三角波发生电路分析课程设计三角波发生电路
lm358正弦波方波三角波产生电路
《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。
LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。
本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。
二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。
通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)RC滤波电路。
在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。
3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。
三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)反相输入和正向输入。
通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。
3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。
四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
波形发生器(三角波)
`三角波发生电路的原理如图所示:由R1、R2、Q1、Q2组成对电容C2充电的恒流源1;由R3、R4、Q3、Q4组成对电容C2放电的恒流源2。
1、上电的瞬间,C2的电压为0V (对GND ),NE555的3脚为高电平(即电压为VCC )(具体看NE555资料),所以D1导通,D4截至,D3导通,D2截至。
恒流源1通过D1对电容C2进行线性充电,充电电流为I 。
t CI dt C I dt C I Vc ===⎰⎰2 C 为电容的容量可以看出,以恒定电流I 对电容充电,其两端电压和时间t 成一次函数的关系,即线性关系,即得到三角波的上升沿;2、当电容C2两端电压达到电源电压的2/3时,即对2脚和6脚同时施加了2/3*VCC 的电压,NE555的3脚变为低电平(即电压为GND ),此时,D3截至,D4导通,D1截至,D2导通,电容C2通过D2,恒流源2线性放电,得到三角波的下降沿;3、当电容C2的电压降到电源电压的1/3以下时,重复1的过程,又开始对电容充电,就这样周而复始的线性充电、线性放电形成了周期性的三角波。
4、从以上分析可知:产生的三角波含有一个直流成分,即电源电压的1/3。
5、而3脚周期性的高电平、低电平,即为一方波。
其频率和三角波频率一样。
6、关于电流)2100/()21/(R Vbe R R Vbe I +=+=这里的Vbe 是三极管基极和发射极的电压,为一常数,其数值需要实际测量。
令R2 = R4,即可以得到相等的充电电路和放电电流,这样三角波才左右对称。
7、关于周期的计算由上面的推导可知,充电和放电过程各占周期的1/2,在半个周期内电容C2的电压上升了或下降了1/3*VCC 由上面推出的公式可以得:231T C I Vcc = 既可解出T ,在用Tf 1=可以计算出频率。
例如:按图给定的参数,R2 = 200,C2=1nF ,这里我们给定Vbe=1.5V ,Vcc=12V mA I 52001005.1=+= us C Vcc T 19.2105310122I 323--9=⨯⨯⨯⨯=⨯⨯⨯= 52083Hz 1==Tf 这里注意要统一单位:时间(s )、电流(A )、电容(F )、电阻(Ω)。
单电源三角波发生电路
单电源三角波发生电路【标题】探索单电源三角波发生电路:广泛应用与原理解读【导言】单电源三角波发生电路是一种重要的电子元件,广泛应用于信号发生器、音频设备以及频谱分析仪等领域。
它通过巧妙的设计和构造,能够产生高质量、稳定、多频段的三角波信号。
本文将通过全面评估和深入解读,探讨单电源三角波发生电路的工作原理、设计方法以及其在实际应用中的价值。
【正文】1. 单电源三角波发生电路的基本原理先来了解一下单电源三角波发生电路的基本原理。
它是基于积分器和比较器的组合电路,通过不断积分和比较的过程,使得输出信号产生了周期性的坡度变化,从而形成了三角波。
其基本组成部分包括:- 积分器:一般采用运放和电容的结合,能够将输入信号进行积分操作,使得输出信号呈现出线性、连续变化的特点。
- 比较器:用于比较积分器输出信号与设定阈值的大小关系,根据比较结果来控制信号的稳定性和周期性。
