石室中学 初三数学专题四点共圆

合集下载

成都石室联合中学蜀华分校九年级数学上册第四单元《圆》测试题(包含答案解析)

成都石室联合中学蜀华分校九年级数学上册第四单元《圆》测试题(包含答案解析)

一、选择题1.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A.70°B.45°C.30°D.20°2.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.30°C.36°D.60°3.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠ACB=30°,AB= 3,则阴影部分的面积()A.32B.33C.3π26-D.3π36-4.如图,正六边形ABCDEF内接于O,过点O作OM⊥弦BC于点M,若O的半径为4,则弦心距OM的长为()A.3B3C.2 D.225.下列说法正确的有()①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③相等的圆周角所对的弧相等;④等弧所对的弦相等;⑤等弦所对的弧相等A.1个B.2个C.3个D.4个6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 7.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( ) A .点P 在O 内 B .点P 在O 上 C .点P 在O 外 D .无法判断 8.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线9.如图,在⊙O 中,OA BC ⊥,35ADB ∠=︒.则AOC ∠的度数为( )A .40︒B .55︒C .70︒D .65︒10.如图,⊙O 的半径为1,点 O 到直线 a 的距离为2,点 P 是直线a 上的一个动点,PA 切⊙O 于点 A ,则 PA 的最小值是( )A .1B 3C .2D 511.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°12.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 二、填空题13.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.14.ABC 是边长为5的等边三角形,点D 在ABC 的外部且30BDC ∠=︒,则AD 的最大值是______.15.如图,矩形ABCD 和正方形BEFG 中2AB =,3AD =,1BE =,正方形BEFG 绕点B 旋转过程中,线段DF 的最小值为______.16.如图,,PA PB 切⊙O 于,A B ,点C 在AB 上,DE 切⊙O 于C ,10cm,PO =⊙O 的半径为6cm ,则PDE △的周长是_________cm .17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.18.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.19.如图,⊙O 的半径为1,作两条互相垂直的直径AB 、CD ,弦AC 是⊙O 的内接正四边形的一条边.若以A 为圆心,以1为半径画弧,交⊙O 于点E ,F ,连接AE 、CE ,弦EC 是该圆内接正n 边形的一边,则该正n 边形的面积为____.20.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.三、解答题21.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 边上的一点,以AD 为直径的⊙O 交BC于点E,过点C作CG⊥AB交AB于点G,交AE于点F,过点E作EP⊥AB交AB于点P,∠EAD=∠DEB.(1)求证:BC是⊙O的切线;(2)求证:CE=EP;(3)若CG=12,AC=15,求四边形CFPE的面积.22.如图,O的直径AB为10cm,弦BC为5cm,D.E分别是∠ACB的平分线与O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与O的位置关系,并说明理由.23.已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).24.如图,在33(1)在图1中,圆过格点A ,B ,请作出圆心O ;(2)在图2中,⊙O 的两条弦AB CD =,请作一个45圆周角.25.如图,已知,MON ∠点A 在射线OM 上.根据下列方法画图(用尺规作图). ①以O 为圆心,OA 长为半径画圆,交ON 于点B ,交射线OM 的反向延长线于点C ,连接BC ;②以OA 为边,在MON ∠的内部,画AOP OCB ∠=∠;③连接AB ,交OP 于点E ;④过点A 作O 的切线,交OP 于点F .()1依题意补全图形;()2求证MOP PON ∠=∠;()3若60,10MON OF ∠=︒=,求AE 的长.26.如图,AB ,AC 是⊙O 的弦,过点C 作CE AB ⊥于点D ,交⊙O 于点E ,过点B 作BF AC ⊥于点F ,交CE 于点G ,连接BE .(1)求证:BE BG =;(2)过点B 作BH AB ⊥交⊙O 于点H ,若BE 的长等于半径,4BH =,AC =求CD 的长.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由BC 是⊙O 的切线,OB 是⊙O 的半径,得到∠OBC =90°,根据等腰三角形的性质得到∠A =∠ABO =30°,由外角的性质得到∠BOC =60°,即可求得∠C =30°.【详解】∵BC 是⊙O 的切线,OB 是⊙O 的半径,∴∠OBC =90°,∵OA =OB ,∴∠A =∠ABO =30°,∴∠BOC =60°,∴∠C =30°.故选:C .【点睛】本题考查了切线的性质,等腰三角形的性质,三角形的外角性质,解题的关键是灵活运用所学知识解决问题.2.C解析:C【分析】根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB的度数是解此题的关键.3.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π6-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.4.A解析:A【分析】如图,连接OB、OC.首先证明△OBC是等边三角形,求出BC、BM,根据勾股定理即可求出OM.【详解】解:如图,连接OB、OC.∵ABCDEF是正六边形,∴∠BOC=60°,OB=OC=4,∴△OBC是等边三角形,∴BC=OB=OC=4,∵OM⊥BC,∴BM=CM=2,在Rt△OBM中,OM==,故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.5.B解析:B【分析】根据垂径定理及其推论即可判定①正确,②错误;根据弧、弦、圆周角之间的关系可知③⑤错误,④正确.【详解】解:①根据垂径定理的推论可知,垂直平分弦的直线经过圆心;故本选项正确;②直径是最长的弦,任意两条直径互相平分,但不一定互相垂直,故被平分弦不能是直径;故本选项错误;③在同圆或等圆中,相等的圆周角所对的弧相等,故本选项错误;④相等的弧所对的弦一定相等,故本选项正确;⑤∵在一个圆中一条弦所对的弧有两条,∴等弦所对的弧不一定相等,故本选项错误.故选:B.【点睛】本题考查的是垂径定理及其推论、圆周角、弧、弦的关系,解题的关键是正确理解各知识点.6.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.7.A解析:A【分析】已知圆O 的半径为r ,点P 到圆心O 的距离是d ,①当r >d 时,点P 在⊙O 内,②当r=d 时,点P 在⊙O 上,③当r <d 时,点P 在⊙O 外,根据以上内容判断即可.【详解】∵⊙O 的半径为5,若PO=4,∴4<5,∴点P 与⊙O 的位置关系是点P 在⊙O 内,故选:A .【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O 的半径为r ,点P 到圆心O 的距离是d ,①当r >d 时,点P 在⊙O 内,②当r=d 时,点P 在⊙O 上,③当r <d 时,点P 在⊙O 外.8.B解析:B【分析】根据在一条直线上的三点就不能确定一个圆可以判断A ,再利用圆周角定理得出B 正确;由不同三角形判断C 项,以及利用切线的判定对D 进行判定.【详解】A .平面上不共线的三个点确定一个圆,所以A 选项错误;B .等弧所对的圆周角相等,所以B 选项正确;C .钝角三角形的外心在三角形的外面,锐角三角形的外心在三角形内部,直角三角形的外心为斜边的中点,所以C 选项错误;D .过半径的外端与半径垂直的直线为圆的切线,所以D 选项错误.故选:B .【点睛】此题主要考查了切线的判断和圆的确定、圆周角定理以及外心等知识,熟练掌握定义是解题关键.9.C解析:C【分析】根据圆周角定理可得270AOB ADB ∠=∠=︒,再利用垂径定理即可求解.【详解】解:连接OB ,∵35∠=︒,ADB∴270∠=∠=︒,AOB ADB⊥,∵OA BC∴AB AC=,∴70∠=∠=︒,AOC AOB故选:C.【点睛】本题考查圆周角定理、垂径定理、同弧所对的圆心角相等,掌握圆的基本性质定理是解题的关键.10.B解析:B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA 最小.根据垂线段最短,知OP=2时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=2.根据题意,在Rt△OPA中,AP=2221=3--=22OP OA故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.11.C解析:C【分析】延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可. 12.D解析:D【分析】根据AB 和AC 的长和圆的面积公式可求得S 1+S 3,S 2+S 4的值,然后再两值相减即可得出结论.【详解】解:∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=2π, ∴(S 1+S 3)﹣(S 2+S 4)=(S 1﹣S 2)+(S 3﹣S 4)=32π ∵S 1-S 2=14π,∴S 3-S 4= 32π﹣14π= 54π, 故选:D .【点睛】本题考查了圆的面积,正确表示出S 1+S 3,S 2+S 4的值是解答的关键.二、填空题13.【分析】由于ABACBD 是⊙O 的切线则AC=APBP=BD 求出BP 的长即可求出BD 的长【详解】解:∵ACAP 为⊙O 的切线∴AC=AP ∵BPBD 为⊙O 的切线∴BP=BD ∴BD=PB=AB-AP=8-5解析:3【分析】由于AB 、AC 、BD 是⊙O 的切线,则AC=AP ,BP=BD ,求出BP 的长即可求出BD 的长.【详解】解:∵AC 、AP 为⊙O 的切线,∴AC=AP ,∵BP 、BD 为⊙O 的切线,∴BP=BD ,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键. 14.【分析】作A 点关于BC 的对称点A 以A 点为圆心以BC 的长为半径作圆连接AA 交BC 于E 点延长AA 交⊙A 与点D 连接BDCD 则∠BDC =∠BAC =×60°=30°此时AD 为最大值根据等边三角形的性质可求解A解析:5【分析】作A 点关于BC 的对称点A',以A'点为圆心,以BC 的长为半径作圆,连接AA'交BC 于E 点,延长AA'交⊙A'与点D ,连接BD ,CD ,则∠BDC =12∠BA'C =12×60°=30°,此时AD为最大值,根据等边三角形的性质可求解A'E =AE ,A'D =A'B =AB =5,进而可求解.【详解】作A 点关于BC 的对称点A',以A'点为圆心,以BC 的长为半径作圆,连接AA'交BC 于E 点,延长AA'交⊙A'与点D ,连接BD ,CD ,则∠BDC =12∠BA'C =12×60°=30°,此时AD 为最大值,∵△ABC 是边长为5的等边三角形,∴BC =AB =5,∴BE=12BC=52∴A'E =AE =22552⎛⎫- ⎪⎝⎭=53,A'D =A'B =AB =5, ∴AD =AE +A'E +A'D =53+5. 故答案为53+5.【点睛】本题主要考查等边三角形的性质,轴对称的性质,圆周角定理等知识的综合运用,解题的关键是根据题意作出示意图进行求解.15.【分析】由勾股定理可求BD=BF=由题意可得点F 在以点B 为圆心BF 为半径的圆上则当点F 在线段DB 上时DF 的值最小即可求解【详解】解:连接BDBF ∵矩形∴∠C=90°∴∵正方形∴∴点F 在以点B 为圆心B132【分析】由勾股定理可求132,由题意可得点F 在以点B 为圆心,BF 为半径的圆上,则当点F 在线段DB 上时,DF 的值最小,即可求解.【详解】解:连接BD 、BF∵矩形ABCD ,2AB =,3AD =,∴∠C=90°∴222313BD =+=∵正方形BEFG ,1BE =∴22BF=+=112∴点F在以点B为圆心,BF为半径的圆上,∴当点F在线段DB上时,DF的值最小,∴DF的最小值=BD-BF=132-【点睛】此题主要考查了旋转的性质以及勾股定理的运用,正确的判断出DF最小时F点的位置是解答此题的关键.16.16【分析】连接OAOB由切线长定理可得:PA=PBDA=DCEC=EB;由勾股定理可得PA的长△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB即可求得△PDE的周长【详解解析:16【分析】连接OA、OB,由切线长定理可得:PA=PB,DA=DC,EC=EB;由勾股定理可得PA的长,△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB,即可求得△PDE的周长.【详解】解:连接OA、OB,如图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=6cm,PO=10cm,∴由勾股定理得:PA=8cm,∴PA=PB=8cm;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=16cm,故答案为:16.【点睛】本题考查的是切线长定理,分析图形时关键是要仔细探索,找出图形的各对相等切线长.17.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.18.【分析】首先连接OAOB由圆周角定理即可求得∠AOB=90°又由OA=OB=2利用勾股定理即可求得弦AB的长【详解】解:连接OAOB∵∠APB=45°∴∠AOB=2∠APB=90°∵OA=OB=2∴解析:2【分析】首先连接OA,OB,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB的长.【详解】解:连接OA,OB,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2, ∴2222AB OA OB =+=.故答案为:22.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键. 19.3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边所以∠EOC=30°然后计算出△EOC 的面积最后乘以12即为该多边形的面积【详解】解:如图所示连接EO 作EF ⊥CO 交CO 于点F 由题解析:3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边,所以∠EOC=30°,然后计算出△EOC 的面积,最后乘以12即为该多边形的面积.【详解】解:如图所示,连接EO ,作EF ⊥CO 交CO 于点F由题意可得n =12∴∠EOC=30°∴EF=12EO=12∴S △EOC =1·2EF CO =11××122=14 ∴该正12边形的面积=12 S △EOC =3故答案为:3【点睛】本题主要考查圆的内接正多边形的性质及其应用,解题的关键是灵活运用有关定理来分析、判断、推理或解答.20.【分析】(1)根据直径所对的圆周角是可得到再根据弧的中点定义同弧所对的圆周角相等角平分线定义可推导出最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上结合已知条件添加辅助线连接从而构造出等 解析:13542【分析】(1)根据直径所对的圆周角是90︒可得到90CAB CBA ∠+∠=︒,再根据弧的中点定义、同弧所对的圆周角相等、角平分线定义可推导出45DAB DBA ∠+∠=︒,最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上,结合已知条件添加辅助线“连接AM ”,从而构造出等腰Rt ADM △,利用勾股定理解Rt ABM 即可求得答案.【详解】解:(1)∵AB 是直径∴90ACB ∠=︒∴90CAB CBA ∠+∠=︒∵点M 是弧AC 的中点∴AM CM =∴CBM ABM ∠=∠∵AD 平分CAB ∠∴CAD BAD ∠=∠∴()1452DAB DBA CAB CBA ∠+∠=∠+∠=︒ ∴()180135ADB DAB DBA ∠=︒-∠+∠=︒.(2)连接AM ,如图:∵AB 是直径∴90AMB ∠=︒∵18045ADM ADB ∠=︒-∠=︒∴AM DM =∵点D 为BM 的中点∴DM DB =∴2BM AM =∴设AM x =,则2BM x =∵半圆的半径为10 ∴210AB =∵在Rt ABM 中,222AM BM AB +=∴22440x x +=∴122x =,222x =-(不合题意舍去)∴22AM =∴42BM =.【点睛】本题考查了直径所对的圆周角是90︒、弧的中点定义、同弧所对的圆周角相等、角平分线定义、三角形的内角和定理、线段的中点定义、利用勾股定理解直角三角形、解一元二次方程等知识点,通过添加辅助线构造直角三角形解决问题的关键,难度中等,属于中考常考题型.三、解答题21.(1)见解析;(2)见解析;(3)面积是45【分析】(1)由等腰三角形的性质和直径定理可得∠AED=90°,∠OED=∠ADE ,由余角的性质可得∠DEB+∠OED=90°,进而可得∠BEO=90°,可得结论;(2)由平行线的性质和等腰三角形的性质可证AE 为∠CAB 的角平分线,由角平分线的性质可得CE=EP ;(3)连接PF ,先证四边形CFPE 是菱形,可得CF=EP=CE=PF ,由“AAS”可证△ACE ≌△APE ,可得AP=AC=15,由勾股定理可求CF 的长,即可求解.【详解】证明:(1)连接OE ,∵OE =OD ,∴∠OED =∠ADE ,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,又∵∠DEB=∠EAD,∴∠DEB+∠OED=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴AE为∠CAB的角平分线,又∵EP⊥AB,∠ACB=90°,∴CE=EP;(3)连接PF,∵CG=12,AC=15,∴AG22-9,-225144AC CG∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=PE,∴四边形CFPE是菱形,∴CF=EP=CE=PF,∵∠CAE=∠EAP,∠EPA=∠ACE=90°,CE=EP,∴△ACE≌△APE(AAS),∴AP=AC=15,∴PG=AP﹣AG=15﹣9=6,∵PF2=FG2+GP2,∴CF2=(12﹣CF)2+36,∴CF=15,2∴四边形CFPE的面积=CF×GP=15×6=45.2【点睛】本题考查了圆的综合题,切线的判定和性质,全等三角形的判定和性质,勾股定理,菱形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.22.(1)53AC=,AD=52;(2)直线PC与圆相切,理由见解析【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则ΔADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE =∠EAC+45°,在直角三角形ACB中,AB=10,BC=5,可求出∠CAB=30º,进而求出∠ABC =∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为O的切线.【详解】(1)连结BD,如图所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=5cm,∴AC2253-=cm);AB BC∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=AB•cos45º=2AB=52(cm);2(2)直线PC与圆相切,理由:连接OC,在直角三角形ACB中,AB=10,BC=5,∴30∠=,BAC︒∵OA=OC,∴∠=∠=,OCA OAC︒30∴60∠=,COB︒∵45︒ACD,∠=∴453015∠=-=,OCD︒︒︒∴∠=∠+∠=+=,156075CEP COB OCD︒︒︒∵PC=PE,∴75∠=∠=,PCE CEP︒∴∠=∠+∠=+=,OCP OCD ECP︒︒︒751590∴直线PC是圆O的切线.【点睛】本题考查了切线的判定,圆周角定理,是圆的综合题,综合性比较强,难度适中,熟练掌握直线与圆的位置关系的判定方法是解题的关键.23.(Ⅰ)50°;(Ⅱ)20°【分析】(I)连接OA、OB,根据切线的性质可得∠OAP=∠OBP=90°,利用四边形内角和即可求解;(II)连接CE,根据直径所对的圆周角是直角可得∠ACE=90°,利用圆周角定理即可得到∠BAE=∠BCE=40°,再根据等腰三角形的性质和三角形外角的性质即可求解.【详解】解:(Ⅰ)连接OA、OB,∵PA ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∴∠AOB =360°﹣90°﹣90°﹣80°=100°,由圆周角定理得,∠ACB =12∠AOB =50°; (Ⅱ)连接CE ,∵AE 为⊙O 的直径,∴∠ACE =90°,∵∠ACB =50°,∴∠BCE =90°﹣50°=40°,∴∠BAE =∠BCE =40°,∵AB =AD ,∴∠ABD =∠ADB =70°,∴∠EAC =∠ADB ﹣∠ACB =20°.【点睛】本题考查切线的性质、圆周角定理、等腰三角形的性质、三角形外角的性质等内容,作出合适的辅助线是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.25.(1)见解析;(2)见解析;(3)532AE =【分析】(1)根据题意画出图形即可;(2)根据圆周角定理解答即可;(3)根据切线的性质和含30°的直角三角形的性质解答.【详解】解:(1)如图所示:(2)2,MON OCB ∠=∠,AOP OCB ∠=∠,BOP OCB AOP ∴∠=∠=∠即MOP PON ∠=∠;(3)60MON ∠=︒,30,AOP ∴∠=︒ FA 是O 的切线,,FA OA ∴⊥10,OF =53OA ∴=,,OA OB =OAB ∴∆是等边三角形,,MOP PON ∠=∠,OE AB ∴⊥53∴=AE . 【点睛】本题主要考查了作图−复杂作图,关键是根据切线的性质,圆周角定理,等腰三角形、等边三角形的性质等知识解答.26.(1)见解析;(2)6.【分析】(1)根据圆周角定理得到BAC BEC ∠=∠,根据直角三角形的性质、对顶角相等得到BEC BGE ∠=∠,根据等腰三角形的判定定理证明结论;(2)连接OB 、OE 、AE 、CH ,根据平行四边形的判定和性质得到4CG BH ==,根据等边三角形的性质得到60BOE ∠=︒,根据直角三角形的性质、勾股定理计算,得到答案.【详解】(1)证明:由圆周角定理得,BAC BEC ∠=∠,CE AB ⊥,BF AC ⊥,90ADC GFC ∴∠=∠=︒,CGF BAC ∴∠=∠,BEC CGF ∴∠=∠,BGE CGF ∠=∠,BEC BGE ∴∠=∠,BE BG ∴=;(2)解:连接OB 、OE 、AE 、CH ,BH AB ⊥,CE AB ⊥//BH CE ∴,四边形ABHC 是O 的内接四边形,90ACH ABH ∴∠=∠=︒,//BF CH ∴,∴四边形CGBH 为平行四边形,4CG BH ∴==,OE OB BE ==,BOE ∴∆为等边三角形,60BOE ∴∠=︒,1302BAE BOE ∴∠=∠=︒, 12DE AE ∴=, 设DE x =,则2AE x =, 由勾股定理得,223AD AE DE x =-=,BE BG =,AB CD ⊥,DG DE x ∴==,4CD x ∴=+,在Rt ADC ∆中,222AD CD AC +=,即)()(2223434x x ++=, 化简得:2280x x +-=解得,12x =,240x =-<(舍去)CD=+.则24=6【点睛】本题考查的是圆周角定理、勾股定理、等边三角形的判定和性质,灵活运用圆周角定理是解题的关键.。

