人教版物理必修二:第六章 《万有引力与航天》章末检测
高中物理 第6章 万有引力与航天章末自测 新人教版必修2(2021年最新整理)
2016-2017学年高中物理第6章万有引力与航天章末自测新人教版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中物理第6章万有引力与航天章末自测新人教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中物理第6章万有引力与航天章末自测新人教版必修2的全部内容。
第6章万有引力与航天一、选择题(1~6题只有一个选项符合题目要求,7~10题有多个选项符合题目要求)1.下列说法正确的是()A.绕地球做匀速圆周运动的宇宙飞船,其速度可能大于7.9 km/sB.在绕地球做匀速圆周运动的宇宙飞船中,一细线一端固定,另一端系一小球,小球可以在以固定点为圆心的平面内做匀速圆周运动C.人造地球卫星返回地球并安全着陆的过程中一直处于失重状态D.嫦娥三号在月球上着陆的过程中可以用降落伞减速解析:地球的第一宇宙速度也是近地飞行中的最大环绕速度,故绕地球做匀速圆周运动的宇宙飞船的速度不可能大于7。
9 km/s,A项错;在绕地球做匀速圆周运动的飞船中,小球处于完全失重状态,拉力提供小球做圆周运动的向心力,拉力只改变速度方向,不改变速度大小,小球做匀速圆周运动,B项正确;人造地球卫星返回地球并完全着陆过程中做减速运动,加速度方向向上,处于超重状态,C项错;在月球上没有空气,故不可以用降落伞减速,D项错。
答案:B2.两个密度均匀的球体,相距r,它们之间的万有引力为10-8N,若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为( )A.10-8 N B.0.25×10-8 NC.4×10-8 N D.10-4 N解析:原来的万有引力为:F=G错误!后来变为:F′=G错误!=G错误!。
高中物理第六章万有引力与航天章末质量评估新人教版必修2(new)
第六章万有引力与航天章末质量评估(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.某行星绕太阳运动的轨道如图所示,则以下说法不正确的是( )A.太阳一定在椭圆的一个焦点上B.该行星在a点的速度比在b、c两点的速度都大C.该行星在c点的速度比在a、b两点的速度都大D.行星与太阳的连线在相等时间内扫过的面积是相等的解析:由开普勒第一定律知,太阳一定位于椭圆的一个焦点上,A正确;由开普勒第二定律知太阳与行星的连线在相等时间内扫过的面积是相等的,因为a点与太阳的连线最短,b点与太阳的连线最长,所以行星在a点速度最大,在b点速度最小,选项B、D正确,C错误.答案:C2.地球对物体的引力大小等于物体对地球的引力,但我们总是看到物体落向地球而地球并不向物体运动,这是因为()A.万有引力定律不适用于地球和物体B.牛顿第三定律不适用于地球和物体C.以地球上的物体作为参考系,看不到地球向物体运动,如果以太阳为参考系,就可以看到地球向物体运动D.地球的质量太大,产生的加速度很小,即便以太阳为参照物,也看不到地球向物体运动解析:万有引力是普遍适用的,A错误.两物体之间的万有引力也是一对作用力与反作用力,同样遵循牛顿第三定律,B错误.地球的质量太大,产生的加速度很小,即便以太阳为参照物,也看不到地球向物体运动,C错误,D正确.答案:D3.有一质量分布均匀的球状行星,设想把一物体放在该行星的中心位置,则此物体与该行星间的万有引力是()A.零B.无穷大C.无穷小D.无法确定解析:许多同学做此题时,直接将r=0代入公式F=GMmr2,得出F为无穷大的错误结论.这是因为当物体位于行星中心时,行星不能再视为质点.如图所示,将行星分成若干关于球心O 对称的质量小块,其中每一小块均可视为质点.现取同一直径上关于O对称的两个小块m、m′,它们对球心处物体的万有引力大小相等,方向相反,其合力为零.由此推广到行星中所有的其他质量小块.因此行星与物体间存在着万有引力,但这些力的合力为零.故正确选项为A.答案:A4.宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( )A.3年B.9年C.27年D.81年解析:开普勒第三定律中的公式R3T2=k,解得:T=错误!。
高中物理人教版必修二第六章:万有引力与航天 单元测试(含解析)
高中物理人教版必修二第六章:万有引力与航天单元测试一、单选题(本大题共10小题)1.关于开普勒对行星运动规律的认识,下列说法中正确的是A. 所有行星绕太阳的运动都是匀速圆周运动B. 所有行星以相同的速率绕太阳做椭圆运动C. 对于每一个行星在近日点时的速率均大于它在远日点的速率D. 所有行星轨道的半长轴的二次方与公转周期的三次方的比值都相同2.地球的质量是月球质量的81倍,若地球吸引月球的力的大小为F,则月球吸引地球的力的大小为A. B. F C. 9F D. 81F3.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就.已知地球的质量为M,引力常量为G,飞船的质量为m,设飞船绕地球做匀速圆周运动的轨道半径为r,则A. 飞船在此轨道上的运行速率为B. 飞船在此圆轨道上运行的向心加速度为C. 飞船在此圆轨道上运行的周期为D. 飞船在此圆轨道上运行所受的向心力为4.已知地球质量为月球质量的81倍,地球半径约为月球半径的4倍。
若在月球和地球表面同样高度处,以相同的初速度水平抛出物体,抛出点与落地点间的水平距离分别为月和地,则月:地约为A. 9:4B. 6:1C. 3:2D. 1:15.假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为,赤道的大小为g,地球自转的周期为T,引力常量为则地球的密度为A. B. C. D.6.如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b到地心O的距离分别为、,线速度大小分别为、,则A.B.C.D.7.地球半径为R,地面附近的重力加速度为g,物体在离地面高度为h处的重力加速度的表达式是A. B. C. D.8.2012年6月16日,刘旺、景海鹏、刘洋三名宇航员搭乘“神舟九号”飞船飞向太空.6月24日执行手动载人交汇对接任务后,于29日10时03分乘返回舱安全返回.返回舱在A点从圆形轨道I进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于返回舱的运动,下列说法中正确的是A. 在轨道Ⅱ上经过A的速率大于在轨道I上经过A的速率B. 在轨道Ⅱ上运动的周期大于在轨道I上运动的周期C. 在轨道Ⅱ上经过A的加速度小于在轨道I上经过A的加速度D. 在同一轨道Ⅱ上经过A的速率小于经过B的速率9.在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图所示,飞船在返回地面时,要在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的一点,M为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有A. 飞船在轨道Ⅱ上经过P的速度小于经过Q的速度B. 飞船在轨道Ⅱ上经过Q的速度小于在轨道Ⅰ上经过M的速度C. 飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D. 飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过M的加速度10.2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。
