)和一次函数y=kx+m(k,m为常数,且k≠0)的图象如图所示,交于点M( ,2)、N(2,﹣2),则关于x的不等式ax2+bx+c﹣kx﹣m<0的解集是.【变式7-2】(2020•宜兴市校级一模)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是.【变式7-3】(2020秋•张家港市期末)已知二次函数y=ax2+bx+c与一次函数y=x的图象如图所示,则不等式ax2+(b﹣1)x+c<0的解集为.【考点8构建二次函数解决最值问题】【例8】(2020•江西模拟)如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【变式8-1】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【变式8-2】(2020•攀枝花)如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.【变式8-3】(2020秋•岳麓区校级期末)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【考点9二次函数新定义问题】【例9】(2020秋•新乡期末)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4B.3C.2D.1【变式9-1】(2020•市中区二模)对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m B.m< C. < D.m【变式9-2】(2020•江岸区校级模拟)定义[a、b、c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是( , );②当m>0时,函数图象截x轴所得的线段长度大于 ;③当m <0时,函数在x> 时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点,正确的结论是.【变式9-3】(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.【考点10二次函数的应用(抛物线形建筑问题)】【例10】(2020秋•玄武区校级月考)图中所示的抛物线形拱桥,当拱顶离水面4m时,水面宽8m.水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种建系方法.方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为x轴,建立平面直角坐标系xOy;方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系xOy,【变式10-1】如图,是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.(1)求出抛物线的解析式;(2)经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位?【变式10-2】(2020•武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【变式10-3】(2020•安徽模拟)如图是某隧道截面示意图,它是由抛物线和长方形构成,已知OA=12米,OB=4米,抛物线顶点D到地面OA的垂直距离为10米,以OA所在直线为x轴,以OB所在直线为y轴建立直角坐标系.(1)求抛物线的解析式;(2)由于隧道较长,需要在抛物线型拱壁上需要安装两排灯,使它们到地面的高度相同,如果灯离地面的高度不超过8米,那么两排灯的水平距离最小是多少米?(3)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4m,最高处与地面距离为6m,隧道内设双向行车道,双向行车道间隔距离为0.5m,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5m,才能安全通行,问这辆特殊货车能否安全通过隧道?【考点11二次函数的应用(抛物线形运动问题)】【例11】(2020•山西模拟)周末,小明陪爸爸去打高尔夫求,小明看到爸爸打出的球的飞行路线的形状如图,如果不考虑空气阻力,小球的飞行路线是一条抛物线.小明测得小球的飞行高度h(单位:m)与飞行时间t(单位:s)的几组值后,发现h与t满足的函数关系式是h=20t﹣5t2.(1)小球飞行时间是多少时达到最大高度,求最大高度是多少?(2)小球飞行时间t在什么范围时,飞行高度不低于15m?【变式11-1】(2020秋•崆峒区期末)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高 t m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?【变式11-2】(2020•洛阳模拟)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?【变式11-3】(2020秋•溧阳市期末)如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)a= t,c= ;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x =10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【考点12二次函数的应用(面积问题)】【例12】(2020秋•长兴县期末)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圈,现有长为18米的篱笆,一边靠墙,若墙长a=6米,设花圃的一边AB为x米,面积为S 米2.(1)求S与x的函数关系式及x值的取值范围;(2)若边BC不小于3米这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.【变式12-1】(2020•荔城区校级模拟)某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?【变式12-2】(2020秋•东海县期末)为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym2.(1)则AE=m,BC=m;(用含字母x的代数式表示)(2)求矩形区域ABCD的面积y的最大值.【变式12-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【考点13二次函数的应用(利润问题)】【例13】(2020•葫芦岛)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?【变式13-1】(2020•义乌市模拟)新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销量y1(盒)与售价x(元)之间的关系为y1=400﹣8x;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒.(1)求甲、乙两种口罩每盒的进价分别为多少元?(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时两种口罩的销售利润总和为多少?(3)已知甲的销售量不低于乙口罩的销售量的 ,若使两种口罩的利润总和最高,此时的定价应为多少?【变式13-2】(2020•盘锦)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?【变式13-3】(2020•朝阳)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)直接写出y与x的关系式;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.【考点14二次函数的综合(存在性问题)】【例14】(2020秋•中山市校级期中)如图,已知抛物线y=ax2+bx+c的图象与x轴交于A (2,0),B(﹣8,0)两点,与y轴交于点C(0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.【变式14-1】(2020秋•罗平县期中)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)直接写出B点的坐标;(2)求该二次函数的解析式;(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.【变式14-2】(2020秋•思明区校级期中)如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD 上的动点,过点P的直线垂直于x轴,交抛物线于点Q.(1)求直线AD及抛物线的解析式;(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.【变式14-3】(2020秋•江北区期中)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学1v1讲义
二次函数几何问题
本章进步目标
★★★★★
Level 5
【难点·题型一】 二次函数与面积
◇方法技巧◇ 用点的坐标表示出相关线段的长,进一步求出面积
题型一:纵割法
【例1】如图,二次函数y=ax 2+bx 的图象经过点A (2,4)与B (6,0).