成都石室天府中学九年级数学上册第四单元《圆》测试卷(包含答案解析)

成都石室天府中学九年级数学上册第四单元《圆》测试卷(包含答案解析)

一、选择题1.下列说法正确的是( )A .在同圆或等圆中,如果两条弧相等,则它们所对的圆心角也相等B .三点确定一个圆C .平分弦的直径垂直于这条弦D .90°的圆心角所对的弦是直径2.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π3.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A .3B .3C .3π6-D .3π6- 4.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .2B .2C .3D .425.在下列命题中,正确的是( )A .弦是直径B .半圆是弧C .经过三点确定一个圆D .三角形的外心一定在三角形的外部 6.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .22+1B .22+2C .42+1D .42-2 7.如图,⊙O 的半径为1,点 O 到直线 a 的距离为2,点 P 是直线a 上的一个动点,PA 切⊙O 于点 A ,则 PA 的最小值是( )A .1B .3C .2D .58.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .2B .1C .2D .22 9.已知AB 是经过圆心O 的直线,P 为O 上的任意一点,则点P 关于直线AB 的对称点P '与O 的位置关系是( ) A .点P '在⊙○内 B .点P '在O 外 C .点P '在O 上 D .无法确定10.如图,ABC 的顶点A 是O 上的一个动点,90ACB ∠=︒,30BAC ∠=︒,边AC ,AB 分别交O 于点E ,D ,分别过点E ,D 作O 的切线交于点F ,且点F 恰好在边BC 上,连接OC ,若O 的半径为6,则OC 的最大值为( )A .393+B .2103+C .353+D .5311.如图,半径为1cm 的P 在边长为9πcm ,12πcm ,15πcm 的三角形外沿三遍滚动(没有滑动)一周,则圆P 所扫过的面积为( )cm 2A .73πB .75πC .76πD .77π 12.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.14.如图,在扇形AOB 中,90AOB ∠=︒正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,阴影部分的面积为_______.15.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.16.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.17.如图,矩形ABCD 和正方形BEFG 中2AB =,3AD =,1BE =,正方形BEFG 绕点B 旋转过程中,线段DF 的最小值为______.18.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.19.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.20.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,若以C为圆心,r为半径所作的圆与斜边AB相切,则r的值是________三、解答题21.如图,已知正方形ABCD的边长为1,正方形BEFG中,点E在AB的延长线上,点≥.以OF为半径的O与直线AB交于点G在BC上,点O在线段AB上,且AO BOM、N.(1)如图1,若点O为AB中点,且点D,点C都在O上,求正方形BEFG的边长.(2)如图2,若点C在O上,求证:以线段OE和EF为邻边的矩形的面积为定值,并求出这个定值.⊥.(3)如图3,若点D在O上,求证:DO FO22.如图,已知圆内接四边形ABDC中,∠BAC=60°,AB=AC,AD为它的对角线.求证:AD=BD+CD.23.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC 于点E,过点C作CG⊥AB交AB于点G,交AE于点F,过点E作EP⊥AB交AB于点P,∠EAD=∠DEB.(1)求证:BC是⊙O的切线;(2)求证:CE=EP;(3)若CG=12,AC=15,求四边形CFPE的面积.=,以BC为直径的O交AB于点O,过点D作24.已知:如图,ABC中,BC AC⊥于点E,交BC的延长线于点F.DE AC=,(2)DF是O的切线.求证:(1)AD BD25.如图,ABC内接于O,60∠=︒,点D是BC的中点.BC,AB边上的高BACAE,CF相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.26.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC,分别交AC、AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【详解】解:A、弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B、不在同一直线上的三点确定一个圆,故本选项错误;C、应强调这条弦不是直径,故本选项错误;D、90°的圆周角所对的弦是直径,故本选项错误.故选:A.【点睛】本题考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键.2.B解析:B【分析】先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl=π×4×5=20π.故选:B.【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.3.C解析:C【分析】首先求出∠AOB ,OB ,然后利用S 阴=S △ABO −S 扇形OBD 计算即可.【详解】连接OB .∵AB 是⊙O 切线,∴OB ⊥AB ,∵OC =OB ,∠C =30°,∴∠C =∠OBC =30°,∴∠AOB =∠C +∠OBC =60°,在Rt △ABO 中,∵∠ABO =90°,AB 3∠A =30°,∴OB =ABtan30°=1,∴S 阴=S △ABO −S 扇形OBD =1232601360π⋅=3π26-. 故选:C .【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.4.A解析:A【分析】根据垂径定理可知,AE=CE ,AD=BD ,易证四边形ODAE 是正方形,即可求得.【详解】如图,连接OA∵⊥OD AB ,OE AC ⊥,AB ⊥AC∴四边形ODAE 是矩形,AE=CE ,AD=BD又∵4AB AC ==,∴AE=AD=2∴四边形ODAE 是正方形,且边长为2∴O 的半径OA=22故选A【点睛】本题考查垂径定理,掌握垂径定理的条件和结论是解题的关键.5.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A、弦不一定是直径,原说法错误,不符合题意;B、半圆是弧,说法正确,符合题意;C、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.A解析:A【分析】根据同圆的半径相等可知:点C在半径为2的B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【详解】解:如图,点C 为坐标平面内一点,2BC =,C ∴在B 上,且半径为2,取4OD OA ,连接CD , AM CM =,OD OA =,OM ∴是ACD ∆的中位线, 12OM CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大, 4OB OD ,90BOD ∠=︒,42BD ∴= 422CD , 1142222122OM CD , 即OM 的最大值为221;故选:A .【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值时点C 的位置是解题的关键.7.B解析:B【分析】因为PA 为切线,所以△OPA 是直角三角形.又OA 为半径为定值,所以当OP 最小时,PA 最小.根据垂线段最短,知OP=2时PA 最小.运用勾股定理求解.【详解】解:作OP ⊥a 于P 点,则OP=2.根据题意,在Rt △OPA 中, 22OP OA -2221=3-故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.8.A解析:A【分析】过B作关于直线MN的对称点B′,连接OA、OB、OB′、AB′,如图,由轴对称的性质可知AB′即为PA+PB的最小值,由同弧所对的圆心角和圆周角的性质可知∠AON=2∠AMN=2×30°=60°,由对称的性质可知∠B′ON=∠BON=30°,即可求出∠AOB′的度数,再由等腰直角三角形的性质即可求解.【详解】解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,如图,则AB′与MN的交点即为PA+PB的最小时的点P,且PA+PB的最小值=AB′,∵∠AMN=30°,OA=OM,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=12∠AON=12×60°=30°,由对称性可得∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=2OA=2×1=2,即PA+PB的最小值=2.故选:A.【点睛】本题考查了圆周角定理、轴对称的性质以及等腰直角三角形的性质等知识,解答此题的关键是根据题意作出辅助线、构造出直角三角形,利用勾股定理求解.9.C解析:C【分析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.【详解】解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P关于AB的对称点P′与⊙O的位置为:在⊙O上,故选:C.【点睛】本题考查了点与圆的位置关系,利用了圆的对称性求解.10.A解析:A【分析】先推出∠DOE=2∠DAE=60°,连接OE,OD,OF,证明Rt△EFO≌Rt△DFO,得到∠EOF=∠DOF=30°,根据EO=6,在Rt△EFO中,∠EOF=30°,得出EF=23,推出点C在以EF为直径的半圆上,设EF中点为G,得出当OC经过半圆圆心G时,OC最长,即OC的值最大,求出OG,CG即可得出答案.【详解】在△ABC中,∠ACB=90°,∠BAC=30°,∠DAE是DE所对的圆周角,∠DOE是DE所对的圆心角,∴∠DOE=2∠DAE=60°,连接OE,OD,OF,∵过点E,D作O的切线交于点F,∴∠FEO=∠FDO=90°,∴在Rt△EFO和Rt△DFO中EO DO FO FO=⎧⎨=⎩,∴Rt△EFO≌Rt△DFO(HL),∴∠EOF=∠DOF=30°,又∵EO=6,在Rt△EFO中,∠EOF=30°,∴EF=又∵点F 恰好是腰BC 上的点,∠ECF=90°,∴点C 在以EF 为直径的半圆上,∴设EF 中点为G ,则EG=FG=CG=12EF=12×, ∴当OC 经过半圆圆心G 时,OC 最长,即OC 的值最大,在Rt △OEG 中,OE=6,∴,∴故选:A .【点睛】本题考查了圆周角定理,全等三角形的判定和性质,勾股定理,圆的性质,证明Rt △EFO ≌Rt △DFO 是解题关键.11.A解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形 ∴圆P 所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.12.D解析:D【分析】设展开后的圆半径为r ,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积.【详解】解:设展开后的扇形半径为r ,由题可得:4π=2r π解得r =8∴S扇形=14π×82 =16π故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键.二、填空题13.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解解析:13,12⎛⎫+⎪⎪⎝⎭33,2⎛⎫⎪⎪⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH=、12CJ=,再根据勾股定理求得63JM=,再根据正六边形的性质、线段的和差即可求得32JF=,即可得解.【详解】解:经历六次旋转后点M落在点6M处,过M作MH x⊥于点H,过6M作6M J x⊥于点J,连接6IM,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒ ∴1122FH AF ==∵已知点M 的纵坐标是11MH =∴点M 的坐标是:1,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,62JM == ∵点I 是正六边形的中心∴1IC IF == ∴32JF IF IC CJ =+-=∴点6M 的坐标是:3,22⎛⎫ ⎪ ⎪⎝⎭.故答案是:1,12⎛⎝⎭;32⎛ ⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想. 14.π﹣2【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积依此列式计算即可求解【详解】解:连接OC ∵在扇形AOB 中∠AOB =90°正方形CDEF解析:π﹣2【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积,依此列式计算即可求解.【详解】解:连接OC ,∵在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC=,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=245360π⨯⨯﹣12×22=π﹣2.故答案为:π﹣2..【点睛】本题考查了扇形面积的计算以及正方形的性质,解题的关键是得到扇形半径的长度. 15.125【分析】根据三角形内角和性质结合题意可计算得的值;根据内切圆的性质分析可计算得的值从而完成求解【详解】∵∠A =70°∴∵⊙O 是△ABC 的内切圆∴∴∴故答案为:125【点睛】本题考查了三角形内角解析:125【分析】根据三角形内角和性质,结合题意,可计算得ABC ACB ∠+∠的值;根据内切圆的性质分析,可计算得OBC OCB ∠+∠的值,从而完成求解.【详解】∵∠A =70°∴180110ABC ACB A ∠+∠=-∠=∵⊙O 是△ABC 的内切圆 ∴12OBC ABC ∠=∠,12OCB ACB ∠=∠ ∴11111055222OBC OCB ABC ACB ∠+∠=∠+∠=⨯= ∴180********BOC OBC OCB ∠=-∠-∠=-=故答案为:125.【点睛】本题考查了三角形内角和、三角形内切圆的知识;解题的关键是熟练掌握三角形内角和、三角形内切圆的性质,从而完成求解.16.120【分析】连接OB 先证明四边形ABCD 是菱形然后再说明△AOB △OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB ∵点在上∴OA=OC=OB ∵四边形为平行四边形∴四边形解析:120【分析】连接OB ,先证明四边形ABCD 是菱形,然后再说明△AOB 、△OBC 为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A ,B ,C 在O 上∴OA=OC=OB ∵四边形ABCO 为平行四边形∴四边形ABCO 是菱形∴OA=OC=OB=AB=BC∴△AOB 、△OBC 为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.17.【分析】由勾股定理可求BD=BF=由题意可得点F 在以点B 为圆心BF 为半径的圆上则当点F 在线段DB 上时DF 的值最小即可求解【详解】解:连接BDBF ∵矩形∴∠C=90°∴∵正方形∴∴点F 在以点B 为圆心B 132【分析】由勾股定理可求132,由题意可得点F 在以点B 为圆心,BF 为半径的圆上,则当点F 在线段DB 上时,DF 的值最小,即可求解.【详解】解:连接BD 、BF∵矩形ABCD ,2AB =,3AD =,∴∠C=90° ∴222313BD =+=∵正方形BEFG ,1BE = ∴22112=+=BF∴点F在以点B为圆心,BF为半径的圆上,∴当点F在线段DB上时,DF的值最小,∴DF的最小值=BD-BF=132【点睛】此题主要考查了旋转的性质以及勾股定理的运用,正确的判断出DF最小时F点的位置是解答此题的关键.18.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.19.相交【分析】根据勾股定理作于点则的长即为圆心到的距离利用等积法求出的长与半径比较大小再作判断【详解】解:如图作于点∵的两条直角边斜边即半径是直线与圆相交【点睛】此题考查的是勾股定理直线与圆的位置关系 解析:相交【分析】根据勾股定理,5AB =.作CD AB ⊥于点D ,则CD 的长即为圆心C 到AB 的距离.利用等积法求出CD 的长,与半径比较大小,再作判断.【详解】解: 如图, 作CD AB ⊥于点D .∵Rt ABC 的两条直角边3BC =,4AC =,∴斜边5AB =. 1122ABC S AC BC AB CD ∆==,即 512CD ,2.4CD .半径是2.5 2.4>,∴直线与圆C 相交 .【点睛】此题考查的是勾股定理,直线与圆的位置关系,熟悉相关性质是解题的关键. 20.【分析】根据相切的定义可得利用等面积法即可求解【详解】解:∵∠C =90°AC =3cmBC =4cm ∴由题意可得∴即故答案为:【点睛】本题考查直线与圆的位置关系勾股定理掌握相切的定义是解题的关键解析:125【分析】根据相切的定义可得CD AB ⊥,利用等面积法即可求解.【详解】解:∵∠C =90°,AC =3cm ,BC =4cm ,∴225cm AB AC BC =+=,由题意可得CD AB ⊥,∴1122AC BC AB CD ⋅=⋅,即125CD =, 故答案为:125. 【点睛】本题考查直线与圆的位置关系、勾股定理,掌握相切的定义是解题的关键.三、解答题21.(1)12;(2)见解析;12;(3)证明见解析 【分析】 (1)连接OC ,设BE=EF=x ,则OE=x+12,得出(x+12)2+x 2=(12)2+12,解得:x=12,则答案求出;(2)连接OC ,设OB=y ,BE=EF=x ,同(1)可得,OE 2+EF 2=OF 2,OB 2+BC 2=OC 2,得出x 2+(x+y )2=y 2+12,即x (x+y )=12,则结论可得证; (3)连接OD ,设OA=a ,BE=EF=b ,则OB=1-a ,则OE=1-a+b ,可得出12+a 2=(1-a+b )2+b 2,得出a=b ,则OA=EF ,证明Rt △AOD ≌Rt △EFO (HL ),则得出∠FOE=∠ODA ,结论得出.【详解】解:(1)连接OC∵四边形ABCD 和四边形BEFG 为正方形,∴AB=BC=1,BE=EF ,∠OEF=∠ABC=90°,∵点O 为AB 中点,∴OB=12AB=12, 设BE=EF=x ,则OE=x+12, 在Rt △OEF 中,∵OE 2+EF 2=OF 2,∴(x+12)2+x 2=OF 2, 在Rt △OBC 中,∵OB 2+BC 2=OC 2,∴(12)2+12=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴(x+12)2+x2=(12)2+12,解得:x=12,∴正方形BEFG的边长为12;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=12,即x(x+y)=12,∴EF×OE=12,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为12.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,∵∠DAO=∠OEF=90°,∴DA2+OA2=OD2,OE2+EF2=OF2,∴12+a 2=OD 2,(1-a+b )2+b 2=OF 2,∵OD=OF ,∴12+a 2=(1-a+b )2+b 2,∴(b+1)(a-b )=0,∵b+1≠0,∴a-b=0,∴a=b ,∴OA=EF ,在Rt △AOD 和Rt △EFO 中,OD OF OA EF⎧⎨⎩==, ∴Rt △AOD ≌Rt △EFO (HL ),∴∠FOE=∠ODA ,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO ⊥FO .【点睛】本题是圆的综合题,考查了圆的性质,正方形的性质,全等三角形的判定与性质,矩形的面积等知识,熟练运用方程的思想是解题的关键.22.见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.23.(1)见解析;(2)见解析;(3)面积是45【分析】(1)由等腰三角形的性质和直径定理可得∠AED=90°,∠OED=∠ADE ,由余角的性质可得∠DEB+∠OED=90°,进而可得∠BEO=90°,可得结论;(2)由平行线的性质和等腰三角形的性质可证AE 为∠CAB 的角平分线,由角平分线的性质可得CE=EP ;(3)连接PF ,先证四边形CFPE 是菱形,可得CF=EP=CE=PF ,由“AAS”可证△ACE ≌△APE ,可得AP=AC=15,由勾股定理可求CF 的长,即可求解.【详解】证明:(1)连接OE ,∵OE =OD ,∴∠OED =∠ADE ,∵AD 是直径,∴∠AED =90°,∴∠EAD +∠ADE =90°,又∵∠DEB=∠EAD,∴∠DEB+∠OED=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴AE为∠CAB的角平分线,又∵EP⊥AB,∠ACB=90°,∴CE=EP;(3)连接PF,∵CG=12,AC=15,∴AG22-9,AC CG-225144∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=PE,∴四边形CFPE是菱形,∴CF=EP=CE=PF,∵∠CAE=∠EAP,∠EPA=∠ACE=90°,CE=EP,∴△ACE≌△APE(AAS),∴AP =AC =15,∴PG =AP ﹣AG =15﹣9=6,∵PF 2=FG 2+GP 2,∴CF 2=(12﹣CF )2+36,∴CF =152, ∴四边形CFPE 的面积=CF ×GP =152×6=45. 【点睛】本题考查了圆的综合题,切线的判定和性质,全等三角形的判定和性质,勾股定理,菱形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.24.(1)证明见解析;(2)证明见解析.【分析】(1)如图(见解析),先根据圆周角定理可得90BDC ∠=︒,再根据等腰三角形的三线合一即可得证;(2)先根据等腰三角形的三线合一可得ACD BCD ∠=∠,再根据等腰三角形的性质可得ODC BCD ∠=∠,从而可得ACD ODC ∠=∠,然后根据平行线的判定与性质可得OD DF ⊥,最后根据圆的切线的判定即可得证.【详解】(1)如图,连接CD , BC 是O 的直径,90BDC ∴∠=︒,即CD AB ⊥,又BC AC =,CD ∴是AB 边上的中线(等腰三角形的三线合一),AD BD ∴=;(2)如图,连接OD ,,BC AC CD AB =⊥,ACD BCD ∴∠=∠,OC OD =,ODC BCD ∴∠=∠,ACD ODC ∴=∠∠,//OD AC ∴,DE AC ⊥,即DF AC ⊥,OD DF ∴⊥,又OD 是O 的半径,DF ∴是O 的切线.【点睛】本题考查了等腰三角形的三线合一、圆周角定理、圆的切线的判定等知识点,较难的是题(2),熟练掌握圆的切线的判定定理是解题关键.25.(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF,∴AF=AM,∵∠AFH=∠AMO=90°,∠FAH=∠OAM,∴△AFH≌△AMO(ASA),∴AH=AO,∵OA=OD,∴AH//CD,∴四边形AHDO是平行四边形,∵OA=OD,∴四边形AHDO是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.26.(1)见解析;(2)8【分析】(1)连接OD交BC于H,证出OD∥AE,得出OD⊥EF,即可得出结论;(2)证四边形CEDH是矩形,得HD=CE=2,由三角形中位线定理得OH=12AC=3,则OB=OD=OH+HD=5,得AB=2OB=10,由勾股定理即可得出答案.【详解】(1)证明:连接OD交BC于H,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=1AC=3,2∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB2-=8.AC【点睛】本题考查了切线的判定与性质、圆周角定理、等腰三角形的性质、平行线的判定与性质、垂径定理、三角形中位线定理、矩形的判定与性质、勾股定理等知识;解题的关键是掌握切线的判定与性质和圆周角定理.。

