误差棒 标准差 标准误差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准差(Standard Deviation) 和标准误差(Standard Error)本文摘自
Streiner DL.Maintaining standards: differences between the standard deviation and standarderror, and when to use each. Can J Psychiatry 1996; 41: 498–502.
标准差(Standard Deviation)
标准差,缩写为S.D., SD, 或者 s (就是为了把人给弄晕?),是描述数据点在均值(mean)周围聚集程度的指标。
如果把单个数据点称为“X i,” 因此“X1” 是第一个值,“X2” 是第二个值,以此类推。均值称为“M”。初看上去Σ(X i-M)就可以作为描述数据点散布情况的指标,也就是把每个X i与M的偏差求和。换句话讲,是(单个数据点—数据点的平均)的总和。
看上去挺有逻辑性的,但是它有两个缺点。
第一个困难是:上述定义的结果永远是0。根据定义,高出均值的和永远等于低于均值的和,因此它们相互抵消。可以取差值的绝对值来解决(也就是说,忽略负值的符号),但是由于各种神秘兮兮的原因,统计学家不喜欢绝对值。另外一个剔除负号的方法是取平方,因为任何数的平方肯定是正的。所以,我们就有Σ(X i-M)2。
另外一个问题是当我们增加数据点后此等式的结果会随之增大。比如我们手头有25个值的样本,根据前面公式计算出SD是10。如果再加25个一模一样的样本,直觉上50个大样本的数据点分布情况应该不变。但是我们的公式会产生更大的SD值。好在我们可以通过除以数据点数量N来弥补这个漏洞。所以等式就变成Σ(X i-M)2/N.
根据墨菲定律,我们解决了两个问题,就会随之产生两个新问题。
第一个问题(或者我们应该称为第三个问题,这样能与前面的相衔接)是用平方表达偏差。假设我们测量自闭症儿童的IQ。也许会发现IQ均值是75, 散布程度是100 个IQ点平方。这IQ点平方又是什么东西?不过这容易处理:用结果的平方根替代,这样结果就与原来的测量单位一致。所以上面的例子中的散布程度就是10个IQ点,变得更加容易理解。
最后一个问题是目前的公式是一个有偏估计,也就是说,结果总是高于或者低于真实的值。解释稍微有点复杂,先要绕个弯。在多数情况下,我们做研究的时候,更感兴趣样本来自的总体(population)。比如,我们探查有年轻男性精神分裂症患者的家庭中的外现情绪(expressed emotion,EE)水平时,我们的兴趣点是所有满足此条件的家庭(总体),而不单单是哪些受研究的家庭。我们的工作便是从样本中估计出总体的均值(mean)和SD。因为研究使用的只是样本,所以
这些估计会与总体的值未知程度的偏差。理想情况下,计算SD的时候我们应当知道每个家庭的分值(score)偏离总体均值的程度,但是我们手头只有样本的均值。
根据定义,分值样本偏离样本均值的程度要小于偏离其他值,因此使用样本均值减去分值得到的结果总是比用总体均值(还不知道)减去分值要小,公式产生的结果也就偏小(当然N很大的时候,这个偏差就可以忽略)。为了纠正这个问题,我们会用N-1除,而不是N。总之,最后我们得到了修正的标准差的(估计)公式(称为样本标准差):
顺带一下,不要直接使用此公式计算SD,会产生很多舍入误差(rounding error)。统计学书一般会提供另外一个等同的公式,能获得更加精确的值。
现在我们完成了所有推导工作,这意味着什么呢?
假设数据是正态分布的,一旦知道了均值和SD,我们便知道了分值分布的所有情况。对于任一个正态分布,大概2/3(精确的是68.2%)的分值会落在均值-1 SD 和均值+1 SD之间,95.4%的在均值-2 SD 和均值+2 SD之间。比如,大部分研究生或者职业院校的入学考试(GRE,MCAT,LSAT和其他折磨人的手段)的分数分布(正态)就设计成均值500,SD 100。这意味68%的人得分在400到600之间,略超过95%的人在300到700之间。使用正态曲线的概率表,我们就能准确指出低于或者高于某个分数的比例是多少。相反的,如果我们想让5%的人淘汰掉,如果知道当年测试的均值和SD,依靠概率表,我们就能准确划出最低分数线。
总结一下,SD告诉我们分值围绕均值的分布情况。现在我们转向标准误差(standard error)。
标准误差(Standard Error)
前面我提到过大部分研究的目的是估计某个总体(population)的参数,比如均值和SD(标准方差)。一旦有了估计值,另外一个问题随之而来:这个估计的精确程度如何?这问题看上去无解。我们实际上不知道确切的总体参数值,所以怎么能评价估计值的接近程度呢?挺符合逻辑的推理。但是以前的统计学家们没有被吓倒,我们也不会。我们可以求助于概率:(问题转化成)真实总体均值处于某个范围内的概率有多大?(格言:统计意味着你不需要把话给说绝了。)
回答这个疑问的一种方法重复研究(实验)几百次,获得很多均值估计。然后取这些均值估计的均值,同时也得出它的标准方差(估计)。然后用前面提到的概率表,我们可估计出一个范围,包括90%或者95%的这些均值估计。如果每个样
本是随机的,我们就可以安心地说真实的(总体)均值90%或者95%会落在这个范围内。我们给这些均值估计的标准差取一个新名字:均值的标准误差(the standard error of the mean),缩写是SEM,或者,如果不存在混淆,直接用SE代表。
但是首先得处理一个小纰漏:重复研究(实验)几百次。现今做一次研究已经很困难了,不要说几百次了(即使你能花费整个余生来做这些实验)。好在一向给力的统计学家们已经想出了基于单项研究(实验)确定SE的方法。让我们先从直观的角度来讲:是哪些因素影响了我们对估计精确性的判断?一个明显的因素是研究的规模。样本规模N越大,反常数据对结果的影响就越小,我们的估计就越接近总体的均值。所以,N应该出现在计算SE公式的分母中:因为N越大,SE越小。类似的,第二因素是:数据的波动越小,我们越相信均值估计能精确反映它们。所以,SD应该出现在计算公式的分子上:SD越大,SE越大。因此我们得出以下公式:
(为什么不是N? 因为实际是我们是在用N除方差SD2,我们实际不想再用平方值,所以就又采用平方根了。)
所以,SD实际上反映的是数据点的波动情况,而SE则是均值的波动情况。置信区间(Confidence Interval)
前面一节,针对SE,我们提到了某个值范围。我们有95%或者99%的信心认为真实值就处在当中。我们称这个值范围为“置信区间”,缩写是CI。让我们看看它是如何计算的。看正态分布表,你会发现95%的区域处在-1.96SD和
+1.96 SD 之间。回顾到前面的GRE和MCAT的例子,分数均值是500,SD是100,这样95%的分数处在304和696之间。如何得到这两个值呢?首先,我们把S D乘上1.96,然后从均值中减去这部分,便得到下限304。如果加到均值上我们便得到上限696。CI也是这样计算的,不同的地方是我们用SE替代SD。所以计算95%的CI的公式是:95%CI= 均值± ( 1.96 x SE)。
选择SD, SE和CI
好了,现在我们有SD, SE和CI。问题也随之而来:什么时候用?选择哪个指标呢?很明显,当我们描述研究结果时,SD是必须报告的。根据SD和样本大小,读者很快就能获知SE和任意的CI。如果我们再添加上SE和CI,是不是有重复之嫌?回答是:“YES”和“NO”兼有。