【高中教育】最新高中物理 第六章 万有引力与航天章末检测 新人教版必修2
——教学资料参考参考范本——【高中教育】最新高中物理第六章万有引力与航天章末检测新人教版必修2______年______月______日____________________部门时间:90分钟分值:100分第Ⅰ卷(选择题共48分)一、选择题(本题有12小题,每小题4分,共48分.其中1~10题为单选题,11~12题为多选题)1.下述说法中正确的是( )A.一天24 h,太阳以地球为中心转动一周是公认的事实B.由开普勒定律可知,各行星都分别在以太阳为圆心的各圆周上做匀速圆周运动C.太阳系的八颗行星中,水星离太阳最近,由开普勒第三定律可知其运动周期最小D.月球也是行星,它绕太阳一周需一个月的时间【解析】地心说是错误的,故A错;月球是地球的卫星,绕地球一周的时间是一个月,故D错;由开普勒定律可知B错,C正确,故答案选C.【答案】C2.在圆轨道上运行的国际空间站里,一宇航员A静止(相对空间舱)“站”于舱内朝向地球一侧的“地面”B上,如图所示,下列说法正确的是( )A.宇航员A不受地球引力作用B.宇航员A所受地球引力小于他在“地面”上所受的引力C.宇航员A无重力D.若宇航员A将手中一小球无初速(相对于空间舱)释放,该小球会落到“地”面上【答案】B3.如图所示,A为静止于地球赤道上的物体,B为绕地球做圆周运动的卫星,且它们在同一平面内.已知A、B绕地心运动的周期相同.相对于地心,下列说法中正确的是( )A.物体A和卫星B具有相同大小的加速度B.A、B与地心的连线之间的夹角变小C.卫星B运行的线速度值大于物体A的线速度值D.卫星只能是与赤道某点相对静止的同步卫星【解析】物体与卫星的角速度相同,半径大的线速度大;由a=ω2r可知加速度是卫星的大;该卫星不一定是同步卫星,也可能是和同步卫星相同高度的逆着地球自转方向的卫星.【答案】C4.星球上的物体脱离星球引力所需的最小速度称为该星球的第二宇宙速度.星球的第二宇宙速度v2与其第一宇宙速度v1的关系是v2=v1.已知某星球的半径为r,表面的重力加速度为地球表面重力加速度g的,不计其他星球的影响,则该星球的第二宇宙速度为( )A. B. 1gr6C. D.gr【解析】由第一宇宙速度公式可知,该星球的第一宇宙速度为v1=,结合v2=v1可得v2=,C正确.【答案】C5.若已知月球绕地球运动可近似看做匀速圆周运动,并且已知月球绕地球运动的轨道半径为r,它绕地球运动的周期为T,万有引力常量是G,由此可以知道( )A.月球的质量m=4π2r3GT2B.地球的质量M=4π2r3GT2C.月球的平均密度ρ=3πGT2D.地球的平均密度ρ′=3πGT2【解析】由=mr可求得地球的质量M=,但不可求得月球质量,故A错,B对.由于地球的半径未知,故不能求平均密度,C、D均错.【答案】B6.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图所示.下列说法中正确的是( )A.a、c的加速度大小相等,且大于b的加速度B.b、c的角速度大小相等,且小于a的角速度C.a、c的线速度大小相等,且小于d的线速度D.a、c存在在P点相撞的危险【解析】由G=m=mrω2=mr=ma,可知B、C、D错误,A正确.【答案】A7.如图所示,地球球心为O,半径为R,表面的重力加速度为g.一宇宙飞船绕地球无动力飞行且沿椭圆轨道运动,轨道上P点距地心最远,距离为3R,则( )A.飞船在P点的加速度一定是g9B.飞船经过P点的速度一定是gR3C.飞船经过P点的速度大于gR3D.飞船经过P点时,对准地心弹射出的物体一定沿PO直线落向地面【解析】飞船经过P点时的加速度a=,在地球表面的物体有mg=,又因为r=3R,联立解得a=,A正确.若飞船在P点做匀速圆周运动,则v==,而飞船此时在P点做近心运动,所以vP<v=,B、C均错误.飞船经过P点时,对准地心弹出的物体参与两个运动,一个是原有的速度vP,一个是弹射速度vP′,如图所示,合运动并不沿PO直线方向,D错误.【答案】A8.设地球是一质量分布均匀的球体,O为地心.已知质量分布均匀的球壳对壳内物体的引力为零.在下列四个图中,能正确描述x轴上各点的重力加速度g的分布情况的是( )【解析】在地球内部距圆心为r处,G=mg′,内部质量M′=ρ·πr3,得g′=,g′与r成正比;在地球外部,重力加速度g′=G,与成正比,选项A正确.【答案】A9.我国古代神话中传说:地上的“凡人”过一年,天上的“神仙”过一天.如果把看到一次日出就当成“一天”,在距离地球表面约300 km高度环绕地球飞行的航天员24 h内在太空中度过的“天”数约为(已知地球半径R=6 400 km,地球表面处重力加速度g=10m/s2)( )A.1 B.8 C.16 D.24【解析】根据卫星的环绕周期T=2π可得,在距离地球表面约300 km高度环绕地球飞行的航天员运行周期约为1.5 h,24 h内在太空中度过的“天”数约为16天,C正确.【答案】C10.通信卫星大多是相对地球“静止”的同步卫星,理论上在地球周围均匀地配置3颗同步通信卫星,通信范围就覆盖了几乎全部地球表面,可以实现全球通信.假设地球同步卫星的轨道半径是地球半径的n倍,则下列说法中正确的是( )A.地球同步卫星运行的角速度与地球自转的角速度相等B.同步卫星的运行速度是第一宇宙速度的1nC.同步卫星的运行速度是地球赤道上物体随地球自转速度的n2倍D.同步卫星的向心加速度是地球表面重力加速度的(忽略地球自转影响)【解析】地球同步卫星绕地球运行与地球自转的角速度、周期分别相等,A正确.设地球半径为R0,由G=得,v=,故==,B错误.由圆周运动规律v=ωr得,==n,C错误.由G=ma得,==,D错误.【答案】A11.关于人造地球卫星及其中物体的超重、失重问题,下列说法中正确的是( )A.在发射过程中向上加速时产生超重现象B.在降落过程中减速下降时产生超重现象C.进入轨道后做匀速圆周运动,产生失重现象D.