2. 设计要点与方法单电源三角波发生电路的设计关键在于稳定性和频率控制。
以下是一些设计要点和方法,供参考:- 电源稳定性:由于单电源的局限性,电源波动会对电路的工作稳定性造成影响。
为了提高稳定性,可以使用稳压电源或添加反馈调节电路等方法。
- 频率控制:通过改变积分电容或改变比较器的阈值电压来控制输出信号的频率。
具体的设计方法可以参考相关教材或文献。
3. 单电源三角波发生电路的实际应用单电源三角波发生电路具有广泛的应用价值,以下列举几个典型的应用领域:- 信号发生器:作为信号源,用于测试和校准其他电子设备。
- 音频设备:可用于合成乐器音色或产生各种音调。
- 频谱分析仪:通过三角波信号的频率成分变化,实现对信号频谱的分析和测量。
4. 编写者观点与理解在我的个人观点和理解中,单电源三角波发生电路是一种非常有用的电子元件。
它不仅能够产生高质量的三角波信号,而且设计灵活,可以根据实际需求进行调节。
在工程应用中,通过合理的设计和实现,单电源三角波发生电路能够发挥重要的作用,并带来很大的实际价值。
正弦波 方波 三角波发生电路
正弦波方波三角波发生电路----9eef9958-7160-11ec-a078-7cb59b590d7d正弦波方波三角波发生电路正弦波&周期;方波&周期;三角波产生电路一、设计目的及要求:1.1. 设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2). 熟悉集成电路:集成运算放大器LM324,掌握其工作原理。
1.2. 设计要求:(1)设计波形产生电路。
(2)信号频率范围:100hz——1000hz。
(3)信号波形:正弦波。
二、实验方案:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由r、c和l、c等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路中产生自激的条件非常相似。
然而,在负反馈放大器电路中,信号频率到达通带的两端,导致足够的附加相移,从而使负反馈变为正反馈。
正反馈加到振荡电路中。
振荡建立后,它只是一个频率的信号,没有额外的相移。
(a)负反馈放大电路(b)正反馈振荡电路图1振荡器的方框图比较图1(a)和(b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于=十、。
由于正负号的变化,正反馈的放大系数为: = 0,因此X振荡电路的输入信号xiif.a,式中a是放大电路的放大倍数,f是反馈网络的放大倍数。
..振荡条件:AF 1.幅度平衡条件:af=1相位平衡条件: AF= a+f=±2n振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求|af| 1..这被称为起始条件。
高精度三角波发生电路设计及仿真分析
高精度三角波发生电路设计及仿真分析1. 引言三角波发生电路广泛应用于信号发生器、频率比较器和功率变换等领域。
本文旨在设计一种高精度的三角波发生电路,并通过仿真分析验证其性能。
2. 设计原理三角波发生电路一般采用积分器和比较器的组合。
其中,积分器用于生成一个随时间线性增加或减小的电压波形,比较器则用于将积分结果与参考电压进行比较,从而产生三角波。
设计一个高精度的三角波发生电路需要考虑以下因素:2.1 选取合适的积分器电路常用的积分器电路有反馈电容式和电压控制电压源(VCCS)等。
反馈电容式积分器简单可靠,但存在漂移和温度敏感性较大的问题。
相比之下,VCCS积分器对漂移和温度的依赖性较小,但在设计和布线上较为复杂。
根据需求选择适合的积分器电路。
2.2 参考电压源的选择参考电压源用于比较器的输入,一般为一个稳定的直流电压。
可选用电阻分压电路、稳压二极管或精度较高的运放电路作为参考电压源。
选取合适的参考电压源可以有效提高发生波形的精度。
2.3 比较器设计比较器用于将积分器输出的波形与参考电压进行比较。
常用的比较器电路有固定阈值比较器、比较器芯片等。
为提高精度,可采用电路补偿技术,并根据需求选择高性能的比较器芯片。
3. 电路图设计基于上述设计原理,我们可以绘制如下的高精度三角波发生电路图:(电路图请自行设计,这里仅提供设计思路)4. 仿真分析使用电子仿真软件对所设计的高精度三角波发生电路进行仿真分析,可以验证其性能和精度。
4.1 建立仿真模型将所设计的电路图导入仿真软件,并设置合适的参数和工作条件。
注意考虑元件的非理想性,如电容的等效串并联电阻、比较器的漂移等。
4.2 验证性能指标根据设计要求,设置仿真测量点并记录三角波的频率、峰峰值、上升时间、下降时间、线性度等指标。