初三 关于圆 四点共圆

初三 关于圆 四点共圆

四点共圆的判定是以四点共圆的性质的基础上进行证明的。

四点共圆的性质:
(1)同弧所对的圆周角相等
(2)圆内接四边形的对角互补
(3)圆内接四边形的外角等于内对角
以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。

四点共圆的判定定理:
方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那末这二点和线段二端点四点共圆)
方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。

那末这四点共
圆)
我们可都可以用数学中的一种方法;反证法开进行证明。

现就“若平面上四点连成四边形的对角互补。

那末这四点共圆”证明如下(其它画个证明图如后)
已知:四边形ABCD中,∠A+∠C=180°
求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)
证明:用反证法
过A,B,D作圆O,假设C不在圆O上,刚C在圆外或圆内,
若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180°,∵∠A+∠C=180°∴∠DC’B=∠C
这与三角形外角定理矛盾,故C不可能在圆外。

类似地可证C不可能在圆内。

∴C在圆O上,也即A,B,C,D四点共圆。

成都石室外语学校九年级数学上册第四单元《圆》测试(包含答案解析)

成都石室外语学校九年级数学上册第四单元《圆》测试(包含答案解析)

一、选择题1.如图,AB 是О的直径,,CB CD 是О的弦,且,CB CD CD =与AB 交于点E ,连接OD .若40,AOD ∠=︒则D ∠的度数是( )A .20B .35C .40D .55 2.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .633.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π 5.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .5B .3C .2545D .2336.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 7.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 8.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .9.如图△ABC 中,∠C =90°,∠B =28°,以C 为圆心,CA 为半径的圆交AB 于点D ,则AD 的度数为( )A .28°B .56 °C .62°D .112°10.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .3311.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .4312.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 二、填空题13.下列说法:①弦是圆上任意两点之间的部分;②平分弦的直径垂直于弦;③垂直于弦的直线平分弦所对的两条弧;④直径是最长的弦;⑤弦的垂直平分线经过圆心;⑥直径是圆的对称轴.其中正确的是________.14.已知O 的面积为π,则其内接正六边形的边长为______.15.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.16.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.17.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.18.已知⊙O 的半径为3,圆心O 到直线l 的距离为m ,若m 满足方程290x ,则⊙O 与直线l 的位置关系是________ 19.已知圆心O 到直线l 的距离为5,⊙O 半径为r ,若直线l 与⊙O 有两个交点,则r 的值可以是________.(写出一个即可)20.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________三、解答题 21.如图,AB 为O 的直径,C 为O 上一点,AD 和过点C 的切线相互垂直,垂足为D ,且交O 于点E ,连接OC ,BE ,相交于点F .(1)求证:EF BF =;(2)若4DC =,2DE =,求直径AB 的长.22.如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,∠C=90°,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G .(1)求证:BC 是⊙F 的切线;(2)若点A 、D 的坐标分别为A(0,−1),D(2,0),求⊙F 的半径;(3)请直接写出线段AG 、AD 、CD 三者之间满足的数量关系:___________________.23.如图:在平面直角坐标系中,直线l 与两坐标轴分别相交,相交于C 、D 两点,且()6,0C ,30OCD ∠=︒,长度为2的线段AB (B 点在A 点右侧)在x 轴上移动,设点A的坐标为()0m ,.发现:(1)当以A 为圆心,AB 为半径的圆与直线l 相切时,求m 的值;应用:(2)当以A 为圆心,AB 为半径的A 与直线l 相交于M 、N 两点,且AMN 是等腰直角三角形,求m 的值.拓展:(3)直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是_________(直接写出答案).24.如图,在平面直角坐标系中,点A 的坐标是()10,0,点B 的坐标是()8,0,点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.(1)求CD的长;(2)求直线BC的解析式.25.如图,已知直线l与⊙O相交于点E、F, AB是⊙O的直径,AD⊥l于点D,交⊙O于G(1)求证:∠BAF=∠DAE;(2)若AB=42,DE=2,∠B=45°,求AG的长⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).26.如图,在33(1)在图1中,圆过格点A,B,请作出圆心O;=,请作一个45圆周角.(2)在图2中,⊙O的两条弦AB CD【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接BD ,得到∠DOB=140°,求出∠CDB ,∠ODB 即可;【详解】如图:连接BD ,∵ ∠AOD=40°,∴∠DOB=180°-40°=140°,∴ ∠DCB=12∠DOB=70°, ∵ CB=CD ,∴ ∠CBD=∠CDB=55°, ∵DO=BO ,∴∠ODB=∠OBD=20°,∴∠CDO=∠CBO ,∴∠CDO=∠CDB-∠ODB=35°,故选:B .【点睛】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识; 2.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,此时面积为:434+故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 3.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.4.B解析:B【分析】先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM +=当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.6.A解析:A【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可.【详解】A 、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B 、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C 、戴了口罩一定不会感染新冠肺炎,不确定事件;D 、物体不受任何力的时候保持静止状态或匀速运动,不确定事件.故选A.【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.7.D解析:D【分析】分别根据平行线的判定与性质,以及圆周角定理对各选项进行逐一判断即可.【详解】B. ∵CE CB =,2BAE BAC ∴∠=∠, 又2BOC BAC ∠=∠,BAE BOC ∴∠=∠,//OC AE ∴,正确;A. AB 是O 的直径,∴∠AEB=90°,∵//OC AE ,OC BE ⊥,正确;C. ∵EC 所对的圆心角为COE ∠,EC 所对的圆周角为CAE ∠,2COE CAE ∴∠=∠,正确;D. 只有AE EC =时,才可证得OD AC ⊥,故不一定正确;故选D .【点睛】本题考查了圆周角定理,平行线的判定与性质,熟知圆周角定理及其推论是解答此题的关键.8.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.9.B解析:B【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,然后根据圆心角的度数等于它所对弧的度数求解.【详解】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°-28°=62°,∵CA=CD,∴∠A=∠ADC=62°,∴∠ACD=180°-2×62°=56°∴AD的度数为56°;故选:B.【点睛】本题考查了同圆的半径相等、直角三角形的两锐角互余、等腰三角形的性质,熟练进行逻辑推理是解题关键.10.C解析:C【分析】+的最小值,进而求解即可.利用菱形的性质及相切两圆的性质得出P与D重合时PE PF【详解】解:作点A关于直线CD的对称点A´,连接BD,DA´,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN =60°,∴∠A´DN=60°,∴∠ADB+∠ADA´=180°,∴A´,D,B在一条直线上,+最小,由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时PE PF∵在菱形ABCD中,∠A=60°,∴AB=AD,则△ABD为等边三角形,∴BD=AB=AD=3,∵⊙A,⊙B的半径分别为2和1,∴PE=1,DF=2,+的最小值为3.∴PE PF故选C.【点睛】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P位置是解题的关键.11.C解析:C【分析】连接PC,PA,过点P作PD⊥AB于点D,根据切线的性质可知PC⊥y轴,故可得出四边形PDOC是矩形,所以PD=OC=3,再求出AB的长,由垂径定理可得出AD的长,故可得出OD 的长,进而得出P点坐标,再把P点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(7,0),∴AB=7-1=6,∴AD=12AB=12×6=3,∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.12.C解析:C【分析】先根据等腰三角形的性质求出∠A,再利用圆周角定理求得∠BOC,最后根据弧长公式求求解即可.【详解】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°∵BO=2,∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.二、填空题13.④⑤【分析】根据弦的定义垂径定理圆的对称性即可求解【详解】解:①连接圆上两点间的线段才是弦故原说法错误;②平分弦(不是直径)的直径垂直于弦故原说法错误;③垂直于弦的直径平分弦所对的两条弧故原说法错误解析:④⑤.【分析】根据弦的定义、垂径定理、圆的对称性即可求解.【详解】解:①、连接圆上两点间的线段才是弦,故原说法错误;②平分弦(不是直径)的直径垂直于弦,故原说法错误;③垂直于弦的直径平分弦所对的两条弧,故原说法错误;④直径是最长的弦,正确;⑤弦的垂直平分线经过圆心,正确;⑥直径所在的直线是圆的对称轴,故原说法错误;所以,正确的结论有④⑤.故答案为:④⑤.【点睛】本题考查了圆的对称性,垂径定理的应用,主要考查学生的理解能力和辨析能力,熟练掌握垂径定理是解决问题的关键.14.1【分析】首先根据圆的面积求出圆的半径再证明△AOB 是等边三角形即可得到结论【详解】解:如图的面积为设半径为r ∴解得∵OA=OB 为等边三角形故故答案为:1【点睛】本题考查的是正多边形和圆熟知正六边形解析:1【分析】首先根据圆的面积求出圆的半径,再证明△AOB 是等边三角形即可得到结论.【详解】解:如图,O 的面积为π,设半径为r ,2S r ππ∴==,∴21r =,解得,1r =, ∵360606AOB ︒∠==︒,OA=OB AOB ∴为等边三角形,故1AB OA ==.故答案为:1【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键. 15.220【分析】连接CE 根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD 然后求解即可【详解】解析:220【分析】连接CE ,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD ,然后求解即可.【详解】连接CE ,∵五边形ABCDE 是⊙O 的内接五边形,∴四边形ABCE 是⊙O 的内接四边形,∴∠B +∠AEC =180°,∵∠CED =∠CAD =40°,∴∠B +∠AED =180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.16.【分析】首先连接OAOB 由圆周角定理即可求得∠AOB=90°又由OA=OB=2利用勾股定理即可求得弦AB 的长【详解】解:连接OAOB ∵∠APB=45°∴∠AOB=2∠APB=90°∵OA=OB=2∴ 解析:22 【分析】首先连接OA ,OB ,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB 的长.【详解】解:连接OA ,OB ,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴2222AB OA OB =+=.故答案为:22.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键. 17.【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面解析:24π-【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC ,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒,OD CD ∴==4OC ∴==,224541243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 18.相切【分析】先解一元二次方程求出m 的值再根据圆与直线的位置关系即可得【详解】由得:是圆心O 到直线的距离又满足方程的半径为3与直线的位置关系是相切故答案为:相切【点睛】本题考查了解一元二次方程圆与直线 解析:相切【分析】先解一元二次方程求出m 的值,再根据圆与直线的位置关系即可得.【详解】由290x 得:123,3x x ==-, m 是圆心O 到直线l 的距离,0m ∴≥,又m 满足方程290x ,3m ∴=, O 的半径为3,O ∴与直线l 的位置关系是相切,故答案为:相切.【点睛】本题考查了解一元二次方程、圆与直线的位置关系、点到直线的距离,熟练掌握圆与直线的位置关系是解题关键.19.答案不唯一如516等(满足即可)【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系再取r 的值即可【详解】解:∵直线l 与⊙O 有两个交点圆心O 到直线l 的距离为5∴∴在此范围内取值即可如516解析:答案不唯一,如5.1,6等(满足5r >即可)【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系,再取r 的值即可.【详解】解:∵直线l 与⊙O 有两个交点,圆心O 到直线l 的距离为5,∴5r >∴在此范围内取值即可,如5.1,6等.【点睛】此题主要考查了直线与圆的位置关系---相交,熟知直线与圆相交满足的条件是解答此题的关键.20.或【分析】首先根据题意画出图形然后在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD 易得是等边三角形再利用圆周角定理即可得出答案【详解】解:如图在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD解析:30或150︒【分析】首先根据题意画出图形,然后在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,易得OAB 是等边三角形,再利用圆周角定理,即可得出答案.【详解】解:如图,在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,4,4OA OB cm AB cm OA OB AB===∴== OAB ∴是等边三角形,601302180150AOB C AOB D C ∴∠=︒∴∠=∠=︒∴∠=︒-∠=︒∴所对的圆周角度数为:30或150︒故答案为:30或150︒.【点睛】本题考查圆周角定理及等边三角形的判定与性质,注意两种情况.三、解答题21.(1)见解析(2)10【分析】(1)根据题意和平行线的性质、垂径定理可以证明结论成立;(2)根据题意,利用矩形的性质和勾股定理可以解答本题.【详解】(1)证明:∵OC⊥CD,AD⊥CD,∴OC∥AD,∴∠AEB=∠OFB,∵AB为⊙O的直径,∴∠AEB=90°,∴∠OFB=90°,∴OF⊥BE且平分BE,∴EF=BF;(2)∵AB为⊙O的直径,∴∠AEB=90°,∵∠OCD=∠CFE=90°,∴四边形EFCD是矩形,∴EF=CD,DE=CF,∵DC=4,DE=2,∴EF=4,CF=2,设⊙O的为r,∵∠OFB=90°,∴OB2=OF2+BF2,即r2=(r−2)2+42,解得,r=5,∴AB=2r=10,即直径AB的长是10.【点睛】本题考查切线的性质、垂径定理、矩形的判定与性质、勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)见解析;(2)52;(3)AG=AD+2CD.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【详解】(1)证明:连接EF,∵AE 平分∠BAC , ∴∠FAE=∠CAE , ∵FA=FE ,∴∠FAE=∠FEA , ∴∠FEA=∠EAC , ∴FE ∥AC ,∴∠FEB=∠C=90°,即BC 是⊙F 的切线; (2)解:连接FD , ∵A(0,−1),D(2,0), ∴OA=1,OD=2. 在Rt △FOD 中, ∵222OF OD DF += 设⊙F 的半径为r , ∴r 2=(r-1)2+22,解得,r=52,即⊙F 的半径为52; (3)解:AG=AD+2CD . 证明:作FR ⊥AD 于R , 则∠FRC=90°,又∵BC 是⊙F 的切线; ∴∠FEC=∠C=∠FRC=90°, ∴四边形RCEF 是矩形, ∴EF=RC=RD+CD , ∵FR ⊥AD ,AF=FD, ∴AR=RD , ∴EF=RD+CD=12AD+CD , ∴AG=2FE=AD+2CD .【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握相关知识是解题的关键.23.(1)2m =;(2)622m =-或622m =+;(3)3m 7≤≤【分析】(1)在平面直角坐标系中作出直线l 并画出当以A 为圆心,AB 为半径的圆与直线l 相切时的图形,由切线的性质可得Rt ACE △,然后再根据含30角的直角三角形的性质、圆的基本性质求得24AC AE ==,最后利用线段的和差求得2OA OC AC =-=,即可得到点A 的坐标,进而求得m 的值;(2)由AMN 相对于x 轴的位置分两种情况进行讨论,添加辅助线过点A 作AF MN ⊥、过点A 作AG MN ⊥,根据等腰直角三角形的性质可求得22MN =,再根据等腰三角形的三线合一以及直角三角形斜边上的中线等于斜边的一半可求得2AF =、2AG =,然后根据根据含30角的直角三角形的性质求得22AC =,进而利用线段的和差求得622OA =-、622OA =+,即可得到点A 的坐标,进而求得m 的值;(3)以AB 为直径作Q ,根据直径所对的圆周角是直角可在Q 上找到符合要求的点P 使得90APB ∠=︒.当Q 在x 轴上向右平移的过程中,直线l 和Q 的位置关系从相离到相切再到相交、再到相切、最后再相离,其中当直线l 和Q 相切或相交时直线l 上存在点P ,使得90APB ∠=︒.画出图形,求得当直线l 和Q 相切于x 轴上方或下方点P 时点A 的坐标,即可求得相应的m 的值,最后可得m 的取值范围.【详解】解:(1)∵当以A 为圆心,AB 为半径的圆与直线l 相切于点E 时,连接AE ,如图:∴AE CD ⊥∵2AE AB ==,30ACE ∠=︒∴在Rt ACE △中,24AC AE ==∵()6,0C∴6OC =∴2OA OC AC =-=∴点A 的坐标为()2,0∴2m =.(2)①当AMN 在x 轴上方时,过点A 作AF MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AF MN ⊥∴122AF MN == ∵30ACF ∠=︒ ∴在Rt ACF 中,222AC AF ==∴622OA OC AC =-=-∴点A 的坐标为()622,0-∴622m =-;②当AMN 在x 轴下方时,过点A 作AG MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AG MN ⊥ ∴122AG MN == ∵30ACG OCD ∠=∠=︒ ∴在Rt ACG 中,222AC AG ==∴622OA OC AC =+=+∴点A 的坐标为()622,0+∴622m =+.∴综上所述,622m =-或622m =+.(3)当点P 位于x 轴上方点1P 时直线l 和Q 相切,当点P 位于线段12PP (不包含两端点)上时直线l 和Q 相交,当点P 位于x 轴下方点2P 时直线l 和Q 相切,如图:直线l 和Q 相切于x 轴上方点1P 时,连接11PQ∴11PQ l ⊥,22P Q l ⊥∵11222A B A B ==∴111111112PQ AQ A B ===,222222112P Q A Q A B === ∵112230PCQ P CQ ∠=∠=︒∴在11Rt PCQ 中,11122Q C PQ ==;在22Rt P CQ 中,22222Q C P Q ==∴11113OA OC Q C AQ =--=;22227OA OC Q C A Q =+-=∴此时,点A 的坐标为()3,0或()7,0∴3m =或7m =∴直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是3m 7≤≤.故答案是:3m 7≤≤【点睛】本题考查了平面直角坐标系中坐标与图形、含30角的直角三角形的性质、圆的基本性质、直线与圆的位置关系、切线的性质、等腰直角三角形的性质、直角三角形的性质、线段的和差等知识点,渗透了分类讨论的数学思想,熟练掌握相关知识点是解题的关键. 24.(1)8CD =;(2)32477y x =-+ 【分析】(1)根据平行四边形的性质即可求得答案;(2)添加辅助线构造直角三角形,根据平行四边形的性质、垂径定理、勾股定理、线段的和差即可求得()1,3C,再根据待定系数法即可求得直线解析式.【详解】解:(1)∵点B 的坐标是()8,0∴8OB =∵四边形OCDB 是平行四边形∴8CD OB ==.(2)过点M 作MN CD ⊥,连接MC ,过点C 作CH OA ⊥,如图:∵MN CD ⊥,8CD =∴142CN CD == ∵()10,0A∴10OA =∴152OM OA == ∴在Rt CMN 中,223MN CM CN =-=∵四边形OCDB 是平行四边形∴//CD OB∵CH OA ⊥∴四边形CHMN 是平行四边形∴3CH MN ==,4HM CN ==∴1OH OM HM =-=∴()1,3C∴设直线BC 的解析式为:y kx b =+∴083k b k b =+⎧⎨=+⎩∴37247kb ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BC 的解析式为:32477y x =-+. 【点睛】本题考查了平行四边形的性质和判定、垂径定理、勾股定理、线段的和差、待定系数法等,添加辅助线构造直角三角形是解决问题的关键.25.(1)见解析;(2)232-【分析】(1)连接BF ,得到∠BAF=90°-∠ABF ,由圆内角四边形对角互补得到∠AEF=180°-∠ABF ,再由∠DAE=∠AEF-90°即可证明;(2)由∠ABE=45°得到△ABE 为等腰直角三角形,进而求出AE 的长,利用勾股定理求出AD 的长;再连接GE ,由圆内接四边形对角互补得到∠AGE=135°,进而得到∠DGE=45°,△GDE 为等腰直角三角形,最后AG=AD-GD 即可求解.【详解】解:(1) 如图,连接BF ,∵AB 是⊙O 的直径,∴∠AFB=90°,∴∠BAF=90°-∠ABF ,∵在⊙O 中,四边形ABFE 是圆的内接四边形,∴∠AEF+∠ABF=180°,∴∠AEF=180°-∠ABF ,又∠AEF 是△DAE 的一个外角,∴∠DAE=∠AEF-∠90°=180°-∠ABF-90°=90°-∠ABF ,∴∠BAF=∠DAE ;(2)∵AB 为直径,∴∠AEB=90°,∠ABE=45°时,△AEB 为等腰直角三角形,∴AE=BE=42422,在Rt △ADE 中,AD=22224223AE DE ,连接GE ,如下图所示,由圆内接四边形对角互补可知,∠AGE=180°-∠B=135°,∴∠DGE=180°-135°=45°,又AD ⊥DE ,∴△GDE 为等腰直角三角形,∴GD=DE=2,∴AG=AD-GD=232-,故答案为:32-.【点睛】本题考查了圆周角定理,圆内角四边形对角互补,勾股定理求线段长等知识点,熟练掌握圆周角定理及其推论是解决本类题的关键.26.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.。