失重是由于地球对卫星内物体的作用力减小而引起的【解析】超、失重是一种现象是从重力和弹力的大小关系而定义的,当向上加速以及向下减速时,其加速度都向上,物体都处于超重状态,故A、B选项正确;卫星做匀速圆周运动时,万有引力提供向心力,卫星及卫星内的物体处于完全失重状态,故C选项正确;失重是一种现象,并不是由于物体受到重力减小而引起的,故D选项错误.【答案】ABC12.如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P,远地点为同步圆轨道上的Q),到达远地点Q时再次变轨,进入同步轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是( )A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2<T3D.v2>v1>v4>v3【解析】卫星在椭圆形轨道的近地点P时做离心运动,所受的万有引力小于所需的向心力,即<m,而在圆轨道时万有引力等于向心力,即=,所以v2>v1,同理卫星在转移轨道上Q点做向心运动,可知v3<v4,又由于卫星线速度v=,可知v1>v4,由以上所述可知D选项正确;由于轨道半径R1<R2<R3,因开普勒第三定律=k(k为常量)得T1<T2<T3,故C选项正确.【答案】CD第Ⅱ卷(非选择题共52分)二、计算题(本题有4小题,共52分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(12分)已知月球绕地球做匀速圆周运动的周期为T、轨道半径为r,地球表面的重力加速度为g,试求出地球的密度(引力常量G 为已知量).【解析】由月球绕地球做匀速圆周运动的向心力由万有引力提供,可分析得:G=mr,解得地球质量M=4π2r3GT2由地球表面重力加速度g=G,解得R=GMg又地球密度为ρ=,V=πR3从而由各式联立解得:ρ= .【答案】gr14.(12分)某星球的质量为M,在该星球的表面有一倾角为θ的斜坡,航天员从斜坡顶以初速度v0水平抛出一个小物体,经时间t小物体落回到斜坡上.不计一切阻力,忽略星球的自转,引力常量为G.求航天员乘航天飞行器围绕该星球做圆周飞行的最大速度.【解析】设星球表面的重力加速度为g,则由平抛运动规律有y =gt2,x=v0t①,又=tanθ②.由①②解得g=③.设星球半径为R,则对星球表面处质量为m的物体有mg=G④,设该飞行器绕星球飞行的最大速度为v,有G=m⑤.联立③④⑤式得v= .【答案】42GMv0tanθt15.(14分)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月地距离为3.84×108 m,月球绕地球运动的周期为2.36×106 s,试计算地球的质量M地.(G=6.67×10-11 N·m2/kg2,结果保留1位有效数字)【解析】(1)因行星绕太阳做匀速圆周运动,所以轨道半长轴a即为轨道半径r,根据万有引力定律和牛顿第二定律有G=m行2r①于是有=M太②即k=M太③(2)在地月系统中,设月球绕地球运动的轨道半径为R,周期为T,由②式可得=M地④解得M地=6×1024 kg.【答案】(1)k=M太(2)6×1024 kg16.(14分)晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内,一个可看成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动,春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地变暗而看不到了,已知地球的半径R地=6.4×106 m.地面上的重力加速度为10 m/s2.估算:(答案要求精确到两位有效数字)(1)卫星轨道离地面的高度;(2)卫星的速度大小.【解析】 (1)根据题意作出如图所示由题意得∠AOA′=120°,∠BOA=60°由此得卫星的轨道半径r=2R地,①卫星距地面的高度h=R地=6.4×106 m,②(2)由万有引力提供向心力得=,③由于地球表面的重力加速度g=,④由③④得v===m/s≈5.7×103 m/s.【答案】(1) 6.4×106 m(2) 5.7×103 m/s。
人教版高一物理必修二:第六章万有引力与航天单元测试试题(含解析)
第六章 第4单元 万有引力与航天1.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。
以下判断正确的是( )A .甲的周期大于乙的周期B .乙的速度大于第一宇宙速度C .甲的加速度小于乙的加速度D .甲在运行时能经过北极的正上方2.“嫦娥二号”是我国月球探测第二期工程的先导星。
若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T ,已知引力常量为G ,半径为R 的球体体积公式V =43πR 3,则可估算月球的( )A .密度B .质量C .半径D .自转周期3.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度。
星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1。
已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的1/6。
不计其他星球的影响。
则该星球的第二宇宙速度为( )A.gr 3B.gr 6C.gr3D.gr4.假设有一个从地面赤道上某处连向其正上方地球同步卫星的“太空电梯”。
关于“太空电梯”上各处,说法正确的是( )A .重力加速度相同B .线速度相同C .角速度相同D .各质点处于完全失重状态5.木星是太阳系中最大的行星,它有众多卫星。
观察测出:木星绕太阳做圆周运动的半径为r 1、周期为T 1;木星的某一卫星绕木星做圆周运动的半径为r 2、周期为T 2。
已知万有引力常量为G ,则根据题中给定条件( )A .能求出木星的质量B .能求出木星与卫星间的万有引力C .能求出太阳与木星间的万有引力D .可以断定r 13T 12=r 23T 226.如图1所示,在同一轨道平面上的三个人造地球卫星A 、B 、C 在某一时刻恰好在同一直线上,下列说法正确的有( )图1A .根据v =gr ,可知v A <vB <vC B .根据万有引力定律,F A >F B >F C C .向心加速度a A >a B >a CD .运动一周后,C 先回到原地点7.我国成功发射了“神舟七号”载人飞船,假设飞船绕地球做匀速圆周运动,下列正确的是( ) A .飞船的运行速度小于地球的第一宇宙速度B .若知道飞船运动的周期和轨道半径,再利用万有引力常量,就可算出地球的质量C .若宇航员从船舱中慢慢“走”出并离开飞船,飞船速率将减小D .若有两个这样的飞船在同一轨道上,相隔一段距离一前一后沿同一方向绕行,只要后一飞船向后喷气加速,则两飞船一定能实现对接8.同重力场作用下的物体具有重力势能一样,万有引力场作用下的物体同样具有引力势能。
人教版高中物理必修二《第六章万有引力与航天》第六章万有引力与航天本章知能检测