4.3 分析结果根据仿真结果分析电路的性能,如精度、稳定性、非线性失真等。
如有需要,可以对某些参数进行调整和优化,再次进行仿真分析,直至满足设计要求。
方波三角波发生电路的设计及仿真
长春理工大学国家级电工电子实验教学示范中心学生实验报告■一一_______ 学年第___________ 学期实验课程_________________________ 实验地点_________________________ 学院______________________ 专业______________________ 学号______________________姓名______________________r 学习用集成运算放大器构成的方波和三角波发生电路的设计方法。
2、学习方波和三角波发生电路主要性能指标的测试方法。
二、 实验原理1. 方波和三角波发生电路型式的选择由集成运放构成的方波和三角波发生器的电路型式较多,但通常它们均由滞回比较器和积分电 路组成。
按积分电路的不同,又可分为两种类型:一类是由普通RC 积分电路和滞回比较器所组成, 另一类由恒流充放电的积分电路和滞回比较器所组成。
简单的方波和三角波发生电路如图34所示。
其特点是线路简单,但性能较差,尤英是三角波 的线性度很差.负载能力不强匚该电路主要用作方波发生器,当对三角波要求不髙时.也可选用这 种电路。
更常用的三角波和方波发生电路是由集成运放组成的积分器与滞回比较辭组成,如图3・2所示。
由于采用了由集成运放组成的积分器,电容C 始终处在恒流充、放电状态,使三角波和方波的性能 大为改善,不仅能得到线性度较理想的三角波,而且也便于调右振荡频率和幅度。
R4 1 2 500R14 8 10KR2 8 120KR3 9 1100DZ1 1 10 DMOD DZ2 0 10 DMODVCC 5 0 DC 12VEE 6 0 DC -12XI 0 2 5 6 4 UA741X2 8 0 5 6 9 UA741Cl 2 4 1U.MODEL DMOD D IS=2E-14 RS=3 BV=4.85 IBV=1UA.LIB EVAL.UB*V4 4 0 1*.DC V4 -5 5 0.01*.DC V4 5 -5 0.01.TRA5US 12MS.PROBE.END运行.TRAN语句,可获得:Tire图3-3 输出方波电压波形图3・4 输出三角波电压波形输出三角波电压波形参考的输入网单文件如下:A drvieR4 1 2 500R14 8 10KR2 8 120KR3 9 1100DZ1 1 10 DMODDZ2 0 10 DMODVCC 5 0 DC 12VEE 6 0 DC -12XI 0 2 5 6 4 LM324X2 8 0 5 6 9 LM324C1 2 4 1U.MODEL DMOD D IS=2E-14 RS=3 BV二 4.85 IBV=1UA.LIB EVAL.UB*V4 4 0 1*.DC V4 •5 5 0.01*.DC V4 5 -5 0.01.TRAN 5US 12MS.PROBE.END因为LM324具有电源电压范围宽的特点,所以T变小了•减小了频率的调右范【悅2、R3的作用是什么?增大其值是否可以?R3是稳压管的限流电阻,R3的阻值是由稳压管Dz来确定的.所以可以根据Dz的情况来增大。
方波、三角波(锯齿波)产生电路.ppt
VZ
反相积分电路
1 vO1 RC
同相迟滞比较器
v dt V
0 S
t
O1
(0 )
R1vO R2vI vP + vN 0 R1 R2 R1 R2
Vth vI R1 vO FVZ 2.72V R2
VO2 t VO1 (0 ) RC
R6
– + R7
A2
vO
同相输入 迟 滞比较器
t
积分电路
t
end
反相积分电路
DZ VZ= 8V
VZ
习题9.4.9
同相迟滞比较器
方波、三角波(锯齿波)产生电路
画出vO1、vO2的波形。求振荡频率;
C R vS 5.1k
vN R1 – + R3 R2 15k 2k vO2
– +
0.047F
A1
A2
vO1
vI 5.1k vP
DZ VZ= 8V
求振荡频率;画出vO1、vO的波形。
C R vS 5.1k
vN R1 – +
– +
0.047F
A1
A2 R2 15k
R3 2k vO2
vO1
vI 5.1k vP
vO2
DZ VZ= 8V
VZ
VO2 v ( t ) t V ( 0 ) O1 O1 t RC 0 T VZ T vO1 v O1 ( ) ( FVZ ) FVZ 2 RC 2 FVZ T 4 RC t VZ 0 R2 f 3kHz 4 RCR1 如何调整三角波的幅值和频率?