(1)求a ,b 的值;
(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.
【例2】已知抛物线222
12--+=m mx x y 与x 轴交于A,B 两点(A 在B 的左侧),与y 轴交于点C ,点D (-1,n )是抛物线上的一点,连接AC,AD,CD.若△ACD 的面积是5,求m 的值.
〖针对练习1〗
1.如图,已知抛物线23
4 2
y ax x
=++的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
2.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,
与y轴交于点B,其对称轴与x轴交于点D.
(1)直接写出B点的坐标;
(2)求该二次函数的解析式;
(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.
【难点·题型二】二次函数与三角形
◇方法技巧◇
利用等腰三角形或直角三角形的性质,找出线段相等的关系并利用两点之间的距离公式,转化为坐标之间的关系. 题型一:二次函数与等腰三角形
【例1】已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,
请说明理由.
题型二:二次函数与直角三角形
【例2】如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直
接写出点M的坐标;若不存在,请说明理由.
〖针对练习2〗
1.如图,已知二次函数y=ax²-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).
(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.
(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.
2.如图,已知抛物线y=-x²+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.
(1)求A,B,C三点的坐标;
(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;
(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.
3.如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
【难点·题型三】二次函数与四边形◇方法技巧◇
利用平行四边形的性质,找出线段之间的关系,再转化为点的坐标之间的关系. 题型一:二次函数与平行四边形
【例1】如图,抛物线
c
x
ax
y+
+
=6
2
交x轴于A. B两点,交y轴于点C. 直线y=x−5经过点B. C.
(1)求抛物线的解析式;
(2)过点A作AM⊥BC于点M,过抛物线上一动点P(不与点B. C重合),作直线AM的平行线交直线BC于点Q,若以点A、M、P、Q为顶点的四边形是平行四边形,求点P的横坐标。
【例2】如图,抛物线c bx x y ++=232经过点B(3,0),C(0,−2),直线l:3
232--=x y 交y 轴于点E,且与抛物线交于A,D 两点,P 为抛物线上一动点(不与A,D 重合).
(1)求抛物线的解析式;
(2)当点P 在直线l 下方时,过点P 作P M∥x 轴交l 于点M,PN∥y 轴交l 于点N ,求PM+PN 的最大值。
(3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由。
题型二:二次函数与正方形
【例3】如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.
(1)求抛物线的解析式.
(2)Q 是抛物线上除点P 外一点,△BCQ 与△BCP 的面积相等,求点Q 的坐标.
(3)若M ,N 为抛物线上两个动点,分别过M ,N 作直线BC 的垂线段,垂足分别为D ,E.是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.
〖针对练习3〗
1.如图,一次函数22
1+-=x y 分别交y 轴、x 轴于A 、B 两点,抛物线c bx x y ++-=2过A 、B 两点。
(1)求这个抛物线的解析式;
(2)作垂直x 轴的直线x=t ,在第一象限交直线AB 于M ,交这个抛物线于N 。
求当t 取何值时,MN 有最大值?最大值是多少?
(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标。
2.如图,已知抛物线22
1412+--=x x y 与x 轴交于A 、B 两点,与y 轴交于点C. (1)求点A 、B 、C 的坐标;
(2)点E 是此抛物线上的点,点F 是其对称轴上的点,当以A 、B 、E 、F 为顶点的平行四边形时,求点E 、F 的坐标。