高中物理学习材料(灿若寒星**整理制作)第六章万有引力与航天建议用时实际用时设定分值实际得分90分钟100分一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。
)1.甲、乙两个质点间的万有引力大小为F,若甲物体的质量不变,乙物体的质量增加到原来的2倍,同时,它们之,则甲、乙两物体间的万有引力大小将变为()间的距离减为原来的12C .8F D.4FA.FB.F22.由于通信和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同3.两颗靠得较近的天体组成双星,它们以两者连线上某点为圆心做匀速圆周运动,因而不会由于相互的引力作用被吸到一起,不考虑其他天体的影响,下面说法中正确的是()A.它们做圆周运动的角速度,与它们的质量成反比B.它们做圆周运动的线速度,与它们的质量成反比C.它们做圆周运动的向心力,与它们的质量成正比D.它们做圆周运动的半径,与它们的质量成反比4.如图6-1所示,飞船从轨道1变轨至轨道2。
若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的()A.速度大B.向心加速度大C.运行周期长D.角速度小5.一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上。
用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,F N表示人对秤的压力,下列说法中正确的是()A.g′=0B.g′=R2r2gC.F N=0D.F N=m Rrg6.宇宙飞船要与环绕地球运转的轨道空间站对接,飞船为了追上轨道空间站,可采取的措施是()A.可以从较低轨道上加速B.可以从较高轨道上加速C.只能从与空间站同一高度轨道上加速D.无论在什么轨道上,只要加速就行7.人造地球卫星绕地球做匀速圆周运动,假如卫星的线速度减小到原来的12,卫星仍做匀速圆周运动,则()A.卫星的向心加速度减小到原来的18B.卫星的角速度减小到原来的12C.卫星的周期增大到原来的8倍D.卫星的周期增大到原来的2倍8.为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1,总质量为m1。
高一物理人教版必修二-第六章-万有引力与航天单元练习题(含答案)
第六章万有引力与航天一、单选题1.“嫦娥三号”探测器由“长征三号”乙运载火箭从西昌卫星发射中心发射, 首次实现月球软着陆和月面巡视勘察. “嫦娥三号”的部分飞行轨道示意图如图所示. 假设“嫦娥三号”在圆轨道和椭圆轨道上运动时, 只受到月球的万有引力. 下列说法中正确的是( )A. “嫦娥三号”沿椭圆轨道从P点运动到Q点的过程中, 速度逐渐变小B. “嫦娥三号”沿椭圆轨道从P点运动到Q点的过程中, 月球的引力对其做负功C.若已知“嫦娥三号”在圆轨道上运行的半径、周期和引力常量, 则可计算出月球的密度D. “嫦娥三号”在椭圆轨道经过P点时和在圆形轨道经过P点时的加速度相等2.假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g0, 在赤道的大小为g;地球自转的周期为T, 引力常量为G, 则地球的密度为( )A.B.C.D.3.“空间站”是科学家进行天文探测和科学实验的特殊而又重要的场所. 假设“空间站”正在地球赤道平面内的圆周轨道上运动, 其离地球表面的高度为同步卫星离地球表面高度的十分之一, 且运行方向与地球自转方向一致. 下列说法正确的有( )A. “空间站”运行的加速度等于其所在高度处的重力加速度B. “空间站”运行的速度等于同步卫星运行速度的倍C. 站在地球赤道上的人观察到它向西运动D. 在“空间站”工作的宇航员因受到平衡力而在舱中悬浮或静止4.下列说法正确的是( )A. 以牛顿运动定律为基础的经典力学因其局限性而没有存在的价值B. 物理学的发展, 使人们认识到经典力学有它的适用范围C.相对论和量子力学的出现, 是对经典力学的全盘否定D. 经典力学对处理高速运动的宏观物体具有相当高的实用价值5.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力), 且已知地球与该天体的半径之比也为k, 则地球与此天体的质量之比为( )A. 1B.k2C.kD.6.将火星和地球绕太阳的运动近似看成是同一平面内的同方向绕行的匀速圆周运动, 已知火星的轨道半径r1=2.3×1011m, 地球的轨道半径为r2=1.5×1011m, 根据你所掌握的物理和天文知识, 估算出火星与地球相邻两次距离最小的时间间隔约为( )A. 1年B. 2年C. 3年D. 4年7.2012年10月10日太空探索技术公司(SpaceX)的“龙”飞船已与国际空间站成功对接. “龙”飞船运抵了许多货物, 包括实验器材、备件、空间站宇航员所需的衣服和食品以及一个冰箱, 冰箱里还装有冰激凌, 下列相关分析中正确的是( )A. “龙”飞船的发射速度, 国际空间站的运行速度均小于第一宇宙速度B. “龙”飞船欲实现对接, 必须在国际空间站的后下方, 伺机喷气减速变轨, 实现对接C.“龙”飞船喷气加速前, “龙”飞船与国际空间站的加速度大小相等D. 空间站中收到的冰激凌处于完全失重状态8.设地球表面重力加速度为g0, 物体在距离地心4R(R是地球的半径)处, 由于地球的引力作用而产生的加速度为g, 则为( )A. 1B.C.D.9.关于地球的第一宇宙速度, 下列表述正确的是( )A. 第一宇宙速度是物体在地面附近绕地球做匀速圆周运动的速度B. 第一宇宙速度又叫脱离速度C. 第一宇宙速度跟地球的质量无关D. 第一宇宙速度跟地球的半径无关10.下列说法正确的是( )A. 伽利略在探究物体下落规律的过程中用到的科学方法是: 提出问题、猜想、数学推理、实验验证、合理外推、得出结论B. 牛顿第一定律是牛顿第二定律的特例情况, 所以, 牛顿第一定律可以不学C. 牛顿在寻找万有引力的过程中, 他既没有利用牛顿第二定律, 也没有利用牛顿第三定律, 只利用了开普勒第三定律D.第谷通过自己的观测, 发现行星运行的轨道是椭圆, 发现了行星运动定律二、多选题11.(多选)“嫦娥一号”探月卫星发动机关闭, 轨道控制结束, 卫星进入地月转移轨道, 图中MN 之间的一段曲线表示转移轨道的一部分, P是轨道上的一点, 直线AB过P点且和两边轨道相切, 下列说法中正确的是( )A. 卫星在此段轨道上, 动能不变B. 卫星经过P点时动能最小C. 卫星经过P点时速度方向由P指向BD. 卫星经过P点时加速度为012.(多选)在物理学的发展过程中, 许多物理学家的科学发现推动了人类历史的进步. 下列表述符合物理学史实的是( )A.开普勒认为只有在一定的条件下, 弹簧的弹力才与弹簧的形变量成正比B. 伽利略用“月—地检验”证实了万有引力定律的正确性C. 