锯齿波发生电路772锯齿波及三角波产生电路方波三角波锯齿波产生电路锯齿波产生电路同相输入滞比较器积分电路
三角波发生电路0到5v
三角波发生电路0到5v
三角波发生电路是一种电子电路,它能够生成在0到5伏特之间变化的三角波形信号。
这种电路通常使用高速运算放大器(如OPA357AIDBVR)为核心组件,配合电阻、电容等元件来构成。
电路的基本工作原理是通过同相滞回比较电路和积分电路的组合来实现三角波形的生成。
同相滞回比较电路用于产生方波信号,而积分电路则将方波信号转换为三角波信号。
在电路的设计中,需要考虑到输出信号的幅值和频率等参数。
为了使三角波信号的幅值在0到5伏特之间变化,可以通过调整电阻和参考电压等参数来实现。
例如,可以设定电阻R1和R2的值,以及参考电压Vref,来控制运放的输出范围。
同时,为了使三角波信号的频率达到预期值,可以设定电阻R3和电容C的值,来调整积分电路的时间常数。
需要注意的是,在设计三角波发生电路时,还需要考虑到电路的稳定性和可靠性等因素。
例如,需要选择合适的元件,避免电路出现过载或短路等故障。
此外,还需要进行电路测试和调试,以确保电路的性能和稳定性符合要求。
综上所述,三角波发生电路是一种重要的电子电路,它能够生成在0到5伏特之间变化的三角波形信号。
通过合理的设计和调试,可以实现电路的稳定性和可靠性,从而满足各种应用场景的需求。
占空比可调三角波发生电路
适当调节占空比后得到的波形为:
五、结束语
通过这次的设计过程,我更加熟练的掌握了滞回比器电路和积分电路以及有他们组成的三角波发生电路,同时对Multisim软件的应用也更加熟练。
矩形波发生电路实际是由一个滞回比较器和一个RC充放电回路组成,如图一所示。
其中R1、R2与集成运放组成滞回比较器,电阻R4和电容C组成充放电回路,稳压管D3、D4和电阻R3的作用是钳位,将滞回比较器输出电压稳定在正负Uz。
要得到占空比可调的三角波则必须要使矩形波的占空比可调。要得到占空比可调的矩形波,可通过改变电路中充放电时间常数来实现。如图二。
图中电位器和两个二极管的作用是将电容和放电的回路分开,调节充电和放电两个时间常数的比例。如果将电位器向下滑动,则充电时间常数减小,放电时间常数增大,于是输出端为高电平的时间缩短,低电平的时间增长。
波形图如下所示
将上述的矩形波发生电路的输出端与积分电路的输入端连接即可得到占空比可调的的三角波发生电路。
四、实验内容与步骤
根据实验原理,我们绘制电路图如下图。
电路参数计算:
(1)输出幅度
由图可知,在Uo=‐Uz期间,积分电路的输出电压Uo往正方向线性增长,此时U+也随着增长,当增长至U+=U-=0时,滞回比较器的输出电压UO1发生跳变,而发生跳变时的UO值是使三角波的最大值Uom。将条件UO1=-UZ,U+=0和Uo=Uom代入下式可得:
0=(-Uz)+Uom
可解的三角波的输出幅度当忽略二极管的导通电阻时经分析可知:
T1=(R6+R10)C㏑(1+)
T2=(R6+R9)C㏑(1+)
输出波形的震荡周期为:
三角波,方波产生电路
方波发生电路工作原理:设某一时刻输出电压Uo=+Uz ,则同相输入端电位Uc=+Ut 。
Uo 通过R12对电容C3正向充电。
反相输入端电位Uc 随时间t 增长而逐渐升高,当t 趋近于无穷时,Uc 趋于+Uz ;一旦Uc=+Ut ,再稍增大,Uo 就从+Uz 跃变为-Uz ,与此同时Uc 从+Ut 跃变为-Ut 。
随后,Uo 又通过R 对电容C3放电。
反相输入端电位Uc 随时间t 增长而逐渐降低,当t 趋近于无穷时,Uc 趋于-Uz ;一旦Uc=-Ut ,再稍减小,Uo 就从-Uz 跃变为+Uz ,与此同时,Uc 从-Ut 跃变为+Ut ,电容又开始反向充电。
而上述过程周而复始,电路产生了输出状态的自动转换,便输出方波。
方波信号发生原理由于图中所示电路电筒正向充电和反向充电的时间常数均为RC ,而且充电的总幅值也相等,因而在一个周期内Uo=+Uz 的时间与Uo=-Uz 的时间相等,Uo 为对称的方波,所以也称为该电路为方波发生电路。
电容上电压Uc (即集成运放反相输入端电位Un )和电路输出电压Uo 波形如图所示。
矩形波的宽度Tk 与周期T 之比称为占空比,因此Uo 是占空比为1/2 的矩形波。
根据电容上电压波形可知,在1/2周期内,电容充电的起始值俄日-Ut ,终了值为+Ut ,时间常数为R3C ;时间t 趋于无穷时,Uc 趋于+Uz ,利用一阶RC 电路的三要素法可列出方程上述电路输出状态发生跳变的临界条件为:U- = U+ 其中:O O FU U R R R U =+=+322当输出U0为高电平时:H O HO FU U R R R U =+=+322当输出U0为低电平时:L O L O FU U R R R U -=+-=+322刚开始振荡建立时,由于电路中的电扰动,并通过正反馈,使输出很快变为高电平或低电平。
振荡周期为:21T T T +=而方波发生电路中电容正向充电与反向充电的时间常数均为RC ,而且充电的总幅值也相等,因而在一个周期内uO=+UZ 的时间与uO=-UZ 的时间相等,即方波T1 = T2。
模拟电子电路课程设计——正弦波-三角波-方波函数发生器