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题初中数学竞赛:四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1“四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明AP =AM ,从而有AB ′2+PB ′2=AC ′2+MC ′2. 故MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-K B ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM=∠CBK .求证:∠DMA =∠CKB .分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC=180°,∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆?∠CMD =∠DKC .A B C K M N P Q B ′C ′A B C O O O O 123A B C DK M··但已证∠AMB =∠BKA ,∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°?C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ? OC =OK ?∠OMC =∠OMK . 但∠GMC =∠BMK ,故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D . 试证:I A I B I C I D 是矩形.分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ?A ,B ,I D ,I C 四点共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形.(4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.A BO K N CMG故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆?∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . 分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称?MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径( ∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.) 3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD . (提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)A BC D E F KG ······5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B 引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

四点共圆在中考数学解题中的应用赏析

四点共圆在中考数学解题中的应用赏析

“圆”来如此简单——“四点共圆”在中考解题中的应用赏析2012年8月,在暑假集体备课之际,新浙教版数学教材以焕然一新的面貌出现在大家眼前。

与老版相比,新版教材增加了一些传授内容。

其中,九年级上册的《圆内接四边形》就是一节新增内容。

而且与之配套的《数学教学参考书》在3.6《圆内接四边形》这一课时末尾,颇有用意地在第103页“相关资源”中对于如何判定四点共圆作了批注。

原文如下:如何判定四点共圆。

对于四点共圆的判定一般有以下两种方法: 1.如图,四边形中同一边所对的两个边与对角线所成的角相等(如12∠=∠),则这个四边形为圆内接四边形,也就是四边形的四个顶点共圆。

2.如果四边形的两个对角互补,那么这个四边形为圆内接四边形,也就是四边形的四个顶点共圆。

判定四点共圆会给许多几何问题的解决带来方便。

近年来,经过笔者的收集整理和实践探究,发现很多地方的中考试题,都能通过妙用四点共圆达到事半功倍的效果。

现就四点共圆问题在中考解题中的应用,采撷几例,剖析解法,供大家分享。

一、四点共圆与线段问题结合的应用举例例1.(2013•绍兴)在△ABC 中,∠CAB=90°,AD⊥BC 于点D ,点E 为AB 的中点,EC 与AD 交于点G ,点F 在BC 上.(1)如图1,AC :AB=1:2,EF⊥CB,求证:EF=CD. (2)如图2,AC :AB=1:,EF⊥CE,求EF :EG 的值.)∴DC=DE,∠CDM=∠EDN ∴△CDM≌△EDN ∴DM=DN, ∴DMQN 是正方形, ∴∠BQC=45° ∴CQ=CB=3 ∴Q(4,0)设BQ 的解析式为:y=kx+b ,把B (1,3),Q (4,0)代入解析式得:k=﹣1,b=4. 所以直线BQ 的解析式为:y=﹣x+4. ②当点P 在对称轴右侧,如图:过点D 作DM⊥x 轴于M ,DN⊥PQ 于N , ∵∠CDE=90°,∴∠CDM=∠EDN ∴△CDM∽△EDN当∠DCE=30°,DC DMDE DN== 又DN=MQ∴DMMQ=∴BCCQ=,BC=3,CQ= ∴Q(1+,0) ∴P 1(1+,94)当∠DCE=60°,点P 2(1+154). 当点P 在对称轴的左边时,由对称性知:P 3(1﹣,94),P 4(1﹣154)综上所述:P 1(1+,94),P 2(1+154),P 3(1﹣,94),P 4(1﹣﹣154)下面赏析四点共圆方法解(∵∠CDE=90°∠C Q E=90°∴四边形CDEQ对角互补∴C、D、E、Q四点共圆∴∠DEC=∠D QC由于(2)中两问∠DEC且BC=4接下来直线BQ的解析式,P点的坐标都可迎刃而解。