卡文迪许利用实验较为准确地测出了引力常量G的数值D. 牛顿认为在足够高的山上以足够大的水平速度抛出一物, 物体就不会再落回地球上13.(多选)宇宙中, 两颗靠得比较近的恒星, 只受到彼此之间的万有引力作用互相绕转, 称之为双星系统.在浩瀚的银河系中, 多数恒星都是双星系统.设某双星系统P、Q绕其连线上的O点做匀速圆周运动, 如图所示.若PO>OQ, 则( )A. 星球P的质量一定大于Q的质量B. 星球P的线速度一定大于Q的线速度C. 双星间距离一定, 双星的质量越大, 其转动周期越大D. 双星的质量一定, 双星之间的距离越大, 其转动周期越大14.(多选)有a, b, c, d四颗地球卫星, a还未发射, 在地球赤道上随地球表面一起转动, b处于地面附近的近地轨道上做圆周运动, c是地球同步卫星, d是高空探测卫星, 各卫星排列位置如图所示, 则有( )A. a的向心加速度等于重力加速度gB. b在相同时间内转过的弧长最长C. c在4h内转过的圆心角是D. d的运动周期可能是30 h15.(多选)已知地球质量为M, 半径为R, 自转周期为T, 地球同步卫星质量为m, 引力常量为G.有关同步卫星, 下列表述正确的是( )A. 卫星距地面的高度为B. 卫星的运行速度小于第一宇宙速度C. 卫星运行时受到的向心力大小为GD. 卫星运行的向心加速度小于地球表面的重力加速度三、计算题16.经过天文望远镜长期观测, 人们在宇宙中已经发现了许多双星系统, 通过对它们的研究, 使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识, 双星系统由两个星体组成, 其中每个星体的大小都远小于两星体之间的距离, 一般双星系统距离其他星体很远, 可以当作孤立系统来处理(即其它星体对双星的作用可忽略不计). 现根据对某一双星系统的光度学测量确定: 该双星系统中每个星体的质量都是m, 两者相距L, 它们正围绕两者连线上的某一点做匀速圆周运动.(1)试计算该双星系统的运动周期T1.(2)若实际中观测到的运动周期为T2,T2与T1并不是相同的, 目前有一种流行的理论认为, 在宇宙中可能存在一种观测不到的暗物质, 它均匀地充满整个宇宙, 因此对双星运动的周期有一定的影响. 为了简化模型, 我们假定在如图所示的球体内(直径看作L)均匀分布的这种暗物质才对双星有引力的作用, 不考虑其他暗物质对双星的影响, 已知这种暗物质的密度为ρ, 求T1∶T2.17.为了研究太阳演化进程, 需要知道太阳目前的质量M.已知地球半径R=6.4×106m, 地球质量m =6.0×1024kg, 日地中心的距离r=1.5×1011m, 地球表面处的重力加速度g=10 m/s2,1年约为3.2×107s, 试估算太阳目前的质量M.18.假设在半径为R的某天体上发射一颗该天体的卫星.若它贴近该天体的表面做匀速圆周运动的周期为T1, 已知万有引力常量为G.(1)则该天体的密度是多少?(2)若这颗卫星距该天体表面的高度为h, 测得在该处做圆周运动的周期为T2, 则该天体的密度又是多少?四、填空题19.牛顿运动定律和万有引力定律在_____、_________、__________的广阔的领域, 包括天体力学的研究中经受了实践的检验, 取得了巨大的成就.20.地球赤道上的物体A, 近地卫星B(轨道半径等于地球半径), 同步卫星C, 若用TA.TB.TC;vA.vB.vC;分别表示三者周期, 线速度, 则满足________, ________.21.宇航员在某星球表面, 将一小球从离地面h高处以初速v0水平抛出, 测出小球落地点与抛出点间的水平位移为s, 若该星球的半径为R, 万有引力常量为G, 则该星球表面重力加速度为__________, 该星球的平均密度为__________.22.两行星A和B各有一颗卫星a和b, 卫星的圆轨道接近各自行星表面, 如果两行星质量之比MA∶MB=2∶1, 两行星半径之比RA∶RB=1∶2, 则两个卫星周期之比Ta∶Tb=________, 向心加速度之比为________.23.已知绕中心天体做匀速圆周运动的星体的轨道半径r, 运动周期为T,(1)中心天体的质量M=____;(2)若中心天体的半径为R, 则其平均密度ρ=____;(3)若星体在中心天体表面附近做匀速圆周运动, 则其平均密度ρ=____.答案解析1.【答案】D【解析】“嫦娥三号”沿椭圆轨道从P点运动到Q点的过程中, 月球对卫星的引力做正功, 动能增大, 则速度增大, 故A.B错误;根据万有引力等于向心力, 有G =m , 得M=, 据此可知若已知“嫦娥三号”在圆轨道上运行的半径、周期和引力常量, 可求出月球的质量, 但月球的体积未知, 不能求出月球的密度, 故C错误;对于“嫦娥三号”, 有G =ma, a=, 在P点, M和r 相同, 则嫦娥三号在椭圆轨道经过P点时和在圆形轨道经过P点时的加速度相等, 故D正确. 2.【答案】B【解析】根据万有引力与重力的关系解题.物体在地球的两极时: mg0=G ;物体在赤道上时mg+m2R=G.以上两式联立, 解得地球的密度ρ=.故选项B正确, 选项A、C、D错误.3.【答案】A【解析】由v同步=, v空间站=, 则B错. 再结合v=ωr, 可知ω空间站>ω地球, 所以人观察到它向东运动, C错. 空间站的宇航员只受万有引力, 受力不平衡, 所以D错.4.【答案】B【解析】牛顿运动定律能够解决宏观物体的低速运动问题, 在生产、生活及科技方面起着重要作用;解决问题时虽然有一定误差, 但误差极其微小, 可以忽略不计;故经典力学仍可在一定范围内适用. 虽然相对论和量子力学更加深入科学地认识自然规律, 它是科学的进步, 但并不表示对经典力学的否定, 故选项B正确. A.C错误;经典力学不能用于处理高速运行的物体;故D错误.5.【答案】C【解析】在地球上: h=某天体上;h′=因为=k所以=k根据G =mg, G =mg′可知=又因为=k联立得: =k6.【答案】B【解析】根据开普勒第三定律可得=, 解得=≈, 因为T地=1年, 所以T火≈1.9年, 火星与地球转过的角度之差Δθ=2π时, 相邻再次相距最近, 故有( -)t=2π, 解得t≈2.1, 近似为2年, 故B正确.7.【答案】D【解析】第一宇宙速度是人造卫星的最小发射速度, 所以“龙”飞船的发射速度介于7.9 km/s与11.2 km/s之间, 故A错误;“龙”飞船欲实现对接, 必须在国际空间站的后下方, 伺机喷气加速做离心运动, 可以实现对接, 故B错误;“龙”飞船喷气加速前, 在国际空间站的后下方, 根据a =得“龙”飞船与国际空间站的加速度不相等, 故C错误;空间站中收到的冰激凌只受重力, 处于完全失重状态, 故D正确.8.【答案】D【解析】地球表面处的重力加速度和离地心高4R处的加速度均由地球对物体的万有引力产生, 所以有:地面上: G=mg0①离地心4R处: G=mg②由①②两式得=( )2=, 故D正确.9.