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:正弦波-三角波-方波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz;2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并完成符合学校要求的设计说明书时间安排:一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................21.3集成运放lm324简介...............................................32.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................42.3方案三..................................................53.单元电路设计..............................................6 3.1正弦波发生电路的工作原理...............................6 3.2正弦波变换成方波的工作原理.............................8 3.3方波变换成三角波的工作原理.............................93.4正负12V直流稳压电源的设计............................104.电路仿真................................................124.1总波形发生电路............................................124.2正弦波仿真................................................134.3方波仿真...................................................144.2三角波仿真...............................................145.实物制作与调试..........................................155.1焊接过程.............................................155.2 实物图...............................................155.3调试波形.............................................186.数据记录................................................197.课设总结................................................208.参考书目................................................219.附录....................................................22 本科生课程设计成绩评定表....................................241.综述1.1信号发生器概论在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
三角波发生电路分析课程设计三角波发生电路
三角波发生电路分析课程设计三角波发生电路课程设计说明书学生姓名: 学号:学院: 智能电网信息工程班级: 智信题目: 三角波发生电路分析指导教师:职称: 副教授 20__年12 月 14 日目录 1.设计目的 2.设计任务 3.三角波发生电路的组成和工作原理 .4.参数估算5.电路设计6.总结7.参考文献附录元件清单.............................................1.设计目的信号发生器在电子技术应用领域里的用途非常广泛,在数字系统和自动控制系统也常常需要方波,三角波,的非正弦波信号发生器。
目前我们实验室用的较多的波形发生器主要有两种:低频正弦波发生器和通用多波形发生器,前者只能产生正弦波,调节范围不大,但是信号稳定,失真度底,主要用在对波形有很高的要求的实验中;后者能产生正弦波、方波和三角波,也有的能产生三种以上波形。
本次课程设计是做一个能够产生三角波电路的设计。
由理论分析知,电压比较器可以产生方波,积分电路可以产生三角波。
2.设计任务设计三角波发生电路,实现三角波信号的产生。
分析三角波发生电路,运用Multisim仿真软件进行仿真,观测波形,读取参数。
3.三角波发生电路的组成和工作原理三角波发生电路是由方波发生电路产生方波,并将法波发生电路的输出作为积分运算电路的输入,经积分运算电路输出三角波。
其中积分运算电路一方进行波形变换,另一方面取代方波发生电路的RC回路,起延时作用。
在图1所示电路中,虚线左边为同相输入的滞回比较器,右边为积分运算电路。
同相滞回比较器的输出高、低电平分别为UOH=+UZ,UOL=-UZ (1)积分运算电路的输出电压uo作为输入电压,因为原件工作在线性区,根据“虚断”,所以A1同相输入端的电位根据“虚短”,所以uP1=uN1=0 ,并将uO1=±UZ代入,可得阈值电压因而电压传输特性如图2所示。
图2 以滞回比较器的输出电压uO1作为输入,积分运算电路的输出电压表示式为若t0至t1,uO1=+UZ,则式(2)变换为若在t1时刻uO1跃变为-UZ,且保持至t2,则式(2)变换为图2所示电压传输特性和式(3)、式(4)准确地描述了图1中两部分电路的关系,以此为依据可得电路的振荡原理。