2021年九年级中考数学复习:四点共圆问题 含详解

2021年九年级中考数学复习:四点共圆问题   含详解

2021中考(通用版)数学复习训练几何专题---四点共圆问题一.选择题1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.2.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△P AM ∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.13.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.64.如图,在四边形AOBC中,若∠1=∠2,∠3+∠4=180°,则下列结论正确的有()(1)A、O、B、C四点共圆(2)AC=BC(3)cos∠1=(4)S四边形AOBC=A.1个B.2个C.3个D.4个5.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP =b﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.56.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D 旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.57.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE ⊥AB于E,PD⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.28.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN二.填空题9.如图,在等腰△ABC中,AB=AC=,D为BC边上异于中点的点,点C关于直线AD 的对称点为点E,EB的延长线与AD的延长线交于点F,求AD•AF的值.10.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为.11.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.12.如图,在△ABC中,AB=AC,点D在BA延长线上,点E在BC边上,∠CAE=2∠ACD,∠BAE=60°,若AD=3,△ABE的面积为10,则CD的长为.13.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线P A与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.14.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为.15.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC=30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE ⊥AF于点E,则DE=.16.如图,AB∥CD,∠CBE=∠CAD=90°.AC=AD=6,DE=4,则BD长为.17.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE =30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为.三.解答题18.如图,A、B、C、D四点共圆,且∠ACB=∠ACD=60°.求证:△ABD是等边三角形.19.如图,在△ABC中,AB<AC,AD平分∠BAC,BM=CM,K为AM上一点,且∠BKC =180°﹣∠BAC.求证:∠BKD=∠CKD.20.在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:已知:△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时:(1)观察填空:①与△ACD全等的三角形是;②∠AFB的度数为;(2)利用题干中的结论,证明:C,D,F,E四点共圆;(3)直接写出线段FD,FE,FC之间的数量关系.21.如图,已知锐角三角形ABC,过点A作BC的垂线与以BC为直径的⊙O1分别交于点D,E.过点B作CA的垂线与以CA为直径的⊙O2分别交于点F,G.求证:E,F,D,G 四点共圆,并确定圆心的位置.22.如图,在锐角三角形ABC中,AB=AC,∠ACB的平分线交AB于点D.过△ABC的外心O作直线OG⊥CD交AC于点E,交CD于点G,过点E作EF∥AB交CD于F.(1)求证:C,E,O,F四点共圆;(2)求证:A,O,F三点共线;(3)求证:EA=EF.23.如图,△ABC的内切圆I在边AB,BC,CA上的切点分别是D,E,F,直线EF与直线AI,BI,DI分别相交于点M,N,K.证明:DM•KE=DN•KF.24.如图所示,在四边形ABCD中,已知BA=AD=DC,AC≠BD,AC与BD交于点P,∠ABC+∠BCD=120°,求证:PB=PC.(提示:在解答本题时,可能用到以下结论:对角互补的四边形内接于圆,简称四点共圆)25.(本题证明值可直接利用如下结论:若公共边所对的两个张角相等,则相应的四点共圆.例如如图1,由∠ACB=∠ADB,可得四点A、B、C、D共圆)如图2,圆内接五边形ABCDE 中,AD是外接圆的直径,BE⊥AD,垂足为H,过点H作平行于CE的直线,与直线AC,DC分别交于F,G.证明:(1)点A,B,F,H共圆;(2)四边形BFCG是矩形.26.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D,点E是AC的中点,连接OD.(1)求证:OD⊥DE;(2)求证:O、A、E、D四点共圆.(3)△ABC满足什么条件时,经过O、A、E、D的圆与BC相切?并说明理由.27.如图,圆O内接四边形ABCD的对边AD,BC延长线交于点P,对角线AC,BD交于点Q,设△PDB的外接圆交直线PQ与P和另一个点K,求证:(1)OK⊥PQ(2)C,D,O,K四点共圆;(3)三条直线AB,OK,DC交于一点.28.如图,四边形ABCD中,∠ACB=∠ADB=90°,自对角线AC、BD的交点N作NM ⊥AB于点M,线段AC、MD交于点E,BD、MC交于点F,P是线段EF上的任意一点.证明:点P到线段CD的距离等于点P到线段MC、MD的距离之和.29.如图,Rt△ABD,∠BAD=90°,A、B、C、D四点共圆,且∠BAE=∠C.(1)确定圆的位置,圆心记为点O(要求:尺规作图,保留作图痕迹)(2)求证:AE与⊙O相切于点A:(3)若AE∥BC,BC=2,AC=2,求半径的长.30.阅读理解:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆.(1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=;(2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE的长;(3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长.31.如图,在△ABC中,过A作BC的垂线,垂足为D,O为AD的中点,以AD为直径的⊙O分别与边AB、AC交于点E、F.试求证:(1)BC是⊙O的切线;(2)B、C、F、E四点共圆吗?说明理由.32.如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,∠BGD=∠BAD=∠C.(1)求证:BD•BC=BG•BE;(2)如果∠BAC=90°,求证:AG⊥BE.33.如图,以锐角△ABC的边AB为直径作半圆⊙O交边BC、CA于点E、F.过点E、F 分别作⊙O的切线得交点P.求证:CP⊥AB.34.如图1,在四边形ABCD中,找一点P,使得点P到A、B、C、D的距离之和最小,即P A+PB+PC+PD的值最小,并说明理由.如图2,在四边形ABCD中,AD∥BC,BN是∠ABC的角平分线,且BN⊥CD,点N为垂足,若DN=CN,若四边形ABCD的面积为,求四边形ABND的面积.若在四边形ABCD中,满足∠A+∠C=180°,则可以得到A、B、C、D四点共圆.问题解决:如图3所示,在四边形ABCD是一个不规则的便民活动场所,其中AB=AD =CD,BC=1000米,∠ABC+∠BCD=120°,根据政府的要求,在活动场所中建立一个标志建筑P,要求满足标志P到便民场所的四个顶点A、B、C、D的距离之和最短,并且标志建筑P到点B与点C的距离相等,若你是该项目的工程师,请问是否存在这样的点P满足政府的要求?若存在,请你用相关几何知识进行说明,并在图中标注点P的位置,并求出此时点P距离BC的距离.若不存在,请说明理由.35.已知,在四边形ABCD中,连接AC、BD.(1)如图1,若AC=AD,∠BAC=∠BDC,∠ABD=∠BDC+60°,求证:AB=DB.(2)如图2,在(1)的条件下,以AB为斜边作Rt△ABF,∠AFB=90°,连接FD交AB于点E,当DF⊥AB,AE=9,∠F AB=30°时,求CB的值.36.已知△ABC中,∠A=60°,E、F分别为AB、AC延长线上的点,且BE=CF=BC,△ACE的外接圆与EF交于不同于E的点K,设BF与CE交于点T.(1)证明:A、B、T、C四点共圆;(2)证明:点K在∠BAC的角平分线上.37.[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D 还在经过A,B,C三点的圆上吗?我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在圆O外,要么在圆O内,以下该同学的想法说明了点D不在圆O外.(如图③,过A,B,C三点作圆,圆心为O,假设点D在圆O外,设AD交圆O于点E,连接BE,则∠AEB=∠ACB,又由∠AEB是△BDE的一个外角,得∠AEB>∠ADB,因此∠ACB>∠ADB,就与条件∠ACB=∠ADB矛盾,所以点D不在圆O外)请结合图④证明点D也不在⊙O内.[结论]综上可得结论:如图②,如果∠ACB=∠ADB=a(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:点A、B、C、D四点共圆.[应用]利用上述结论解决问题:如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE、CD,延长CD交BE于点F,(1)求证:点B、C、A、F四点共圆;(2)求证:BF=EF.38.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠P AC=90°,AB=2,求PD的长.39.(1)已知:如图1,△ABC为等边三角形,CE平分△ABC的外角∠ACM,点在BC上,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)如果△ABC为任意三角形,且∠ACB=60°,其他条件不变,这个结论还成立吗?说明你的理由.40.如图1,等腰△ABC中,AB=AC,点D在AC的垂直平分线上,射线BD与BC所夹锐角为30°,连接AD.(1)求证:AB=AD;(2)如图2,AD交BC于点E,将∠CBD沿BD翻折交CD的延长线于点F,直接写出DF与DE的数量关系;(3)如图3,在(2)的条件下,延长AB,CD交于点H,若∠H=30°,HB=b,△ABE 的面积为a,求AB的长(用含a,b的式子表示).参考答案一.选择题1.解:如图,连接DE,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=AB=4,∵D是BC中点,∴CD=BC=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=CD=,∴AE=AC﹣CE=3,解法二、∵∠CAD=∠CBE,∠C=∠C,∴△CAD∽△CBE,∴,∴=,∴BE=,解直角三角形可求:AE=2+=3,解法三、作BF垂直于AC交于F,∴AF=BF=CF=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠BDA=∠BEA,∴tan∠BDA=tan∠BEA===2,∵BF=2,∴EF=,AE=3.故选:B.2.解:∵AP⊥BN,∴∠P AM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠P AM=∠PBC,∵∠PMA=∠PCB,∴△P AM∽△PBC,故①正确;∵△P AM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠P AN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠P AN=∠ABN,∵∠APN=∠BP A=90°,∴△P AN∽△PBA,∴,∵△P AM∽△PBC,∴,∴,∵AB=BC,∴AM=AN,故④正确;故选:A.3.解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选:D.4.解:∵∠3+∠4=180°,∴A、O、B、C四点共圆,(1)正确;作CD⊥OA于D,CE⊥OB于E,如图所示:则∠CDA=∠CEB=90°,∵∠1=∠2,∴CD=CE,∵∠3+∠4=180°,∠3+∠CAD=180°,∴∠CAD=∠4,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴AD=BE,AC=BC,(2)正确;∵cos∠1==,cos∠2==,∴cos∠1+cos∠2=+==,∵∠1=∠2,∴cos∠1=cos∠2,∴2cos∠1=,∴cos∠1=,(3)正确;∵CD=CE,sin∠1=,∴CD=c×sin∠1,∴S四边形AOBC=S△OAC+S△BOC=a×CD+b×CE=(a+b)CD=(a+b)×c×sin∠1=,(4)正确;正确的结论有4个,故选:D.5.解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,∴S四边形AMFN=AM2=a2+b2;故④正确;⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选:D.6.解:①正确.理由如下:如图1中,∵∠ACB=90°,∠EDF=90°,∴∠MCN+∠MDN=180°,∴点C,M,D,N四点共圆.②正确.理由如下:如图2中,连接CD.∵AC=BC.AD=DB.∴CD⊥AB,CD=AD=DB,∴∠ADC=∠MDN=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN.故②正确.③正确.理由如下:如图3中∵CA=CB,∠ACB=90°,AD=DB,∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,∴∠ADC=∠EDF=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN,∴AM=CN,DM=DN,∵AC=BC,∴CM=BN,∴DN•CM=BN•DM④正确.理由如下:如图4中,作DH⊥AC于H,DG⊥BC于G.∵∠ACD=∠BCD=45°,∴DH=DG,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∵DH=DG,∴四边形CHDG是正方形,∴∠HDG=∠MDN=90°,CH=CG,∴∠MDH=∠GDN,在△DHM和△DGN中,,∴△DHM≌△DGN,∴MH=NG∴CM+CN=CH+MH+CG﹣NG=2CH,∵AD=CD=CH,∴CM+CN=AD.⑤正确.理由如下:如图5中,作DH⊥AC于H,DG⊥BC于G.∵AB=6,BD=2AD,∴AD=2,BD=4,∴AH=DH=,DG=GB=2,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∴∠HDG=∠MDN,∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,∴△DHM∽△DGN,∴==,设DM=x,则DG=2x,∴S△DMN=•2x•x=x2,当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,∴2≤S△DMN≤4.故选:D.7.解:解法一:当AP⊥BC时,线段DE的值最小,如图1,∵PE⊥AB,PD⊥AC,∴∠AEP=∠ADP=90°,∴∠AEP+∠ADP=180°,∴A、E、P、D四点共圆,且直径为AP,在Rt△PDC中,∠C=45°,∴△PDC是等腰直角三角形,∠APD=45°,∴△APD也是等腰直角三角形,∴∠P AD=45°,∴∠PED=∠P AD=45°,∴∠AED=45°,∴∠AED=∠C=45°,∵∠EAD=∠CAB,∴△AED∽△ACB,∴,设AD=2x,则PD=DC=2x,AP=2x,如图2,取AP的中点O,连接EO,则AO=OE=OP=x,∵∠EAP=∠BAC﹣∠P AD=60°﹣45°=15°,∴∠EOP=2∠EAO=30°,过E作EM⊥AP于M,则EM=x,cos30°=,∴OM=x•=x,∴AM=x+x=x,由勾股定理得:AE=,=,=(+1)x,∴=,∴ED=.则线段DE的最小值为;解法二:如图3,取AP的中点F,连接EF、DF,有EF=DF=AP,∠EFD=120°,∴△EFD为顶角为120°的等腰三角形,∴当AP⊥BC时,线段DE的值最小,如图4,作AB的中垂线,交AP于一点O,交AB于G,连接OB,设OA=OB=2x,∵∠BOP=2∠BAO=30°,∴BP=x,OP=x,∴AP=PC=(2+)x,∵BC=6﹣2,∴x+2x+x=6﹣2,x=4﹣2,∴AP=(2+)x=(2+)(4﹣2)=2,∴EF=FD=1,如图5,过F作FH⊥ED于H,∴EH=DH,∵∠FED=30°,∴FH=,∴EH=DH=,∴DE=;故选:B.8.解:如图,在NM上截取NF=ND,连接DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.二.填空题9.解:如图,连接AE,CF,DE,∵AB=AC,∴∠ABD=∠ACB,∵点C关于直线AD的对称点为点E,∴∠BED=∠BCF,∠AED=∠ACD=∠ACB,∴∠ABD=∠AED,∴点A,E,B,D四点共圆,∴∠BED=∠BAD,∴∠BAD=∠BCF,∴点A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABD,∴△AFB∽△ABD,∴,∴AD•AF=AB2=()2=5,故答案为:5.10.解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△MFE,∴=,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴=,∴CP=b﹣;故②错误;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF(SAS);故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,在Rt△ABM中,a2+b2=AM2,∴S四边形AMFN=AM2=a2+b2;故④正确;⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故答案为:①③④⑤.11.解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.12.解:如图,∵在△ABC中,AB=AC,∴∠B=∠ACB,∴∠DAC=2∠ACB,∵∠CAE=2∠ACD,∴∠CAD+∠CAE=2∠ACB+2∠ACD=2(∠ACB+∠ACD),∴∠DAE=2∠BCD,∵∠BAE=60°,∴∠DAE=180°﹣∠BAE=120°,∴∠BCD=60°,∴∠DAE+∠DCB=180°,∴点A,E,C,D四点共圆,连接DE,∴∠ADE=∠ACB,∴∠ADE=∠ABC,过点E作EF⊥AB于E,∴BF=DF,设AF=x,则BF=DF=AF+AD=x+3,∴AB=2x+3,在Rt△AFE中,∠BAE=60°,∴∠AEF=30°,∴AE=2x,EF=x,∵△ABE的面积为10,∴S△ABE=AB•EF=(2x+3)•x=10,∴x=﹣4(舍)或x=,∴AE=5,BF=,AB=2x+3=8,EF=,BD=2BF=11,根据勾股定理得,BE==7,∵∠DCB=60°=∠BAE,∠B=∠B,∴△BAE∽△BCD,∴,∴,∴CD=,故答案为.13.解:如图,∵OC⊥AB于C,∴∠BOC=∠AOC=∠AOB,NA=NB,∵∠BPM=∠AOB,∴∠BPM=∠BOC,∴O、M、B、P四点共圆,∴①正确.∵四边形AMBN为凹四边形.∴A、M、B、N不共圆,∴②错误.∵NA=NB,∴∠NAB=∠NBA,∵∠NAB+∠NBA+∠ANP=180°,∴∠ANP+2∠NBA=180°∵∠AOP=2∠NBA,∴∠AOP+∠ANP=180°,∴A、O、P、N四点共圆,∴③正确.故答案为:①③14.解:如图,连接AF,DG,∵AE=AC,DE=DB,点F,点G是CE,BE的中点,∴AF⊥CE,DG⊥BE,∴∠AFD=∠AGD=90°,∴点A,点F,点G,点D四点共圆,∴∠DFG=∠GAD=25°,∵∠AFD=90°,点M是AD中点,∴AM=FM=DM,∴∠DFM=∠FDM,且∠AMF=∠FDM+∠DFM=40°,∴∠DFM=20°,∴∠MFG=∠MFD+∠DFG=45°,故答案为45°.15.解:过点C作CM⊥CF交BD延长线于点M,连接AM,∵∠DOC=30°,∴∠BMC=∠BAC=∠BFC=60°,∴A、F、B、C、M五点共圆,∴∠AMB=∠ACB=60°,∵OC=、∠COD=30°,∴OM==2=OA,∴△AOM是等边三角形,∴∠AOM=60°,∵∠AOM=60°=∠OMC,∴MC∥AO,∴===,∴OD=OM=,DM=OM=,∵A、F、B、M四点共圆,∴∠F AM=180°﹣∠FBM=90°,∴∠EAG=∠F AM﹣∠OAM=30°,∴∠OGD=∠AGE=60°,∴△ODG是等边三角形,∴AG=OA﹣OG=OM﹣OD=DM=,∴EG=AG=,∴DE=DG+EG=OD+EG=,故答案为:.16.解:如图,在Rt△ACD中,AC=AD=6,∴CD=6,∠ACD=∠ADC=45°,∵AB∥CD,∴∠BAC=∠ACD=45°,连接CE,在Rt△ACE中,AC=6,AE=AD﹣DE=2.∴CE==2,取CE的中点O,连接OB,∵∠CBE=∠CAE=90°,∴点A,B,C,E在以点O为圆心,CE为直径的圆上,∴∠BOC=2∠BAC=90°,OB=OC=CE=∵OB=OC,∴BC=OB=2,过点E作EH⊥CD,∵∠ADC=45°,∴△DEH是等腰直角三角形,∵DE=4,∴EH=DH=DE=2,过点A作AM⊥CD,∴EH∥AM,∴=,∴AM=EH=3,过点B作BG⊥CD,∴四边形ABGH是矩形,∴BG=AM=3,在Rt△BCG中,BC=2,BG=3,∴CG==,∴DG=CD﹣CG=6﹣=5,在Rt△BDG中,BG=3,DG=5,∴BD==2.故答案为:2.17.解:作OG⊥DF于G,连接OG,如图所示.∵四边形ABCD是正方形,∴∠DAC=45°,∠AOD=90°.∵DF⊥AE,即∠AFD=90°,∴∠AOD=∠AFD.∴A、O、F、D四点共圆.∴∠OFG=∠DAO=45°.∵OG⊥DF,即∠OGF=90°,∴∠FOG=45°=∠OFG.∴OG=FG.∵∠AFD=90°,∠DAE=30°,AD=2,∴DF=1.设GF=GO=x,则有DG=DF+FG=1+x,OF==x.在Rt△AOD中,OD=AD•sin∠DAO=2×=.在Rt△OGD中,∵∠OGD=90°,∴OG2+DG2=OD2.∴x2+(1+x)2=()2.解得:x1=﹣+,x2=﹣﹣(舍去).所以OF=x=﹣.故答案为:﹣.三.解答题18.证明:∵∠ACB=60°,∴∠ADB=∠ACB=60°,∵∠ACD=60°,∴∠ABD=∠ACD=60°,在△ABD中,∠BAD=180°﹣∠ADB﹣∠ABD=180°﹣60°﹣60°=60°,∴∠ABD=∠ADB=∠BAD=60°,∴△ABD是等边三角形.19.证明:如图,延长AM至G,使GM=AM,∵BK=CK,∴四边形ABGC是平行四边形,∴BG=AC,CG=AB,∠BGC=∠BAC,∵∠BKC=180°﹣∠BAC,∴∠BKC+∠BGC=180°,∴点C,G,B,K四点共圆,∴∠CBK=∠CGK,∵∠BMK=∠CMK,∴△BMK∽△GMC,∴=,同理:,∴=1,过点D作DQ⊥AC于Q,作DP⊥AB于P,则DQ=DP,∴,∵,∴=,过点D作DH⊥BK于H,在Rt△DHK中,DH=DK•sin∠BKD,∴S△BKD=BK•DH=BK•DK•sin∠BKD,同理:S△CKD=CK•DK•sin∠CKD,∴=,∵=,∴=,∴==1,∴∠BKD=∠CKD.20.(1)解:①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,∴∠ACD+∠DCB=60°,由旋转知,CE=CD,∠DCE=60°,∴∠BCE+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),故答案为:△BCE;②由①知,△ACD≌△BCE,∴∠ADC=∠BEC,∵∠ADC+∠FDC=180°,∴∠BEC+∠FDC=180°,∴C,D,F,E四点共圆,∴∠AFE+∠DCE=180°,∵∠AFB+∠AFE=180°,∴∠AFB=∠DCE=60°,故答案为:60°;(2)证明:由(1)②中,已证;(3)由(1)①知,△DCE是等边三角形,∴CE=DE,由(1)②知,∠DFE=180°﹣∠DCE=120°,由(2)知,点C,D,F,E四点共圆,∴∠CFE=∠CDE=60°,在FC上取一点G,使FG=FE,∴△EFG是等边三角形,∴EG=FE,∠EGF=60°,∴∠CGE=120°=∠DFE,∵点C,D,F,E四点共圆,∴∠ECG=∠EDF,∴△CEG≌△DEF(AAS),∴CG=FD,∴FC=FG+CG=FE+FD,故答案为:FC=FE+FD.21.证明:如图,连接CD,CE,CF,CG,AE与BC的交点记作A',BG与AC的交点记作B',两圆的另一个交点记作C'∵BC是⊙O1的直径,BC⊥DE,∴BC是DE的中垂线,∴CD=CE,∵AC是⊙O2的直径,AC⊥FG,∴AC是FG的中垂线,∵CF=CG,连接BE,AG,∴∠BEC=∠AGC=90°,∴CE2=CB•CA',CG2=CA•CB'(射影定理).∵∠BA'A=∠BB'A=90°,∴A,B,A',B'四点共圆,∴CB•CA'=CA•CB,∴CE=CG,∴CE=CD=CG=CF,即E,F,D,G四点共圆,且圆心为C.22.证明:(1)如图1,连接OA,OC,∵AB=AC,点O为△ABC的外心,∴AO平分∠BAC,OA=OC,∴∠OCA=∠OAC=∠BAC=(180°﹣2∠B)=90°﹣∠B,∵OG⊥CD,CD平分∠ACB,∴∠OEC=90°﹣∠ECD=90°﹣∠ACB=90°﹣∠B∴∠COE=180°﹣∠OEC﹣∠OCA=180°﹣(90°﹣∠B)﹣(90°﹣∠B)=∠B,∵EF∥AB,CD平分∠ACB,∴∠CFE=∠CDA=∠ABC+∠DCB=∠B,∴∠COE=∠CFE,∴点C,E,O,F四点共圆,(2)如图2,连接OF,∵O为△ABC的外心,∴∠AOC=2∠B,由(1)知,点C,E,O,F四点共圆,∵EF∥AB,∴∠FOC=∠FEC=∠BAC,∴∠AOC+∠FOC=2∠B+∠BAC=180°,∴点A,O,F三点共线,(3)由(1)知,点C,E,O,F四点共圆,∴∠OFE=∠OCE=∠OAC,∴EA=EF.23.证明:连接IE,如图所示:∵△ABC的内切圆I在边AB,BC,CA上的切点分别是D,E,F,∴ID⊥AB,IE⊥BC,∴∠IDB=∠IEB=90°,∴∠IDB+∠IEB=180°,∴I,D,B,E四点共圆.又∵∠AID=90°﹣∠IAD,∠MED=∠FDA=90°﹣∠IAD,∴∠AID=∠MED,∴I,D,E,M四点共圆.∴I,D,B,E,M五点共圆,∠IMB=∠IEB=90°,即AM⊥BM.同理,I,D,A,N,F五点共圆,且BN⊥AN.设直线AN,BM交于点G,则点I为△GAB的垂心.又ID⊥AB,∴G,I,D共线.∵G,N,D,B四点共圆,∴∠ADN=∠G.同理∠BDM=∠G.∴DK平分∠MDN,∴①.又由I,D,E,M;I,D,N,F分别共圆,∴KM•KE=KI•KD=KF•KN,∴②.由①,②得:,∴DM•KE=DN•KF.24.解:延长BA、CD交于点E,如图1.∵∠ABC+∠BCD=120°,∴∠E=180°﹣120°=60°,∴∠EAD+∠EDA=180°﹣60°=120°.∵BA=AD=DC,∴∠1=∠5,∠4=∠6,∴∠EAD=∠1+∠5=2∠5,∠EDA=∠4+∠6=2∠6,∴∠EAD+∠EDA=2∠5+2∠6=120°,∴∠5+∠6=60°,∴∠APD=180°﹣60°=120°,∴∠E+∠APD=180°,∴E、A、P、D四点共圆.连接EP,如图2.∵E、A、P、D四点共圆,∴∠5=∠8,∠6=∠7,∴∠1=∠5=∠8,∠4=∠6=∠7,∴PE=PB,PE=PC,∴PB=PC.25.证明:(1)由HG∥CE,得∠BHF=∠BEC,又∵=,∴∠BAF=∠BEC,∴∠BAF=∠BHF,∴点A、B、F、H共圆;(2)由(1)的结论,得∠BHA=∠BF A,∵BE⊥AD,∴BF⊥AC,又∵AD是圆的直径,∴CG⊥AC,由A、B、C、D共圆及A、B、F、H共圆,∴∠BFG=∠DAB=∠BCG,∴B、G、F、H共圆,∴∠BGC=∠AFB=90°,∴BG⊥GC,∴四边形BFCG是矩形.26.(1)证明:连接OE,如图1所示:∵AC是⊙O的切线,∴∠BAC=90°,∵OA=OB,AE=EC,∴OE是△ABC的中位线,∴OE∥BC,∴∠AOE=∠B,∠EOD=∠ODB,∵OA=OB,∴∠B=∠ODB,∴∠AOE=∠EOD,在△AOE和△DOE中,,∴△AOE≌△DOE(SAS),∴∠ODE=∠BAC=90°,∴OD⊥DE;(2)证明:连接OE,取OE的中点为Q,连接QA、QD,如图2所示:由(1)得:∠ODE=∠BAC=90°,∴QD=OE=QO=QE,QA=OE=QO=QE,∴QA=QO=QD=QE,∴O、A、E、D在以Q为圆心,OE为直径的圆上,即O、A、E、D四点共圆;(3)解:AB=AC或∠B=45°或∠C=45°时,经过O、A、E、D的圆与BC相切,理由如下:如图3所示:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC或∠B=45°或∠C=45°时,△ABD是等腰直角三角形,∵OA=OB,∴OD⊥AB,∴∠AOB=90°=∠OAE=∠ODE,∴四边形OAED是矩形,∵OA=OD,∴四边形OAED是正方形,∴OE与AD互相垂直平分且相等,∵Q为OE的中点,∴QD=QA=QO,∴经过O、A、E、D的圆与BC相切.27.证明:如图,连接OD、OC、CK、OB、OA、AK、BK.在⊙O中,弦AC、BD交于点Q,∴AQ•CQ=BQ•DQ,在⊙O'中,弦BD、PK交于点Q,∴BQ•DQ=PQ•KQ,∴AQ•CQ=PQ•KQ,∴A、K、C、P四点共圆,∴∠CAP=∠CKP,∵∠CAP=∠CAD=∠CBD=∠DBP=∠DKP,∴∠CKP=∠DKP,∴∠CKD=2∠CKP=2∠CBD=∠COD,∴C、D、O、K四点共圆,结论(2)得证.∴∠OKD=∠OCD∵OD=OC,∴∠OCD+∠COD=90°,∴∠OKD+∠COD=∠OKD+∠DKP=∠OKP=90°,∴OK⊥PQ,结论(1)得证.∵∠KBQ=∠KBD=∠KPD=∠KP A=∠KCA=∠KCQ,∴K、B、C、Q四点共圆,∴∠KQB=∠KCB=∠KAP=∠KAD,∵∠BKQ+∠KQB+∠KBQ=180°,且∠BKQ=∠BKP=∠BDP=∠DAB+∠DBA ∴∠DAB+∠DBA+∠KQB+∠KBQ=180°,∵∠DAB+∠DBA+∠ADB=180°,∴∠KQB+∠KBQ=∠ADB,∴∠AKB=∠ADB+∠DAK+∠DBK=∠ADB+∠KQB+∠QBK=2∠ADB,∵∠AOB=2∠ADB,∴∠AOB=∠AKB,∴A、O、K、B四点共圆,∴AB为⊙O与⊙(ABKO)的公共弦,OK为⊙(ABKO)与⊙(OKCD)的公共弦,CD为⊙O与⊙(OKCD)的公共弦,由蒙日定理可知AB、OK、DC交于点一E.结论(3)得证.28.解:如图,∵∠ACB=∠ADB=90°,∴A、B、C、D四点共圆,∵NM⊥AB,∴∠NCB=∠NMB=90°,∴B、C、N、M四点共圆,∴∠ACD=∠ABD=∠MCN,故AC平分∠DCM,同理,BD平分∠CDM,过P作PH⊥MC于点H,PG⊥MD于点G,PT⊥CD于点T;过点P作XY∥MC,交MD 于点X,交AC于点Y;过点Y作YZ∥CD,交MD于点Z,交PT于点R;再作YH1⊥MC于点H1,YT1⊥CD于点T1,由平行线及角平分线的性质得PH=YH1=YT1=RT.为证PT=PG+PH,只须证PR=PG,∵PY∥CF,∴=,∵YZ∥CD,∴=,∴=,∴ZP∥DF,由于△XYZ与△MCD的对应边分别平行,∵DF平分∠MDC,∴ZP是∠XZY的平分线,∵PG⊥DM,PR⊥ZY,∴PR=PG,∴PT=PR+TR=PH+PG,即点P到线段CD的距离等于点P到线段MC、MD的距离之和.29.解:(1)如图1所示,点O为所求作的图形;(2)证明:如图2,连接OA,∴∠OAD=∠ODA,∵∠BAE=∠C,∴∠ODA=∠C=∠BAE,∴∠BAE=∠OAD,∵∠BAD=90°,∴∠OAE=∠OAB+∠BAE=∠OAB+∠OAD=∠BAD=90°,∴OA⊥AE,∵点A在⊙O上,∴AE是⊙O的切线;(3)由(2)知,OA⊥AE,∵AE∥BC,∴OA⊥BC,垂足记作F,∴BF=CF=BC=×2=,在Rt△AFC中,AC=2,∴AF==1设⊙O的半径为r,∴OF=r﹣AF=r﹣1,在Rt△OFB中,OB2=BF2+OF2,即:r2=()2+(r﹣1)2,∴r=4,即:⊙O的半径的长为4.30.解:(1)∵∠ADB=∠ACB=60°,∴A,B,C,D四点共圆,∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°,故答案为:55°;(2)在线段CA取一点F,使得CF=CD,如图2所示:∵∠C=90°,CF=CD,AC=CB,∴AF=DB,∠CFD=∠CDF=45°,∴∠AFD=135°,∵BE⊥AB,∠ABC=45°,∴∠ABE=90°,∠DBE=135°,∴∠AFD=∠DBE,∵AD⊥DE,∴∠ADE=90°,∵∠F AD+∠ADC=90°,∠ADC+∠BDE=90°,∴∠F AD=∠BDE,在△ADF和△DEB中,,∴△ADF≌△DEB(ASA),∴AD=DE,∵∠ADE=90°,∴△ADE是等腰直角三角形,∴AE=AD=2;(3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:。