【答案】A【解析】第一宇宙速度是物体在地面附近做匀速圆周运动的速度, A对, B错;根据G =m 得v =, 可见第一宇宙速度与地球的质量和半径有关, C.D错.10.【答案】A【解析】A项是伽利略在探究物体下落规律的过程中用到的科学方法, A正确;牛顿第一定律指出, 物体“不受外力”作用时的运动状态, 或者是静止不动, 或者是做匀速直线运动. 牛顿第二定律: 物体的加速度跟物体所受的合外力F成正比, 跟物体的质量成反比, 加速度的方向跟合外力的方向相同. B错误;牛顿在寻找万有引力的过程中, 他利用了牛顿第二定律, 牛顿第三定律和开普勒第三定律, C错误;开普勒在第谷观测数据的基础上总结出了行星运动三定律, D错误.11.【答案】BCD12.【答案】CD【解析】胡克认为只有在一定的条件下, 弹簧的弹力才与弹簧的形变量成正比, 故A错误;牛顿用“月-地检验”证实了万有引力定律的正确性, 故B错误;卡文迪许利用实验较为准确地测出了引力常量G的数值, 故C正确;牛顿认为在足够高的高山上以足够大的水平速度抛出一物体, 物体就不会再落在地球上, 故D正确;故选C.D.13.【答案】BD【解析】根据万有引力提供向心力m1ωr1=m2ωr2, r1>r2, 所以m1<m2, 即P的质量一定小于Q的质量, 故A错误. 双星系统角速度相等, 根据v=ωr, 且PO>OQ, P的线速度大于Q的线速度, 故B正确. 设两星体间距为L, O点到P的距离为r1, 到Q的距离为r2, 根据万有引力提供向心力: =m1 r1=m2 r2, 解得周期T=2π, 由此可知双星的距离一定时, 质量越大周期越小, 故C错误;总质量一定, 双星之间的距离越大, 转动周期越大, 故D正确. 故选B.D.14.【答案】BCD【解析】a受到万有引力和地面支持力, 由于支持力等于重力, 与万有引力大小接近, 所以向心加速度远小于重力加速度, 选项A错误;由v=知b的线速度最大, 则在相同时间内b转过的弧长最长, 选项B正确;c为同步卫星, 周期Tc=24 h, 在4 h内转过的圆心角=·2π=, 选项C正确;由T=知d的周期最大, 所以Td>Tc=24 h, 则d的周期可能是30 h, 选项D正确.15.【答案】BD【解析】根据万有引力提供向心力, G =m (H+R), 卫星距地面的高度为H=-R, A错;根据G =m , 可得卫星的运行速度v=, 而第一宇宙速度为, 故B对;卫星运行时受到的向心力大小为Fn=G , C错;根据G =man, 可得卫星运行的向心加速度为an=G , 而地球表面的重力加速度为g=G , D 对.16.【答案】(1)T1=2π(2)T1∶T2=∶1【解析】(1)两星的角速度相同, 故F=mr1ω;F=mr2ω而F=G可得r1=r2①两星绕连线的中点转动, 则=m··ω解得ω1=②所以T1===2π③(2)由于暗物质的存在, 双星的向心力由两个力的合力提供, 则G+G=m·L·ω2④M为暗物质质量, M=ρV=ρ·π( )3⑤联立④⑤式得: ω=⑥T2==⑦联立③⑦式解得: T1∶T2=∶1⑧.17.【答案】1.90×1030kg【解析】地球绕太阳做圆周运动, 万有引力提供向心力, 根据万有引力定律和牛顿第二定律有G =mr ①对地球表面附近质量为m′的物体有G=m′g②联立①②两式解得M=≈1.90×1030kg.18.【答案】(1)(2)【解析】(1)设卫星的质量为m, 天体的质量为M, 卫星贴近天体表面运动时有G =m R, M=.根据数学知识可知天体的体积为V=πR3, 故该天体的密度为ρ===.(2)卫星距天体表面距离为h时, 忽略自转有:G=m(R+h)M=ρ===.19.【答案】宏观低速弱引力【解析】略20.【答案】TA=TC>TB v B>v C>v A【解析】卫星A为同步卫星, 周期与C物体周期相等, 根据卫星绕地球做圆周运动, 万有引力提供向心力得周期T=2π, 所以TA=TC>TB;AC比较, 角速度相等, 由v=ωr, 可知vA<vC;BC比较, 同为卫星, 由人造卫星的速度公式v=, 可知vB>vC,故TA=TC>TB, vB>vC>vA.21.【答案】(1)(2)【解析】(1)设该星球的密度为ρ、重力加速度为g, 小球在该星球表面做平抛运动则: 水平方向: s=v0t, 竖直方向: h=gt2, 联立得: g=.(2)该星球表面的物体受到的重力等于万有引力:mg=G , 该星球的质量为:M=ρ·πR3, 联立得:ρ=22.【答案】1∶48∶1【解析】卫星做圆周运动时, 万有引力提供圆周运动的向心力, 有: G=mR, 得T=2π.故=·=, 由G=ma, 得a=G,故=·=.23.【答案】(1)(2)(3)【解析】(1)根据万有引力提供圆周运动向心力有G =mr , 可得中心天体的质量M=.(2)根据密度公式可知, 中心天体的平均密度ρ===.(3)当星体在中心天体附近匀速圆周运动时有r=R, 所以中心天体的平均密度ρ=.Welcome To Download 欢迎您的下载, 资料仅供参考!。
(人教版)高一物理必修2第六章万有引力与航天单元检测题(含答案)
(人教版)高一物理必修2第六章万有引力与航天单元检测题(含答案)一、选择题(本题共18小题,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.有甲、乙两颗地球同步卫星,它们绕地球运行的轨道可能是图中的哪一个:( )A BCD2.可以发射一颗这样的人造地球卫星,使其圆轨道( )A .与地球表面上某一纬度线(非赤道)是共面同心圆B .与地球表面上某一经度线所决定的圆是共面同心圆C .与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的D .与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的解析:选CD 。
人造卫星绕地球做圆周运动所需的向心力是万有引力提供的,人造卫星受地球的引力一定指向地心,所以任何人造卫星的稳定轨道平面都是通过地心的.A 选项所述的卫星不能满足这个条件,A 错.B 选项所述的卫星虽然满足这个条件,但是由于地球在自转,经线所决定的平面也在转动,这样的卫星又不可能有与地球自转同方向的速度,所以不可能始终在某一经线所决定的平面内,如图所示,故B 项也错.无论高低如何,轨道平面与地球赤道平面重合的卫星都是存在的,C 选项所述卫星就是地球同步卫星,而D 项所述卫星不是同步卫星,故C 、D 项都对.3.嫦娥二号卫星预计将于2010年10月发射。
图4为“嫦娥二号”的姐妹星“嫦娥一号”某次在近地点A 由轨道1变轨为轨道2的示意图,其中B 、C 分别为两个轨道的远地点。