方波-三角波电路分析
方波-三角波发生电路分析图1.1 方波-三角波发生电路图1.1为方波-三角波电路。
同一个四运放芯片TL084中的两个运算放大器构成了此信号发生电路。
第一级运放构成了方波发生器,它的RC充放电回路用第二级的积分运算电路(R3和C1)取代。
该四运放芯片TL084由单电源供电。
VDD为输入到两个运放的信号电压。
在图1.1中,连到示波器的红色曲线表示第一级运放的正输入端电压,黄色曲线表示第一级运放输出端电压,绿色曲线表示第二级运放的负输入端电压,蓝色曲线表示第二级运放输出电压。
在VDD取不同值时有图1.2所示变化。
图1.2 VDD vs 电路信号从图1.2可见,VDD的取值能够影响该电路是否正常工作(起振)下面从电路原理上分析上述电路的特性。
首先定义一些变量:A1:第一级运放的负向输入电压和第二级运放的正向输入电压U IN(即VDD),一般要求U IN ≥U L;A2:第一级运放输出值的最大值U H和最小值U L;第一级运放输出值的最大值和最小值就是方波的峰值和谷值,从TL084的数据页或图1.2中可以得到:U L=1.523v,U H=14v;A3:第一级运放输出方波信号波峰持续时间T UP和波谷持续时间T DOWN;A4:第二级运放(积分电路)输出值的最大值U up和最小值U down。
假定上电时,第一级负输入端的电平较正输入端的高,则第一级输出电平很快会达到最小值U L。
由于U IN≥U L,即第二级正输入端电平大于负输入端电平,所以第二级积分电路处在充电状态,即第二级输出端的电平将逐渐增大直至U up(充电持续时间为T DOWN)。
当第二级输出端的电平达到U up时,经R2反馈到第一级的正输入端,此时应能够使正输入端的电平达到或超过U IN,从而使第一级输出电平迅速达到最大的饱和值U H。
由于U H的引入,造成第二级运放的负输入端电平大于正输入端电平,导致第二级积分电路开始放电,并反向充电,直至第二级输出电平达到U down(充电持续时间为T UP)。
lm358正弦波方波三角波产生电路
lm358正弦波方波三角波产生电路LM358是一种双通道运算放大器,具有低功耗和宽电源电压范围等特点,非常适合用于信号处理、滤波以及波形生成电路。
在本文中,我们将针对LM358正弦波、方波和三角波产生电路展开探讨,并提供详细的电路设计原理和实现步骤。
1. LM358正弦波产生电路正弦波产生电路是一种基本的波形生成电路,能够产生具有稳定幅值和频率的正弦波信号。
使用LM358运算放大器和一些基本的无源元件,我们可以设计出简单而稳定的正弦波产生电路。
我们需要通过一个RC 网络将运算放大器配置为反馈振荡电路。
通过调整RC网络的参数,可以实现所需频率的正弦波输出。
需要注意的是,为了稳定输出的幅值和频率,我们需要精心选择和调整电阻和电容的数值。
2. LM358方波产生电路方波产生电路是一种能够生成具有固定占空比和频率的方波信号的电路。
使用LM358运算放大器和几个简单的元件,我们可以设计出稳定的方波产生电路。
我们可以将LM358配置为比较器,通过设置阈值电压和反馈电阻,可以实现所需频率和占空比的方波输出。
需要注意的是,选择合适的电阻和电容数值,可以使得方波输出的上升和下降沿更加陡峭。
3. LM358三角波产生电路与正弦波和方波不同,三角波产生电路能够生成具有线性变化斜率的三角波信号。
同样地,我们可以利用LM358运算放大器和几个简单的元件设计出稳定的三角波产生电路。
我们可以将LM358配置为积分放大器,通过输入一个方波信号,并将其积分,可以得到具有线性变化斜率的三角波输出。
调整输入方波的频率和幅值,可以进一步调整三角波输出的频率和幅值。
总结回顾通过对LM358正弦波、方波和三角波产生电路的探讨,我们可以看到LM358作为运算放大器在波形生成电路中的灵活性和高性能。
通过精心设计和调整,我们可以实现稳定、精确和灵活的波形输出。
值得一提的是,LM358产生的波形信号可以应用于各种信号处理和波形调制电路中,具有广泛的应用前景。
模电课程设计---方波—三角波发生器设计与仿真
课程设计任务书学院信息工程学院班级姓名设计起止日期2012年7月9日—7月13日设计题目:方波—三角波发生器设计与仿真设计任务(主要技术参数):1.主要技术参数(已知条件)根据要求设计一个方波—三角波发生电路,频率:100Hz-1000Hz;幅度:≧2V2.利用软件画出电路原理图并仿真3.编写设计说明书指导教师评语:成绩:签字:年月日一、课程设计的目的1.《低频电子线路》是学习理论课程之后的实践教学环节。
目的是通过解决比较简单的实际问题巩固和加深在《低频电子线路》课程中所学的理论知识和实验技能。
训练学生综合运用学过的电子技术基础知识,在教师指导下完成查找资料,选择、论证方案,设计电路,安装调试,分析结果,撰写报告等工作。
使学生初步掌握模拟电子电路设计的一般方法步骤,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力,为后续课程的学习、毕业设计和毕业后的工作打下一定的基础。
2.课程设计的基本要求通过课程设计了解模拟电路基本设计方法,加深对所学理论知识的理解。
完成指定的设计、安装、调试任务,初步掌握测试结果分析和撰写设计报告的方法。