中考数学满分之路(二)—四点共圆

中考数学满分之路(二)—四点共圆

中考数学满分之路(二) ——四点共圆一、使用定义解题圆的定义 平面上到一个定点的距离等于定长的点的集合叫做圆. 在题目中出现共端点的等线段时,可尝试作出圆辅助求解.例 (1)如图,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2,则BD 的长为______.(2)如图,在等腰△ABC中,AB AC =D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点F ,则AD AF ⋅的值为______.E1. 如图,抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点. (1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△'BC D ,若点'C 恰好落在抛物线的对称轴上,求点'C 和点D 的坐标;(3)设点P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.2. 问题背景如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是2BC BDAB AB= 迁移应用(1)如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .ⅰ)求证:△ADB ≌△AEC ;ⅱ)请直接写出线段AD ,BD ,CD 之间的等量关系式. 拓展延伸(2)如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .ⅰ)求证:△CEF 是等边三角形; ⅱ)若AE =5,CE =2,求BF 的长.图1图2图33. 如图,AB 是半圆⊙O 的直径,点C 为半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接F A ,FC ,若2AFC BAC ∠=∠,求证:F A ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接F A ,FG ,FG 与AC 相交于点P ,且AF FG =.①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE BD =,90GOE ∠=,⊙O 的半径为2,求EP 的长.图1 图2二、圆内接四边形的性质与判定定理性质定理1 圆的内接四边形的对角互补.定理2 圆内接四边形的外角等于它的内角的对角.圆周角定理的推论同弧所对的圆周角相等.判定圆内接四边形判定定理1 如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.圆内接四边形判定定理2 如果一个四边形一边与一对角线的夹角等于其对边与另一对角线的夹角,那么这个四边形的四个顶点共圆.上述定理在应用时的书写格式如下①∵A,B,C,D四点共圆,∴∠BAD+∠BCD=180°.②∵A,B,C,D四点共圆,∴∠DCE=∠BAD.③∵A,B,C,D四点共圆,∴∠ACB=∠ADB. ④∵∠BAD+∠BCD=180°,∴A,B,C,D四点共圆.⑤∵∠DCE=∠BAD,∴A,B,C,D四点共圆.⑥∵∠ACB=∠ADB,∴A,B,C,D四点共圆.EE4. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AB 于点E ,若4BC =,△AOE 的面积为6,则sin BOE ∠的值为______.5. 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =. (1)求证:AC AD CE =+;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作PQ DP ⊥,交直线BE 与点Q ;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.DBP6. 如图,已知△ABC 是等边三角形,点D ,E 分别在边AC ,AB 上,且CD AE =,BD 与CE 相交于点P . (1)求证:△ACE ≌△CBD ;(2)如图2,将△CPD 沿直线CP 翻折得到对应的△CPM ,过C 作CG ∥AB ,交射线PM 于点G ,PG 与BC 相交于点F ,连接BG .ⅰ)试判断四边形ABGC 的形状,并说明理由;ⅱ)若四边形ABGC的面积为,1PF =,求CE 的长.图1图2三、与圆有关的比例线段相交弦定理 圆内的两条弦,被交点分成的两条线段长的积相等.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等. 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.上述定理在应用时的书写格式如下 由相交弦定理, 得PA PB PC PD ⋅=⋅.由割线定理, 得PA PB PC PD ⋅=⋅.由切割线定理, 得2PA PB PC =⋅.7. 如图,已知AB 是⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P . 求证:PE =PC .P8. 如图1,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =4,CD =16.(1)求⊙O 的半径r 的长度;10r =; (2)求tan ∠CMD ;(3)如图2,直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求H E H F ⋅的值.图1图29. 已知BC 为⊙O 的直径,AC 为⊙O 的切线,C 为切点,AD =BD .(1)如图1,求证:∠A =45°;(2)如图2,E 为⊙O 上一点,连接DE 交BC 于点F ,过点F 作BC 的垂线交BE 于点G ,求证:FG =FC ;(3)如图3,在(2)的条件下,若EG BDF 的面积为15(BF >BD ),求⊙O 的面积.图1BC图2CB图3BC10. (蝴蝶定理)如图,过⊙O的弦PQ的中点M引任意两条弦AB,CD,连接AD,BC分别交PQ于X,Y两点. 求证:MX=MY.证明:分别取AD ,CB 的中点E ,F , 连接OE ,OF ,OM ,OX ,OY ,ME ,MF , ∵∠A =∠C ,∠D =∠B ,∴△ADM ∽△CBM , ∴AM ADCM CB=,又AD =2AE ,CB =2CF , ∴22AD AE AE CB CF CF ==,∴AM AECM CF=,又∠A =∠C , ∴△AEM ∽△CFM ,∴∠AEM =∠CFM ,∵点M ,E ,F 分别是⊙O 的弦PQ ,AD ,CB 的中点, ∴OM ⊥PQ ,OE ⊥AD ,OF ⊥CB ,∴∠OEX +∠OMX =180°,∠OFY +∠OMY =180°, ∴O ,M ,X ,E 四点共圆,O ,M ,Y ,F 四点共圆, ∴∠MOX =∠AEM ,∠MOY =∠CFM ,又∠AEM =∠CFM , ∴∠MOX =∠MOY ,又OM =OM ,∠OMX =∠OMY =90°, ∴△OMX ≌△OMY ,∴MX =MY . 证法二证明:过点D 作DE ∥PQ 交⊙O 于另一点E ,连接MO 并延长交DE 于E , ①当PQ 为直径时,四边形ACBD 为矩形,易证MX =MY ; ②当PQ 不是直径时,由垂径定理推论,得OM ⊥PQ ,又DE ∥PQ , ∴MN ⊥DE ,又MN 过圆心O ,∴MN 垂直平分DE , ∴MD =ME ,∴∠MDE =∠MED ,又PQ ∥DE ,∴∠PMD =∠MDE ,∠QME =∠MED , ∴∠PMD =∠QME ,∠QME =∠MDE ,∵C ,D ,B ,E 四点共圆,∴∠MDE +∠CBE =180°, ∴∠QME +∠CBE =180°, ∴M ,E ,B ,Y 四点共圆,∴∠MEY =∠MBC ,又∠MBC =∠ADC ,∴∠ADC =∠MEY ,又MD =ME ,∠PMD =∠QME , ∴△MDX ≌△MEY ,∴MX =MY .证明:过X 作'XX AB ⊥于'X ,过X 作"XX CD ⊥于"X , 过Y 作'YY CD ⊥于'Y ,过Y 作"YY AB ⊥于"Y ,∵∠A =∠C ,∠D =∠B ,''90AX X CY Y ∠=∠=,""90CX X BY Y ∠=∠=, ∴△'AX X ∽△'CY Y ,△"DX X ∽△"BY Y , ∴''AX XX CY YY =,……①,""DX XX BY YY =,……②, ①×②,得'"'"AX DX XX XX CY BY YY YY ⋅=⋅, ∴'""'AX DX XX XX CY BY YY YY ⋅=⋅⋅,又由相交弦定理及平行线分线段成比例定理,得PX QX MX MXQY PY MY MY ⋅=⋅⋅, ∴22()()()()MP MX MP MX MX MP MY MP MY MY -⋅+=-⋅+,即222222MP MX MX MP MY MY -=-, 根据比例的基本性质,得22222222222222()1()MP MX MX MP MX MX MP MP MY MY MP MY MY MP --+====--+, ∴22MX MY =,∴MX =MY . 证法四证明:连接PA ,PD ,QC ,QB ,根据共圆定理,(共圆定理:同圆或等圆中的三角形面积比等于三边乘积之比) 得PAD QCB S PA PD AD PA PD ADS QB QC BC QB QC BC∆∆⋅⋅==⋅⋅⋅⋅, 又△PAM ∽△BQM ,△PDM ∽△CQM ,△ADM ∽△CBM , ∴22PAD AMDQCB CMBS PA PD AD AM MP AM AM S S QB QC BC MQ MC MC MC S ∆∆∆∆=⋅⋅=⋅⋅==, ∴QCB PAD AMD CMB S S S S ∆∆∆∆=,即PX QYMX MY=, ∴1MY QY MY QY MQ MX PX MX PX MP +====+, ∴MX =MY .B证明:连接AO 并延长交⊙O 于另一点E ,连接CO 并延长交⊙O 于另一点F ,连接BF ,DE 交于点G , 六边形CFBAED 内接于⊙O ,CF 交AE 于点O ,FB 交ED 于点G ,BA 交DC 于点M ,根据帕斯卡定理,得M ,O ,G 三点共线, 连接MG ,GX ,GY ,∵AE ,CF 为⊙O 的直径,∴∠ADE =90°,∠CBF =90°, ∵MP =MQ ,PQ 不是⊙O 的直径,(PQ 为直径时,易证) ∴OM ⊥PQ ,∴D ,G ,M ,X 四点共圆,B ,G ,M ,Y 四点共圆, ∴∠MGX =∠ADM ,∠MGY =∠CBM ,又∠ADM =∠CBM , ∴∠MGX =∠MGY ,又MG =MG ,∠GMX =∠GMY , ∴△GMX ≌△GMY , ∴MX =MY .帕斯卡定理 如果一个六边形内接于一条二次曲线(圆、椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.B中考不考系列(二)——2019IMO第2题在三角形ABC中,点A1在边BC上,点B1在边AC上. 点P和Q分别在线段AA1和BB1上,且满足PQ平行于AB. 在直线PB1上取点P1,使得点B1严格位于点P与点P1之间,并且∠PP1C=∠BAC. 类似地,在直线QA1上取点Q1,使得点A1严格位于点Q与点Q1之间,并且∠CQ1Q=∠CBA.证明:点P,Q,P1,Q1共圆.证明:延长1AA ,1BB 分别交△ABC 的外接圆于2A ,2B ,连接22A B , ∵PQ ∥AB ,∴22ABB PQB ∠=∠,又222ABB AA B ∠=∠, ∴222PQB AA B ∠=∠,∴22,,,P Q A B 四点共圆,连接2B C ,∵1PPC BAC ∠=∠,2BB C BAC ∠=∠, ∴12PPC BB C ∠=∠,∴121,,,P B B C 四点共圆,连接12PB ,∵11212B PB B CB ∠=∠,222AA B ACB ∠=∠, ∴2122B PP B A P ∠=∠,∴122,,,P A P B 四点共圆,连接2A C ,∵1CQ Q CBA ∠=∠,2CA A CBA ∠=∠, ∴12CQ Q CA A ∠=∠,∴121,,,Q A A C 四点共圆,连接12Q A ,∵11212AQ A ACA ∠=∠,222BB A BCA ∠=∠, ∴2122A QQ A B Q ∠=∠,∴122,,,Q B Q A 四点共圆, ∴2112,,,,,P Q A Q P B 六点共圆, ∴点11,,,P Q P Q 共圆.上述答案是从官方答案翻译而来.【附】官方答案.。

人教版数学九年级上册 四点共圆,解题妙不可言

人教版数学九年级上册  四点共圆,解题妙不可言

人教版数学九年级上册 四点共圆,解题妙不可言四点共圆是一种重要的解题方法,熟练判断四点共圆,并灵活运用圆的相关性质,能有效进行解题.1.对角互补的四边形四点共圆证线段线段例1如图1,在四边形ABCD 中,∠A=∠BCD=90°,BC=CD=210,CE AD 于点E . 求证:AE=CE ; (2)若tanD=3,求AB 的长.(2018年北京石景山区模拟题)分析:根据∠A=∠BCD=90°,利用对角互补的四边形共圆,作出这个圆,从而把问题转化为圆的知识,在圆的背景下求解,可以帮助同学们更容易找到求解思路.解:如图1,因为∠A+∠BCD=180°,所以四边形ABCD 四点共圆,延长CE 交圆于点F ,连接AF ,因为∠A=∠AEC=90°,所以AB ∥CF ,所以BC=AF,因为BC=CD ,所以AF=CD ,因为∠EAF=∠ECD , ∠F=∠D , 所以△AEF ≌△CED ,所以AE=CE.(2)略点评:对角互补的四边形内接于圆,借助四点共圆,可以创造出更多解题所必需的条件,如夹在两平行弦之间的弦相等,为三角形的全等提供“S ”元素.2.对角互补的四边形四点共圆综合题例2 如图2,四边形ABCD 中,AC ,BD 是它的对角线,∠ADC=∠ABC=90°,∠BCD 是锐角.(1)若BD=BC ,求证:sin ∠BCD=ACBD ; (2)若AB=BC=4,AD+CD=6,求:AC BD 的值. (3)若BD=CD ,,AB=6,BC=8。