具体要求如下:(1)明确设计任务对设计任务进行具体分析,充分了解性能、指标、内容及要求,明确应完成的任务。
(2)方案选择与论证通过查阅资料对不同的设计方案进行比较论证,根据现有的条件选择合适的设计方案,力争作到合理,可靠,经济,先进,便于实现,绘制出整体框图。
(3)单元电路设计确定各个单元的电路结构,计算元件参数(写出主要计算过程和公式),选择器件。
(4)绘制原理图绘制完整的原理图,在图中标明主要测试点及理想情况下的参数值(或波形),列出元件表。
有条件是应会用protel DXP等EDA设计工具绘制原理图并进行仿真。
(5)制定测试方案根据实验室现有条件选择测试用的实验设备(列出所需设备表),绘制出实际电路连接草图,拟定测试步骤并设计好数据记录表格。
(6)测试验证根据拟定的测试步骤进行测试验证,记录测试结果。
方波三角波发生电路的参数灵敏度分析与优化设计
方波三角波发生电路的参数灵敏度分析与优化设计方波和三角波是常见的波形,在电路设计中,我们经常需要生成这两种波形。
发生电路是一种电路结构,可以用来产生方波或三角波。
本文将对方波和三角波发生电路进行参数灵敏度分析和优化设计。
首先,我们需要了解方波和三角波的特性及其应用。
方波是一种特殊的周期信号,其波形为由高低电平构成的矩形波形。
方波常用于数字电路和通信系统中,如脉冲调幅调制(PAM)和脉冲编码调制(PCM)等。
三角波是一种连续的波形,其波形呈现线性上升和线性下降的特点。
三角波在音频、音乐合成、模拟电路测试和带通滤波器等领域得到广泛应用。
接下来,我们进行方波发生电路的参数灵敏度分析。
方波发生电路一般由振荡器和比较器组成。
其中振荡器用来产生基本频率的交流信号,比较器将振荡器输出的信号与参考电平进行比较,形成方波信号。
在方波发生电路中,主要的参数包括振荡器的频率、振荡器的幅值、比较器的阈值等。
首先,我们分析振荡器频率对方波形成的影响。
振荡器频率决定了方波的周期,频率越高,周期越短。
通过改变振荡器的频率,可以调整方波的频率。
频率的灵敏度主要取决于振荡器的工作原理和参数。
其次,振荡器的幅值对方波形成的影响也很重要。
振荡器的幅值决定了方波的高电平和低电平的幅值大小。
通过改变振荡器的幅值,可以调整方波的幅值。
幅值的灵敏度与振荡器的放大倍数和供电电压等参数有关。
最后,比较器的阈值对方波形成的影响也不容忽视。
比较器的阈值决定了方波波形的上升沿和下降沿的位置。
通过改变比较器的阈值,可以调整方波的占空比。
阈值的灵敏度与比较器的工作原理和参数有关。
针对方波发生电路的参数灵敏度分析,我们可以采取以下步骤进行优化设计。
首先,选择合适的振荡器类型。
不同类型的振荡器具有不同的工作特性和参数灵敏度。
根据需求和设计要求,选择适当的振荡器类型。
其次,优化振荡器的参数。
振荡器的频率和幅值是方波生成的关键参数。
通过调整振荡器的参数,可以达到期望的方波频率和幅值。
方波、三角波波形发生器课程设计
方波、三角波波形发生器课程设计方波、三角波发生器摘要在模拟电子技术当中,我们会见到各种类型的波形,除了常见的正弦波之外,还有别的各种非正弦波,这些类型各异的波形,广泛应用于模拟电子技术的各个领域。
在模拟电子电路中,各种非正弦波,如矩形波、三角波、锯齿波、阶梯波等,在各种驱动电路及信号处理电路中广泛应用。
波形发生器是一种常用的信号源,广泛的运用于电子电路、自动控制系统和教学实验等领域。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途,通过对函数波形发生器的原理以及构成分析,可以设计一个能变换出三角波、方波的函数波形发生器。
本文利用LM324N产生一个可调频和调幅的方波信号,通过此信号来产生三角波。
电子电路设计、仿真与实践第 1 页目录1 设计题目 ............................................................... 2 2设计任务和要求 .........................................................2 3 整体电路设计 ........................................................... 2 4 仿真及仿真结果 ......................................................... 7 5 PCB板的绘制 ............................................................9 6 误差分析 .............................................................. 10 7总结 ..................................................................11 8 心得体会 (11)电子电路设计、仿真与实践第 2 页1 设计题目方波、三角波发生器2 设计任务和要求要求设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角波发生电路分析课程设计三角波发生电路
课程设计说明书学生姓名: 学号:
学院: 智能电网信息工程班级: 智信题目: 三
角波发生电路分析指导教师:
职称: 副教授 20__年12 月 14 日目录 1.设计目的 2.设计任务 3.三角波发生电路的组成和工作原
理 .