求:sin ∠BCD 的值.分析:根据∠ADC=∠ABC=90°,可以判定四边形ABCD 是满足四点共圆,且直径为AC ,作出直径为AC 的圆,就把普通的计算转化为圆的基本计算,充分利用圆的知识使得计算更加简便,提高计算的效率.解:(1)因为∠ADC=∠ABC=90°,所以四点A,B,C,D 都在直径为AC 的圆上,如图2,因为BD=BC ,所以∠BCD=∠BDC ,因为∠BAC=∠BDC ,所以∠BAC=∠BCD ,在直角三角形ABC 中, sin ∠BAC=AC BC ,所以sin ∠BCD=ACBD ; (2)如图3,因为AB=BC=4,所以AC=42,延长DC 到点E ,使得CE=AD ,连接BE ,根据四边形的外角等于内对角,所以∠BCE=∠BAD ,所以△BAD ≌△BCE ,所以BD=BE , ∠ABD=∠CBE ,因为∠ABC=90°,AD+CD=6,所以∠DBE=90°,DE=6,所以BD=32,所以AC BD =432423=. (3)如图4,因为BD=CD ,作直径DF ,交BC 于点E ,连接BF ,则BE ⊥DF ,∠DBF=90°,BE=EC=4, 因为AB=6,BC=8,所以AC=DF=10,易证△DEB ∽△BEF ,所以2BE =DE •EF,所以16=(10-EF )•EF,整理,得2EF -10EF+16=0,解得EF=2或EF=8((舍去), 当EF=2时,BF=25,所以sin ∠BCD=sin ∠F=BF BE =524=552.点评:把一般几何问题转化为四点共圆问题,充分利用圆周角定理,垂径定理,把问题顺利求解,且思路顺畅,是值得熟练掌握的好方法.3.圆定义共圆和同底同侧等角的三角形,四顶点共圆,探究综合题例3 如图5,△ABC 和△ADE 都是等边三角形,将△ADE 绕点A 旋转(保持点D 在△ABC 的内部),连接BD ,CE.(1)求证:BD=CE ;(2)当AB=4,AD=2, ∠DEC=60°时,求BD 的长;(3)设射线BD 和射线CE 相交于点Q ,连接QA ,直接写出旋转过程中,QD,QE,QA 之间的数量关系.分析:第一问:这是常规性的旋转问题,只要牢牢抓住旋转的全等性,借助三角形的全等结论就顺利得出.第二问:解决起来就需要多方面的思考:一是平行线的判定问题,二是三点共线问题,三是三点共圆问题,四是三角形的相似问题,五是一元二次方程的根的问题,都需要缜密思考,规范解答,和谐思考才能顺利得解.第三问:看似简单,但是要真正找到三者的数量关系,还需要动一番脑筋,特别是利用同底同侧对等角的三角形,则四点共圆,把问题转化成圆的相关知识解决,使得解题流畅,简洁,这里的分类思想也发挥着重要的作用.解:(1)如图5,由△ABC 和△ADE 都是等边三角形,所以AB=AC,AD=AE ,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE ,所以△BAD ≌△CAE ,所以BD=CE ;(2)根据(1)知道:∠BDA=∠CEA , 因为∠DEC=60°,所以∠CEA=∠BDA=120°,所以∠ADE+∠BDA=180°,所以B,D,E 三点共线,设点G 是AB 的中点,则AG=AD=AE=DE=2,所以点G,D,E 在以A 为圆心,半径为2的圆上,延长GA 交圆于点F ,连接DG,EF ,如图6, 易证△BGD ∽△BEF ,所以BFBD BE BG =,所以BG •BF =BD •BE,所以12=BD(BD+2), 整理,得2BD +2BD-12=0,解得BD=-1+13或BD=-1-13 ((舍去),所以BD 的长为13-1;(3)当点D 在三点B,D,E 共线时的左边时,如图7,QD,QE,QA 之间的数量关系是: QD=QA+QE.理由如下:根据(1)知道:∠ABD=∠ACE ,所以∠QBC+∠QCB=60°-∠ABD +60°+∠ACE=120°,所以∠BQC=60°,因为∠DAE=60°,所以∠BQC=∠DAE ,所以A,D,E,Q 四点共圆,延长AQ 到点F ,使得QF=QE,连接EF ,则∠FQE=∠ADE=60°,所以△QEF 是等边三角形, 所以∠DQE=∠AFE=60°,∠FAE=∠QDE,EF=QE ,所以△FAE ≌△QDE ,所以AF=QD , 所以QD=QA+QF=QA+QE.当点D 在三点B,D,E 共线时的右边时,如图8,QD,QE,QA 之间的数量关系是:QA=QD+QE.请同学们仿照上述证明,结合图形自己给出证明.点评:四点共圆是一种非常有效的解题方法,希望同学们能尽量熟练掌握,不仅能开阔自己的视野,提高解题的效率,更重要的是丰富自己的知识储备,不受知识的局限,让自己的数学解题游刃有余,提高自己数学解题能力.4.同底同侧等角的三角形,四顶点共圆,判定四边形的形状例4 如图9,已知△ABC和△ADE都是等边三角形,点D在边BC上,点E在边AD的右侧,连接CE.(1)求证:∠ACE=60°;(2)在边AB上取一点F,使BF=BD,联结DF、EF.求证:四边形CDFE是等腰梯形.分析:第一问:充分利用三角形的全等,结论就顺利得到.第二问:证明抓住两个关键点,一是证明DF=CE,二是证明CD∥EF,利用好等边三角形的性质,四点共圆的判定方法,可以巧妙破解.解:(1)由△ABC和△ADE都是等边三角形,所以AB=AC,AD=AE,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE,所以△BAD≌△CAE,所以∠ABD=∠ACE=60°;(2)由BF=BD,∠ABD=60°,所以△BFD是等边三角形,所以BD=DF=CE.因为∠ADE=∠ACE=60°,所以A,D,C,E四点共圆,因为∠AFD+∠AED=180°,所以点A,F,D,E四点共圆,所以点A,F,D,C,E五点共圆,所以∠AFE=∠ADE=60°,所以∠AFE=∠B,所以CD∥EF,所以四边形CDFE是等腰梯形.点评:此题也可以用其他方法求解,感兴趣的同学可以自我尝试一下.。

四川省成都市石室中学九年级数学上册第四单元《圆》测试题(包含答案解析)

四川省成都市石室中学九年级数学上册第四单元《圆》测试题(包含答案解析)

一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 3.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个4.下列说法正确的是( )A .在同圆或等圆中,如果两条弧相等,则它们所对的圆心角也相等B .三点确定一个圆C .平分弦的直径垂直于这条弦D .90°的圆心角所对的弦是直径5.如图,在半径为8的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,30D ︒∠=,下列结论不正确的是( )A .OA BC ⊥B .83BC =C .四边形ABOC 是菱形D .扇形OAC 的面积为643π 6.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3 )A .3B .3C .3π6-D .3π6- 7.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cm B .12cm C .11cm D .10cm 8.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 9.如图,不等边ABC 内接于O ,下列结论不成立的是( )A .12∠=∠B .14∠=∠C .2AOB ACB ∠=∠D .23ACB ∠=∠+∠ 10.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139°11.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A.22+1 B.22+2 C.42+1 D.42-212.一个圆锥的底面直径为4 cm,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于()A.4πcm2B.8πcm2C.12πcm2D.16πcm2第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.如图,扇形AOB的圆心角是直角,半径为23,C为OB边上一点,将△AOC沿AC 边折叠,圆心O恰好落在弧AB上的点D,则阴影部分面积为___________14.已知O的面积为 ,则其内接正六边形的边长为______.15.如图所示,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆圆心P的坐标是______.16.边长为2的正方形ABCD 的外接圆半径是____________.17.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.18.如图,若∠BOD =140°,则∠BCD=___________ .19.已知圆心O 到直线l 的距离为5,⊙O 半径为r ,若直线l 与⊙O 有两个交点,则r 的值可以是________.(写出一个即可)20.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题21.如图,在平面直角坐标系中,点A 的坐标是()10,0,点B 的坐标是()8,0,点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.(1)求CD 的长;(2)求直线BC 的解析式.22.已知:如图,ABC 中,BC AC =,以BC 为直径的O 交AB 于点O ,过点D 作DE AC ⊥于点E ,交BC 的延长线于点F .=,(2)DF是O的切线.求证:(1)AD BD23.如图,O的半径为2,四边形ABCD内接于O,圆心O到AC的距离等于3.(1)求AC的长;∠的度数.(2)求ADC24.如图,OA、OB、OC分别是⊙O的半径,且AC=CB,D、E分别是OA、OB的中点.CD与CE相等吗?为什么?25.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E 是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°,①求∠OCE的度数;②若⊙O的半径为2EF的长.=,点D在弧BC上运动,过点D作26.如图,O是ABC的外接圆,且AB ACDE BC,DE交AB的延长线于点E,连接AD、BD.//(1)求证:ADB E ∠=∠;(2)当6AB =,3BE =时,求AD 的长?(3)当点D 运动到什么位置时,DE 是O 的切线?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对称轴的定义对A 进行判断;根据垂径定理的推论对B 进行判断;根据等弧定义对C 进行判断;根据圆心角定理对D 进行判断.【详解】解:A 、圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以A 选项错误; B 、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误; C 、长度相等的弧不一定能重合,所以不一定是等弧,所以C 选项错误;D 、在同圆或等圆中,相等的圆心角所对的弦相等,所以D 选项正确.故选:D .【点睛】本题考查了圆的有关性质,掌握相关定理是解题关键.2.B解析:B【分析】连接BC ,作AB ,BC 的垂直平分线,交点为点O ,连接OB ,OC ,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x ,则OE=16-x ,再根据OB=OC 即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC ,作AB ,BC 的垂直平分线,交点为点O ,连接OB ,OC ,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.B解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆;(2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B.【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.A解析:A【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【详解】解:A 、弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B 、不在同一直线上的三点确定一个圆,故本选项错误;C 、应强调这条弦不是直径,故本选项错误;D 、90°的圆周角所对的弦是直径,故本选项错误.故选:A .【点睛】本题考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键. 5.D解析:D【分析】利用垂径定理可对A 进行判断;根据圆周角定理得到∠AOC=2∠D=60°,则△OAC 为等边三角形,根据等边三角形的性质和垂径定理可计算出BC =B 进行判断;利用AB=AC=OA=OC=OB 可对C 进行判断;通过判断△AOB 为等边三角形,再根据扇形的面积公式可对D 进行判断.【详解】解:A.∵点A 是劣弧BC 的中点,∴OA ⊥BC ,所以A 正确,不符合题意;B.∵∠AOC=2∠D=60°,OA=OC ,∴△OAC 为等边三角形,∴BC=2×8×sin30°=2×8×2=B 正确,不符合题意; C. 同理可得△AOB 为等边三角形,∴AB=AC=OA=OC=OB ,∴四边形ABOC 是菱形,所以C 正确,不符合题意;D.∵∠AOC=60°,OC=8∴扇形OAC 的面积为2608323603ππ⨯=,所以D 错误,符合题意. 故选:D .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.6.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB3∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=1232601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.7.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.C解析:C【分析】首先证明△OCD 是等边三角形,求出OC=OD=CO=3cm ,再根据S 阴影=S 扇形OAB -S 扇形OCD ,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 9.B解析:B【分析】利用OB=OC 可对A 选项的结论进行判断;由于AB≠BC ,则∠BOC≠∠AOB ,而∠BOC=180°-2∠1,∠AOB=180°-2∠4,则∠1≠∠4,于是可对B 选项的结论进行判断;根据圆周角定理可对C 选项的结论进行判断;利用∠OCA=∠3,∠1=∠2可对D 选项的结论进行判断.【详解】解:∵OB=OC ,∴∠1=∠2,所以A 选项的结论成立;∵OA=OB ,∴∠4=∠OBA ,∴∠AOB=180°-∠4-∠OBA=180°-2∠4,∵△ABC 为不等边三角形,∴AB≠BC ,∴∠BOC≠∠AOB ,而∠BOC=180°-∠1-∠2=180°-2∠1,∴∠1≠∠4,所以B 选项的结论不成立;∵∠AOB 与∠ACB 都对弧AB ,∴∠AOB=2∠ACB ,所以C 选项的结论成立;∵OA=OC,∴∠OCA=∠3,∴∠ACB=∠1+∠OCA=∠2+∠3,所以D选项的结论成立.故选:B.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和等腰三角形的性质.10.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.11.A解析:A【分析】根据同圆的半径相等可知:点C在半径为2的B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【详解】解:如图,BC=,点C为坐标平面内一点,2∴在B上,且半径为2,COD OA,连接CD,取4AM CM =,OD OA =,OM ∴是ACD ∆的中位线, 12OM CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大, 4OB OD ,90BOD ∠=︒,BD ∴= 422CD , 1142222122OM CD ,即OM 的最大值为1;故选:A .【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值时点C 的位置是解题的关键.12.D解析:D【分析】设展开后的圆半径为r ,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积.【详解】解:设展开后的扇形半径为r ,由题可得:4π=2r π解得r =8∴S 扇形=14π×82 =16π故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键. 二、填空题13.【分析】根据题意和折叠的性质可以得到OA=AD ∠OAC=∠DAC 然后根据OA=OD 即可得到∠OAC 和∠DAC 的度数再根据扇形AOB 的圆心角是直角半径为2可以得到OC 的长结合图形可知阴影部分的面积就是解析:3π-【分析】根据题意和折叠的性质,可以得到OA=AD,∠OAC=∠DAC,然后根据OA=OD,即可得到∠OAC和∠DAC的度数,再根据扇形AOB的圆心角是直角,半径为23,可以得到OC的长,结合图形,可知阴影部分的面积就是扇形AOB的面积减△AOC和△ADC的面积.【详解】解:连接OD,∵△AOC沿AC边折叠得到△ADC,∴OA=AD,∠OAC=∠DAC,又∵OA=OD,∴OA=AD=OD,∴△OAD是等边三角形,∴∠OAC=∠DAC=30°,∵扇形AOB的圆心角是直角,半径为23,∴OC=2,∴阴影部分的面积是:29023223602(23)π⨯-⨯=343π-故答案为343π-.【点睛】本题考查扇形面积的计算,解答本题的关键是明确扇形面积的计算公式,利用数形结合的思想解答.14.1【分析】首先根据圆的面积求出圆的半径再证明△AOB是等边三角形即可得到结论【详解】解:如图的面积为设半径为r∴解得∵OA=OB为等边三角形故故答案为:1【点睛】本题考查的是正多边形和圆熟知正六边形解析:1【分析】首先根据圆的面积求出圆的半径,再证明△AOB是等边三角形即可得到结论.【详解】解:如图,O 的面积为π,设半径为r ,2S r ππ∴==,∴21r =,解得,1r =, ∵360606AOB ︒∠==︒,OA=OB AOB ∴为等边三角形,故1AB OA ==.故答案为:1【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键. 15.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =--=∴P 的坐标是()3,33, 故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.16.【分析】如图:连接ACBD 交于点O 即为正方形ABCD 外接圆的圆心根据正方形的性质可得OA=OC ∠AOC =90°根据勾股定理可得OA 和OC 的值即为为正方形ABCD 外接圆的半径【详解】解:如图:连接AC解析:2【分析】如图:连接AC 、BD 交于点O ,即为正方形ABCD 外接圆的圆心,根据正方形的性质可得OA=OC ,∠AOC =90°,根据勾股定理可得OA 和OC 的值,即为为正方形ABCD 外接圆的半径.【详解】解:如图:连接AC 、BD 交于点O ,即为正方形ABCD 外接圆的圆心,∴OA 、OB 、OC 、OD 为正方形ABCD 外接圆的半径∵四边形ABCD 是正方形,∴OA=OC ,∠AOC =90°在Rt △AOC 中,AC 2=OA 2+OC 2,∵AC =2,OA=OC ,∴4=2 OA 2,∴OA =2即正方形ABCD 外接圆的半径为2故答案为2【点睛】本题考查正方形外接圆的有关知识,利用到正方形的性质,勾股定理,解题的关键是熟练掌握所学知识.17.【分析】先根据勾股定理求出斜边AB 的长再根据直角三角形内切圆的半径公式求出半径再算出周长【详解】解:根据勾股定理内切圆半径内切圆周长故答案是:【点睛】本题考查三角形的内切圆解题的关键是掌握直角三角形 解析:2π【分析】先根据勾股定理求出斜边AB 的长,再根据直角三角形内切圆的半径公式求出半径,再算出周长.【详解】解:根据勾股定理,5AB ==, 内切圆半径345122AC BC AB +-+-===, 内切圆周长22r ππ==.故答案是:2π.【点睛】本题考查三角形的内切圆,解题的关键是掌握直角三角形内切圆半径的求解方法. 18.【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌 解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得.【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒,1702BED BOD ∠∴∠==︒, 由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒,故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.19.答案不唯一如516等(满足即可)【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系再取r的值即可【详解】解:∵直线l与⊙O有两个交点圆心O到直线l的距离为5∴∴在此范围内取值即可如516r>即可)解析:答案不唯一,如5.1,6等(满足5【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系,再取r的值即可.【详解】解:∵直线l与⊙O有两个交点,圆心O到直线l的距离为5,r>∴5∴在此范围内取值即可,如5.1,6等.【点睛】此题主要考查了直线与圆的位置关系---相交,熟知直线与圆相交满足的条件是解答此题的关键.20.a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A与星球B飞船C在同一直线上时S取到最小值a-b故答案解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A与星球B、飞船C在同一直线上时,S取到最小值a-b.故答案为:a-b.【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.(1)8CD =;(2)32477y x =-+ 【分析】 (1)根据平行四边形的性质即可求得答案;(2)添加辅助线构造直角三角形,根据平行四边形的性质、垂径定理、勾股定理、线段的和差即可求得()1,3C,再根据待定系数法即可求得直线解析式.【详解】解:(1)∵点B 的坐标是()8,0∴8OB =∵四边形OCDB 是平行四边形∴8CD OB ==.(2)过点M 作MN CD ⊥,连接MC ,过点C 作CH OA ⊥,如图:∵MN CD ⊥,8CD =∴142CN CD == ∵()10,0A∴10OA =∴152OM OA == ∴在Rt CMN 中,223MN CM CN =-=∵四边形OCDB 是平行四边形∴//CD OB∵CH OA ⊥∴四边形CHMN 是平行四边形∴3CH MN ==,4HM CN ==∴1OH OM HM =-=∴()1,3C∴设直线BC 的解析式为:y kx b =+∴083k b k b =+⎧⎨=+⎩∴37247k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BC 的解析式为:32477y x =-+. 【点睛】本题考查了平行四边形的性质和判定、垂径定理、勾股定理、线段的和差、待定系数法等,添加辅助线构造直角三角形是解决问题的关键.22.(1)证明见解析;(2)证明见解析.【分析】(1)如图(见解析),先根据圆周角定理可得90BDC ∠=︒,再根据等腰三角形的三线合一即可得证;(2)先根据等腰三角形的三线合一可得ACD BCD ∠=∠,再根据等腰三角形的性质可得ODC BCD ∠=∠,从而可得ACD ODC ∠=∠,然后根据平行线的判定与性质可得OD DF ⊥,最后根据圆的切线的判定即可得证.【详解】(1)如图,连接CD , BC 是O 的直径,90BDC ∴∠=︒,即CD AB ⊥,又BC AC =,CD ∴是AB 边上的中线(等腰三角形的三线合一),AD BD ∴=;(2)如图,连接OD ,,BC AC CD AB =⊥,ACD BCD ∴∠=∠,OC OD =,ODC BCD ∴∠=∠,ACD ODC ∴=∠∠,//OD AC ∴,DE AC ⊥,即DF AC ⊥,OD DF ∴⊥,又OD 是O 的半径,DF ∴是O 的切线.【点睛】本题考查了等腰三角形的三线合一、圆周角定理、圆的切线的判定等知识点,较难的是题(2),熟练掌握圆的切线的判定定理是解题关键.23.(1)2;(2)150︒【分析】(1)过点O 作OE AC ⊥于点E ,根据勾股定理求出CE ,即可得出答案;(2)连接OA ,先求出60AOC ∠=︒,根据同弧所对的圆周角是圆心角的一半得出∠B=30°,即可得出答案.【详解】(1)过点O 作OE AC ⊥于点E ,如图,则在Rt OCE 中,3OE =;2OC =,∴()2222231CE OC OE =-=-=∴22AC CE ==;(2)连接OA ,如图:∵由(1)知,在AOC △中,AC OA OC ==,∴60AOC ∠=︒,∵弧AC =弧AC , ∴1302B AOC ∠=∠=︒, ∴180********ADC B ︒︒∠=-∠=-=︒︒.【点睛】 本题考查了垂径定理,同弧所对的圆周角是圆心角的一半,掌握这些知识点是解题关键. 24.CD=CE .见解析.【分析】由题意易得OD=OE ,由等弧所对的圆心角相等可得DOC EOC ∠=∠,进而由全等三角形的判定证得△CDO ≌△CEO ,进而求证结论.【详解】CD=CE .∵ D 、E 分别是OA 、OB 的中点, ∴12OD OA ,12OE OB =, ∴OD=OE ,∵AC CB =.∴DOC EOC ∠=∠,又∵OC=OC ,∴△CDO ≌△CEO ,∴CD=CE .【点睛】本题主要考查圆圆周角定理、全等三角形的判定和性质,解题的关键是由等弧所对的圆心角相等求得DOC EOC ∠=∠.25.(1)见解析;(2)①45°,②2.【分析】(1)由切线性质知OC ⊥CD ,结合AD ⊥CD 得AD ∥OC ,即可知∠DAC =∠OCA =∠OAC ,从而得证;(2)①由AD ∥OC 知∠EOC =∠DAO =105°,结合∠E =30°可得结果;②作OG ⊥CE ,根据垂径定理及等腰直角三角形性质知CG =FG =OG ,由OC =得出CG =FG =OG =2,在Rt △OGE 中,由∠E =30°可得GE =【详解】(1)证明:∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴AD ∥OC .∴∠DAC=∠OCA.∵OC=OA,∴∠OCA=∠OAC.∴∠OAC=∠DAC.∴AC平分∠DAO.(2)①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=180°-∠EOC-∠E =45°.②作OG⊥CE于点G,∵OC=2∠OCE=45°,∴CG=OG=2.∴FG=2.在Rt△OGE中,∠E=30°,∴GE=3∴EF=GE−FG=32-.【点睛】本题考查了圆的切线的性质、平行线的判定与性质、垂径定理等知识,熟练掌握切线的性质、平行线的判定与性质、垂径定理是解题的关键.AD=3)理由见解析.26.(1)见解析;(2)36【分析】(1)根据圆周角定理及平行线的性质不难求解;∼,列出比例式即可求解;(2)根据题意证明ABD ADE(3)要使DE是圆的切线,那么D就是切点,AD⊥DE,又根据AD过圆心O,BC∥ED,根据垂径定理可得出D应是弧BC的中点.【详解】=,(1)在ABC中,∵AB AC∠=∠.∴ABC C∵//DE BC,∠=∠,∴ABC E∠=∠.∴E C又∵ADB C ∠=∠,∴ADB E ∠=∠.(2)解:∵ABC AED ∠=∠,A ABC CB =∠∠,ADB ACB ∠=∠,∴ADB E ∠=∠,BAD BAD ∠=∠,∴ABD ADE ∼, ∴AB AD AD AE=, 又6AB =,3BE =, ∴AD =.(3)当点D 是弧BC 的中点时,DE 是O 的切线. ∵当点D 是弧BC 的中点时,AD BC ⊥,且AD 过圆心O , 又∵//DE BC ,∴AD ED ⊥.∴DE 是O 的切线. 【点睛】本题主要考查了圆周角定理,切线的判定,平行线的性质,垂径定理相似三角形的判定与性质等知识点,正确运用好圆心角,弧,弦的关系是解题的关键.。

人教版数学九年级上册 四点共圆,解题妙不可言

人教版数学九年级上册  四点共圆,解题妙不可言

人教版数学九年级上册 四点共圆,解题妙不可言四点共圆是一种重要的解题方法,熟练判断四点共圆,并灵活运用圆的相关性质,能有效进行解题.1.对角互补的四边形四点共圆证线段线段例1如图1,在四边形ABCD 中,∠A=∠BCD=90°,BC=CD=210,CE AD 于点E . 求证:AE=CE ; (2)若tanD=3,求AB 的长.(2018年北京石景山区模拟题)分析:根据∠A=∠BCD=90°,利用对角互补的四边形共圆,作出这个圆,从而把问题转化为圆的知识,在圆的背景下求解,可以帮助同学们更容易找到求解思路.解:如图1,因为∠A+∠BCD=180°,所以四边形ABCD 四点共圆,延长CE 交圆于点F ,连接AF ,因为∠A=∠AEC=90°,所以AB ∥CF ,所以BC=AF,因为BC=CD ,所以AF=CD ,因为∠EAF=∠ECD , ∠F=∠D , 所以△AEF ≌△CED ,所以AE=CE.(2)略点评:对角互补的四边形内接于圆,借助四点共圆,可以创造出更多解题所必需的条件,如夹在两平行弦之间的弦相等,为三角形的全等提供“S ”元素.2.对角互补的四边形四点共圆综合题例2 如图2,四边形ABCD 中,AC ,BD 是它的对角线,∠ADC=∠ABC=90°,∠BCD 是锐角.(1)若BD=BC ,求证:sin ∠BCD=ACBD ; (2)若AB=BC=4,AD+CD=6,求:AC BD 的值. (3)若BD=CD ,,AB=6,BC=8。

求:sin ∠BCD 的值.分析:根据∠ADC=∠ABC=90°,可以判定四边形ABCD 是满足四点共圆,且直径为AC ,作出直径为AC 的圆,就把普通的计算转化为圆的基本计算,充分利用圆的知识使得计算更加简便,提高计算的效率.解:(1)因为∠ADC=∠ABC=90°,所以四点A,B,C,D 都在直径为AC 的圆上,如图2,因为BD=BC ,所以∠BCD=∠BDC ,因为∠BAC=∠BDC ,所以∠BAC=∠BCD ,在直角三角形ABC 中, sin ∠BAC=AC BC ,所以sin ∠BCD=ACBD ; (2)如图3,因为AB=BC=4,所以AC=42,延长DC 到点E ,使得CE=AD ,连接BE ,根据四边形的外角等于内对角,所以∠BCE=∠BAD ,所以△BAD ≌△BCE ,所以BD=BE , ∠ABD=∠CBE ,因为∠ABC=90°,AD+CD=6,所以∠DBE=90°,DE=6,所以BD=32,所以AC BD =432423=. (3)如图4,因为BD=CD ,作直径DF ,交BC 于点E ,连接BF ,则BE ⊥DF ,∠DBF=90°,BE=EC=4, 因为AB=6,BC=8,所以AC=DF=10,易证△DEB ∽△BEF ,所以2BE =DE ∙EF,所以16=(10-EF )∙EF,整理,得2EF -10EF+16=0,解得EF=2或EF=8((舍去), 当EF=2时,BF=25,所以sin ∠BCD=sin ∠F=BF BE =524=552.点评:把一般几何问题转化为四点共圆问题,充分利用圆周角定理,垂径定理,把问题顺利求解,且思路顺畅,是值得熟练掌握的好方法.3.圆定义共圆和同底同侧等角的三角形,四顶点共圆,探究综合题例3 如图5,△ABC 和△ADE 都是等边三角形,将△ADE 绕点A 旋转(保持点D 在△ABC 的内部),连接BD ,CE.(1)求证:BD=CE ;(2)当AB=4,AD=2, ∠DEC=60°时,求BD 的长;(3)设射线BD 和射线CE 相交于点Q ,连接QA ,直接写出旋转过程中,QD,QE,QA 之间的数量关系.分析:第一问:这是常规性的旋转问题,只要牢牢抓住旋转的全等性,借助三角形的全等结论就顺利得出.第二问:解决起来就需要多方面的思考:一是平行线的判定问题,二是三点共线问题,三是三点共圆问题,四是三角形的相似问题,五是一元二次方程的根的问题,都需要缜密思考,规范解答,和谐思考才能顺利得解.第三问:看似简单,但是要真正找到三者的数量关系,还需要动一番脑筋,特别是利用同底同侧对等角的三角形,则四点共圆,把问题转化成圆的相关知识解决,使得解题流畅,简洁,这里的分类思想也发挥着重要的作用.解:(1)如图5,由△ABC 和△ADE 都是等边三角形,所以AB=AC,AD=AE ,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE ,所以△BAD ≌△CAE ,所以BD=CE ;(2)根据(1)知道:∠BDA=∠CEA , 因为∠DEC=60°,所以∠CEA=∠BDA=120°,所以∠ADE+∠BDA=180°,所以B,D,E 三点共线,设点G 是AB 的中点,则AG=AD=AE=DE=2,所以点G,D,E 在以A 为圆心,半径为2的圆上,延长GA 交圆于点F ,连接DG,EF ,如图6, 易证△BGD ∽△BEF ,所以BFBD BE BG =,所以BG ∙BF =BD ∙BE,所以12=BD(BD+2), 整理,得2BD +2BD-12=0,解得BD=-1+13或BD=-1-13 ((舍去),所以BD 的长为13-1;(3)当点D 在三点B,D,E 共线时的左边时,如图7,QD,QE,QA 之间的数量关系是: QD=QA+QE.理由如下:根据(1)知道:∠ABD=∠ACE ,所以∠QBC+∠QCB=60°-∠ABD +60°+∠ACE=120°,所以∠BQC=60°,因为∠DAE=60°,所以∠BQC=∠DAE ,所以A,D,E,Q 四点共圆,延长AQ 到点F ,使得QF=QE,连接EF ,则∠FQE=∠ADE=60°,所以△QEF 是等边三角形, 所以∠DQE=∠AFE=60°,∠FAE=∠QDE,EF=QE ,所以△FAE ≌△QDE ,所以AF=QD , 所以QD=QA+QF=QA+QE.当点D 在三点B,D,E 共线时的右边时,如图8,QD,QE,QA 之间的数量关系是:QA=QD+QE.请同学们仿照上述证明,结合图形自己给出证明.点评:四点共圆是一种非常有效的解题方法,希望同学们能尽量熟练掌握,不仅能开阔自己的视野,提高解题的效率,更重要的是丰富自己的知识储备,不受知识的局限,让自己的数学解题游刃有余,提高自己数学解题能力.4.同底同侧等角的三角形,四顶点共圆,判定四边形的形状例4 如图9,已知△ABC和△ADE都是等边三角形,点D在边BC上,点E在边AD的右侧,连接CE.(1)求证:∠ACE=60°;(2)在边AB上取一点F,使BF=BD,联结DF、EF.求证:四边形CDFE是等腰梯形.分析:第一问:充分利用三角形的全等,结论就顺利得到.第二问:证明抓住两个关键点,一是证明DF=CE,二是证明CD∥EF,利用好等边三角形的性质,四点共圆的判定方法,可以巧妙破解.解:(1)由△ABC和△ADE都是等边三角形,所以AB=AC,AD=AE,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE,所以△BAD≌△CAE,所以∠ABD=∠ACE=60°;(2)由BF=BD,∠ABD=60°,所以△BFD是等边三角形,所以BD=DF=CE.因为∠ADE=∠ACE=60°,所以A,D,C,E四点共圆,因为∠AFD+∠AED=180°,所以点A,F,D,E四点共圆,所以点A,F,D,C,E五点共圆,所以∠AFE=∠ADE=60°,所以∠AFE=∠B,所以CD∥EF,所以四边形CDFE是等腰梯形.点评:此题也可以用其他方法求解,感兴趣的同学可以自我尝试一下.例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB 的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD +AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ 1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∴∠BAD=∠E.∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∴∠EDC=∠ABC.∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于 E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE=PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB ≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O 连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB =QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D 四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C 四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形ABCD中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF=c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a ≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a,DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcos α=AB+AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,。

人教版初三数学上册四点共圆

人教版初三数学上册四点共圆
5、通过活动,同学们推测出了四边形的四个顶点共圆的条件,可我们只画了几个图形,要想运用这个推断,还需要证明,那如何证明呢?
6、不在同一条直线上的三点是能共圆的,如果四点不能共圆,但其中的三点是可以保证共圆的,余下的点与过三点的圆是什么位置关系呢?
7、圆周角定理有哪些内容?
8、怎样利用圆中的性质定理来解决问题呢?
学生先进行讨论,思考最好的证明方法。然后引导学生利用反证法进行证明。在证明的过程中要让学生考虑到所有的图形情况。
证明过程:
已知:四边形ABCD中,
∠B+∠ADC=180º
求证:A、B、C、D四点共圆
证明:利用反证法:
如图1:假设A、B、C、D四点不共圆,D点在圆内。
延长AD与圆交于点E,连接CE则:∠B+∠E=180º
【活动3】
问题
1、通过这节课的活动,你有哪些收获?
2、你还能借助第三种载体探究四点共圆的条件吗?
教师带领学生从知识、方法、数学思想等方面小结本节课所做活动,并关注不同层次的学生对所学内容的理解和掌握。
教师布置新的问题继续激发学生的探究热情。
通过小节使学生总结本节课所学到的知识、技能、方法。培养学生数学思想、数学方法、数学能力和对数学的积极情感。
在学生动手画四边形的外接圆的过程中,学生会发现有的四边形的四个顶点能共圆,有的却不行,那这些四边形有什么不同呢?引导学生从四边形的边和角的方面去猜测,探究。
在学生猜到对角互补的四边形的四个顶点能共圆后,还需要引导学生进行证明。
在证明这个推测时,要让
师生行为
活动3的设计是让学生学会利用载体去对问题进行研究。从单一的点过渡到形,让学生由无法下手到主动探究,一步一步地向探究的目标靠近。

(完整版)初三上专题四点共圆

(完整版)初三上专题四点共圆

四点共圆专题讲义例1如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.A1例2. (1)如图,在△ ABC 中,BD、CE 是AC、AB 上的高,/ A=60 ° .求证:ED = _BC 2(2)已知:点0是厶ABC的外心,BE, CD是高.求证:A0丄DE例3.如图,在△ ABC中,AD丄BC, DE丄AB, DF丄AC .求证:B、E、F、C四点共圆.〔、〈* ---- 空R;°7、 / f —*ff A OA=OB=OC/ ADC= / ABC=90°/ ACD= / ABD=90°/ B+ / D=180。

或/A+ / BCD=180。

或/A= / DCE/ A= / D 或/ B= /C1. ______________________________________________________2. _______________________________________________________3.________________________________________________________4.例4•求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中练习1.在△ ABC中,BA BC , BAC , M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2得到线段PQ .(1)若60且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出/ CDB 的度数;(2)在图2中,点P不与点B, M重合,线段CQ的延长线与射线BM交于点D,猜想/ CDB的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点P在线段BM上运动到某一位置(不与点B, M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ = QD,请直接写出的范围.AB • CD + BC • AD=AC • BD .练习2.在△ ABC中,/ A=30°, AB=2j3,将△ ABC绕点B顺时针旋转(0° < <90°),得到△ DBE,其中点A的对应点是点D,点C的对应点是点E,AC、DE相交于点F,连接BF.(1)如图1,若=60°,线段BA绕点B旋转得到线段BD.请补全△ DBE,并直接写出/ AFB的度数;(2)如图2,若=90°,求/ AFB的度数和BF的长;(3)如图3,若旋转(0 ° < <90 °),请直接写出/ AFB的度数及BF的长(用含的代数式表示)•练习3 .已知,点P是/ MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON 于点B,且使/ APB+ / MON=180°.(1)利用图1,求证:PA=PB ;(2)如图2,若点C是AB与OP的交点,当S APOB=3S APCB时,求PB与PC的比值;图1(3)若/ MON=60°, OB=2,射线AP交ON于点D,且满足且/ PBD = Z ABO,请借助图3补全图形,并求OP长. 练习4 .已知,在△ABC中,AB=AC .过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角0, 直线a交BC边于点P (点P不与点B、点C重合),A RMN的边MN始终在直线a上(点M在点N的上方),且BM = BN,连接CN .(1)当/ BAC=Z MBN=90°时,①如图a,当0=45°时,/ ANC的度数为___________ ;②如图b,当0工45时,①中的结论是否发生变化?说明理由;(2)如图C,当/ BAC= / MBN丰90时,请直接写出/ ANC与/ BAC之间的数量关系,不必证明.练习5.已知:Rt A A'BC'和Rt A ABC 重合,A'C'B = / ACB=90° , BA'C' = / BAC=30° ,现将Rt A A'BC'绕点B按逆时针方向旋转角 a (60°w a 90°),设旋转过程中射线C'C'和线段AA'相交于点D,连接BD .(1)当a=60时时,A'B过点C,如图1所示,判断BD和AA'之间的位置关系,不必证明;(2)当a=90 °时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角a (60°v av90° ),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.图1 图2 图3练习6 .在等边厶ABC 外侧作直线 AP ,点B 关于直线AP 的对称点为D ,连接AD , BD , CD ,其中CD 交直线AP 于点 E .设/ PAB = ,/ ACE = ,/ AEC =. (1)依题意补全图1 ;(2)若 =15°,直接写出 和 的度数;⑶ 如图2,若60° < <120。

初中数学九年级《探究四点共圆的条件》公开课教学设计

初中数学九年级《探究四点共圆的条件》公开课教学设计

第24章活动2 《探究四点共圆的条件》教学设计班级姓名座号一、课型:综合活动课二、活动目标:1、探究四边形四个顶点共圆的条件。

2、通过观察、比较、分析不同的四边形四个顶点能否共圆,提高学生识图能力,发展学生合情推理和演绎推理的能力。

3、在探究四边形四个顶点能够共圆的问题中,学会运用从特殊到一般的数学思想,能利用转化思想来解决问题,感受解决问题的多样性。

三、重点:通过活动探究四点共圆的条件。

难点:对角互补的四边形四个顶点共圆的证明方法。

四、学情分析:经历《圆》的全章单元学习后,学生对圆的相关知识点还未能透彻贯通,需要加强能力方面的训练。

让学生自己结合线索推理发现、得出结论,课堂教学既要重视数学结论的探索过程,又要强化各种技能之间的综合运用。

五、教具:多媒体设备(含几何画板、PPT、投影展台)六、教学反思:四点共圆研究方法具有多样性和灵活性,理解点和圆的位置关系,实现位置关系和数量关系的相互转化,体现知识的普遍联系和深入发展特性,丰富学生的研究方法。

通过观察、实验操作、归纳猜想、验证活动,使不同层次学生思维水平和推理水平有不同的提高。

表格式梳理对照,自学复习相关知识点,以数学活动为契机,培养探索精神,调动全章圆的知识的相关储备,串联综合运用的能力猜想并加以验证。

七、课堂过程活动一、考题片段引入如图,已知矩形ABCD,,动点E 从点B 沿线段BC 运动到点C 停止,连结AE,以AE 为边作矩形AEFG,使边FG 过点 D.直接写出点G 所经过的路径长。

关键:点G 路径是什么样的轨迹?★(设计意图)从考题片段引入,清晰给出学习目标,引发学生思考。

在完成表格二猜想一后再进行展开,结合几何画板演示动态过程,运用新结论,形成基本数学图形模式。

活动二、复习旧知类比迁移表格一多边形任意一个三角形任意一个四边形有且只有个外接圆外接圆多边形名称内接三角形(根据圆的定义)共圆的顶点要具备的条件三个顶点到定点(心)的距离都等于定长(即)即:OA=OB=OC个顶点到定点(心)的距离都等于定长(即)即:OA=OB=OC=OD 定点(外心)的作法任意两边交点任意两边交点提醒:三角形也是任意多边形组成的基本图形单位。

九年级数学奥数知识点专题精讲---四点共圆

九年级数学奥数知识点专题精讲---四点共圆

知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。

在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。

因此,掌握四点共圆的方法很重要。

判定四点共圆最基本的方法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。

将上述判定推广到一般情况,得:2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。

3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。

4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。

运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。

其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。

2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。

3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。

另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。

例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档