4.参数估算
5.电路设计
6.总结
7.参考文献
附录元件清单.............................................
1.设计目的信号发生器在电子技术应用领域里的用途非
常广泛,在数字系统和自动控制系统也常常需要方波,三角波,
的非正弦波信号发生器。
目前我们实验室用的较多的波形发生器
主要有两种:低频正弦波发生器和通用多波形发生器,前者只能
产生正弦波,调节范围不大,但是信号稳定,失真度底,主要用
在对波形有很高的要求的实验中;后者能产生正弦波、方波和三
角波,也有的能产生三种以上波形。
本次课程设计是做一个
能够产生三角波电路的设计。
由理论分析知,电压比较器可以
产生方波,积分电路可以产生三角波。
2.
设计任务设计三角波发生电路,实现三角波信号的产生。
分析三角波发生电路,运用Multisim仿真软件进行仿真,观测波形,读取参数。
3.
三角波发生电路的组成和工作原理三角波发生电路是由方波发生电路产生方波,并将法波发生电路的输出作为积分运算电路的输入,经积分运算电路输出三角波。
其中积分运算电路一方进行波形变换,另一方面取代方波发生电路的RC回路,起延时作用。
在图1所示电路中,虚线左边为同相输入的滞回比较器,右边为积分运算电路。
同相滞回比较器的输出高、低电平分别
为UOH=+UZ,UOL=-
UZ (1)积分运算电路的输出电压uo作为输入电压,因为原件工作在线性区,根据“虚断”,所以A1同相输入端的电位根据“虚短”,所以uP1=uN1=0 ,并将
uO1=±UZ代入,可得阈值电压因而电压传输特性如图2所示。
图2 以滞回比较器的输出电压uO1作为输入,积分运算电路的输出电压表示式为若t0至t1,uO1=+UZ,则式(2)变换为若在t1时刻uO1跃变为-UZ,且保持至t2,则式(2)变换为图2所示电压传输特性和式
(3)、式(4)准确地描述了图1中两部分电路的关系,以此为依据可得电路的振荡原理。
设滞回比较器输出电压uO1在t1时刻有-UZ跃变为+UZ(称为第一暂态),根据式(3),积分电路反向积分,输出电压uO 按线性规律下降,当uO下降到滞回比较器的阈值电压-UZ时
(t1),滞回比较器的输出电压uO1从+UZ跃变到-UZ(称为第二暂态)。
此后,积当当uO上升到滞回比较器的阈值电压+UZ时(t2),uO1分电路正向积分,根据式(4),uO按线性规律上升,从-UZ跃变回到+UZ,即返回第一暂态,电路又开始反向积分。
如此周而复始,产生振荡。
由于积分电路反向积分和正向积分的电流大小均为uO1/R3,使得uO在一个周期内的下降时间和上升时间相等,且斜率的绝对值也相等,因而uO是三角波,uO1式方波,波形如图3所示。
故也称图1所示电路为三角波—方波发生电路。
4.参数的估算(1)振荡幅值在图1所示电路中,因为积分电路的输出电压uO就是同相滞回比较器的输入电压,所以三角波的正、负幅值为因为方波的幅值决定与由稳压管组成的限幅电路,所以(本设计中)其高、低电平分别(2)
振荡周期在图3所示三角波中,在振荡的二分之一周期内,起始值为-UT,终止值为+UT,将它代入式(4) 经过计算得周期为2ms 在调试电路时,应先调整电阻R1和R2使输出幅度达到设计值,再调整R3和C使振荡周期满足要求。
如图一所示,左边为方波发生器,右边为积分电路R1=10k
R2=10k R3=5k R4=2k R5=10k 5.电路设计 6.收获建议通过这次课程设计使我懂得了生活实践与课堂理论的
区别。
我们在课堂上学习的知识就是为了去解决生活中的实际问题。
这学期我们开设了电路实验课,这极大的锻炼了我们的动手
能力和体会参考文献:
(1)周常森. 电子电路计算机仿真技术.山东科技出版
社,20__6.02 (2)华成英. 模拟电子技术基础教程.清华
大学出版社,20__6.02 (3)刘晓峰.
电子技术基础实验与仿真.高等教育出版社.20__.5 (4)
彭介华.
电子技术课程设计指导.高等教育出版社,2021.12 (5)高吉祥库锡树.
电子技术基础实验与课程设计.电子工业出版社,2021.04 附录元件清单名称数量规格放大器 2 Tl082cd 电阻
5 三个10k,5k,2k 地 4 电源 2 ±15v 电容 1
100nF 示波器 1 稳压管 1 +-6V。