关于上述变轨过程及“嫦娥一号”在两个轨道上运动的情况,下列说法中正确的是( )A .“嫦娥一号”在轨道1的A 点处应点火减速B .“嫦娥一号”在轨道1的A 点处的速度比在轨道2 的A 点处的速度大C .“嫦娥一号”在轨道1的B 点处的加速度比在轨道2的C 点处的加速度大D .以上说法均不正确 答案:C图44. 已知地球质量为M,半径为R,地球表面的重力加速度为g,引力常数为G,有一颗人造地球通讯卫星,在离地面上空高h 处的圆轨道上绕地球做匀速圆周运动,那么这个卫星的运行速率为 ( )A. B. C. D.5.据报道,嫦娥二号探月卫星将于2010年发射,其环月飞行的高度距离月球表面100km ,所探测到的有关月球的数据将比环月飞行高度距离月球表面200km 的嫦娥一号更加翔实。
2019_2020学年高中物理第6章万有引力与航天章末达标测试(含解析)
第六章 万有引力与航天[本卷满分100分,考试时间90分钟]一、选择题(本题共12小题,每小题3分,共36分) 1.下列说法符合史实的是 A .牛顿发现了行星的运动规律 B .胡克发现了万有引力定律C .卡文迪许测出了引力常量G ,被称为“称量地球重量的人”D .伽利略用“月-地检验”证实了万有引力定律的正确性 解析 由物理学史知选项C 正确。
答案 C2.在轨道上运行的人造地球卫星,若卫星上的天线突然折断,则天线将 A .做自由落体运动 B .做平抛运动C .和卫星一起绕地球在同一轨道上运行D .由于惯性沿轨道切线方向做直线运动解析 折断的天线由于惯性而具有卫星原来的速度,在地球引力作用下继续在原轨道上运行。
故选C 。
明确折断的天线与卫星具有相同的运动情况和受力情况是解题的关键。
答案 C3.万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律,以下说法正确的是A .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供B .物体的重力不是地球对物体的万有引力引起的C .人造地球卫星离地球越远,受到地球的万有引力越大D .王亚平在“神舟十号”中处于完全失重状态是由于没有受到万有引力的作用 答案 A4.地球同步卫星到地心的距离r 可由r 3=a 2b 2c4π2求出,已知式中a 的单位是m ,b 的单位是s ,c 的单位是m/s 2,则A .a 是地球半径,b 是地球自转的周期,c 是地球表面处的重力加速度B .a 是地球半径,b 是同步卫星绕地心运动的周期,c 是同步卫星的加速度C .a 是赤道周长,b 是地球自转周期,c 是同步卫星的加速度D .a 是地球半径,b 是地球自转的周期,c 是同步卫星的加速度解析 同步卫星绕地球做圆周运动的向心力由地球对同步卫星的万有引力提供:GMmr 2=m 4π2r T 2,可得:r 3=GMT 24π2,又GM =gR 2,故有:r 3=R 2T 2g 4π2,根据题意可知,a 是地球半径,b 是同步卫星的周期,等于地球自转周期,c 是地球表面的重力加速度,故A 正确。
高一物理必修2人教版必修2 第六章 万有引力与航天 单元测试含答案
第六章 万有引力与航天一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的4个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得零分)1.若已知太阳的一个行星绕太阳运转的轨道半径为r ,周期为T ,引力常量为G ,则可求( )A .该行星的质量B .太阳的质量C .该行星的平均密度D .太阳的平均密度【答案】B【解析】研究行星绕太阳做匀速圆周运动,根据万有引力提供向心力,列出等式GMmr 2=m 4π2T2r ,知道行星的运动轨道半径r 和周期T ,再利用万有引力常量G ,通过前面的表达式只能算出太阳M 的质量,也就是中心体的质量,无法求出行星的质量,也就是环绕体的质量,故A 错误.通过以上分析知道可以求出太阳M 的质量,故B 正确;本题不知道行星的质量和体积,也就无法知道该行星的平均密度,故C 错误.本题不知道太阳的体积,也就不知道太阳的平均密度,故D 错误.2.专家称嫦娥四号探月卫星为“四号星”,计划在2017年发射升空,它的主要任务是更深层次、更全面地科学探测月球地貌、资等方面的信息,完善月球档案资料.已知月球表面的重力加速度为g ,月球的平均密度为ρ.月球可视为半径为R 的球体,“四号星”离月球表面的高度为h ,绕月做匀速圆周运动的周期为T .仅根据以上信息不能求出的物理量是( )A .月球质量B .万有引力常量C .“四号星”与月球间的万有引力D .月球的第一宇宙速度 【答案】C【解析】月球表面的重力与万有引力相等,绕月球圆周运动的向心力由万有引力提供,故有G MmR2=mg月球质量M =ρ·43πR 3所以有G m ·ρ43πR 3R 2=mg 可得万有引力常量G =3g 4R πρ,B 可以;由万有引力常量可以求出月球质量M =gR 2G,A 可以;月球表面的第一宇宙速度即月球重力提供圆周运动向心力有v 1=gR ,D 可以; 由于不知道“四号星”的质量,故无法求出它与月球间的万有引力,故C 不可以. 3.(2018宿迁模拟)“北斗一号”导航卫星系统中有5颗地球同步轨道卫星,定位在距地面约为36 000 km 的地球同步轨道上.关于同步卫星,下面说法正确的是( )A .发射速度小于7.9 km/sB .发射速度大于11.2 km/sC .运行速度小于7.9 km/sD .如果需要,该卫星可以定位在江苏上空 【答案】C【解析】卫星的最小发射速度最小为7.9 km/s ,A 错误;若发射速度大于11.2 km/s ,则要脱离地球,B 错误;近地卫星的运行速度为7.9 km/s ,而同步卫星的轨道半径大,运行速度要小于7.9 km/s ,C 正确;同步卫星只能在赤道上空,D 错误.4.“新视野号”探测器已飞掠冥王星,若“新视野号”由椭圆轨道变轨进入更低的近冥王星圆轨道,已知制动点为椭圆轨道和圆轨道的切点,万有引力常量G =6.67×10-11N·m 2/kg 2,则以下分析正确的是( )A .“新视野号”在地球上发射的速度小于7.9 km/sB .制动时,“新视野号”应向后喷气以变轨进入圆轨道C .若给出在近冥王星圆轨道上的环绕周期,结合题中所给数据可以算出冥王星密度D .若圆轨道上的“新视野号”加速变轨到更高圆轨道,则运动周期变大,向心加速度变大【答案】C【解析】若“新视野号”发射初速度小于7.9 km/s ,则发射不成功,A 错误;制动时,“新视野号”应向前喷气减速从而变轨进入圆轨道,B 错误;根据公式ρ=M V ,G Mm r 2=m 4π2T 2r ,联立解得ρ=3πGT 2,故根据题中数据可计算冥王星密度,C 正确;若圆轨道上的“新视野号”加速变轨至更高圆轨道,运动半径增大,根据G Mm r 2=m 4π2T 2r 可得T =2πr 3GM,则运动周期变大,根据公式a =GMr2,可得向心加速度变小,D 错误.5.金星和木星都绕太阳做匀速圆周运动,木星绕太阳的公转周期是金星绕太阳的公转周期的20倍,那么金星和木星绕太阳运行的线速度大小之比约为( )A .25B .320 C .400 D .3120【答案】B【解析】根据开普勒行星运动第三定律可知,r 3T 2=k ,而v =2πr T ,则v =2π3kT 2T ,故v 金v 木=3T 木T 金=320,故选B.6.拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动,即始终保持与地球、太阳在一条直线上.则此飞行器的( )A .向心力仅由太阳的引力提供B .向心力仅由地球的引力提供C .向心加速度等于地球的向心加速度D .线速度大于地球的线速度 【答案】D【解析】飞行器在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动,靠地球和太阳引力的合力提供向心力,故A 、B 错误;飞行器和地球的角速度相等,根据a =rω2知,飞行器的向心加速度大于地球的向心加速度,故C 错误;根据v =rω知,飞行器的线速度大于地球的线速度,故D 正确.7.(2018定州期末)随着深太空探测的发展,越来越多的“超级类地行星”被发现,某“超级类地行星”半径是地球的1.5倍,质量是地球的4倍,下列说法正确的是( )A .该星球表面的重力加速度是地球表面的重力加速度的169倍B .该星球第一宇宙速度小于地球第一宇宙速度C .绕该星球运行的卫星的周期是半径相同的绕地球运行卫星周期的12D .绕该星球运行的卫星的周期是半径相同的绕地球运行卫星周期的38 6【答案】AC【解析】根据GMm R 2=mg 得,星球表面的重力加速度g =GMR 2,因为“超级类地行星”半径是地球的1.5倍,质量是地球的4倍,则星球表面的重力加速度是地球表面重力加速度的169倍,A 正确;根据GMmr 2=m v 2R,得星球的第一宇宙速度v =GMR,因为“超级类地行星”半径是地球的1.5倍,质量是地球的4倍,则星球的第一宇宙速度是地球第一宇宙速度的83倍,可知星球的第一宇宙速度大于地球的第一宇宙速度,B 错误;根据GMm r 2=mr 4π2T 2得T =4π2r 3GM,因为轨道半径相同,星球质量是地球质量的4倍,则绕该星球运行的卫星的周期是半径相同的绕地球运行卫星周期的12,C 正确,D 错误;故选AC .8.如图所示,地球赤道上的山丘、近地资源卫星和同步通信卫星均在赤道平面内绕地心做匀速圆周运动.设山丘c 、近地资源卫星p 和同步通信卫星q 的圆周运动速率依次为v 1、v 2、v 3,向心加速度依次为a 1、a 2、a 3,则( )A .v 1>v 2>v 3B .v 1<v 3<v 2C .a 1>a 2>a 3D .a 2>a 3>a 1【答案】BD【解析】山丘c 与同步通信卫星q 转动周期相等,根据v =2πrT ,由于山丘c 的轨道半径小于同步通信卫星q 的轨道半径,故v 1<v 3;根据卫星的线速度公式v =GMr,由于近地资源卫星的轨道半径小于同步通信卫星q 的轨道半径,故近地资源卫星的线速度大于同步通信卫星的线速度,即v 3<v 2;故v 1<v 3<v 2,故A 错误,B 正确;山丘c 与同步通信卫星q 转动周期相等,根据a =ω2r =4π2rT 2,由于山丘c 的轨道半径小于同步通信卫星q 的轨道半径,故山丘c 的轨道加速度小于同步通信卫星q 的加速度,即a 1<a 3;根据加速度公式a =GMr 2,由于近地资源卫星的轨道半径大于同步通信卫星q 的轨道半径,故近地资源卫星的加速度大于同步通信卫星的加速度,即a 3<a 2;故a 1<a 3<a 2,故C 错误,D 正确.9.(2018杭州四中期中)北京时间7月24日,NASA 宣布开普勒太空望远镜发现了1 400光年外天鹅座的“另一个地球”——开普勒452b ,开普勒452b 的直径为地球直径的1.6倍,表面的重力加速度为地球的2倍,绕其母星(开普勒452)公转周期为384天,距离其母星(开普勒452)的距离为1.05天文单位(地球到其母星太阳的平均距离为一个天文单位),则下列判断正确的是( )A .开普勒452b 母星的质量比太阳的质量略大B .因为未知开普勒452b 和地球的密度关系,所以无法比较开普勒452b 和地球的质量大小C .开普勒452b 的第一宇宙速度约为地球的1.8倍D .因为未知开普勒452b 和地球的质量大小关系,所以无法比较开普勒452b 和地球的第一宇宙速度的大小【答案】AC【解析】设开普勒452b 母星的质量为M 1,开普勒452b 的质量为m 1、轨道半径为r 1、周期为T 1,开普勒452b 绕其母星做匀速圆周运动的向心力由万有引力提供,根据万有引力定律得,G M 1m 1r 21=m 14π2r 1T 21,解得M 1=4π2r 31GT 21,设太阳的质量为M 2,地球的绕太阳运动的半径为r 2、周期为T 2,同理可得,M 2=4π2r 32GT 22,则M 1M 2=r 31T 22r 32T 21=1.05,故开普勒452b 母星的质量比太阳的质量略大,选项A 正确;设开普勒452b 的半径为R 1,开普勒452b 表面的重力加速度为g 1,由表面物体所受的重力近似等于万有引力得,G m 1m R 21=mg 1,解得m 1=g 1R 21G,同理可得,地球的质量m 2=g 2R 22G ,则m 1m 2=g 1R 21g 2R 22=2×1.62=5.12,故开普勒452b 的质量比地球的质量大,选项B 错误;设M 为中心天体的质量,r 为中心天体的半径,由G Mmr 2=m v 2r 得,第一宇宙速度v =GMr ,则v 1v 2=R 2R 1·m 1m 2=11.6× 5.12≈1.8,选项C 正确,D 错误. 10.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是( )A .乙的速度大于第一宇宙速度B .甲的周期大于乙的周期C .甲的加速度小于乙的加速度D .甲在运行时可能经过北极的正上方 【答案】BC【解析】由于卫星运行高度越大,周期越大,速度越小,所以甲的周期大于乙的周期,乙的速度小于第一宇宙速度,选项A 错误,B 正确;卫星越高,加速度越小,甲的加速度小于乙的加速度,选项C 正确;同步卫星只能运行在赤道上方特定轨道上,甲在运行时不能经过北极的正上方,选项D 错误,本题选BC .二、非选择题(本大题4小题,共60分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)11.(14分)“嫦娥一号”和“嫦娥二号”卫星相继完成了对月球的环月飞行,标志着我国探月工程的第一阶段已经完成.设“嫦娥二号”卫星环绕月球的运动为匀速圆周运动,它距月球表面的高度为h ,已知月球的质量为M 、半径为R ,引力常量为G ,求卫星绕月球运动的向心加速度和线速度.【答案】GM (R +h )2GMR +h【解析】万有引力提供卫星绕月球圆周运动的向心力,所以有G Mmr 2=ma 得“嫦娥二号”的向心加速度a =GM r 2=GM (R +h )2根据公式G Mmr 2=m v 2r得“嫦娥二号”的线速度v =GMr=GMR +h. 12.(15分)宇航员来到某星球表面做了如下实验:将一小钢球由距星球表面高h (h 远小于星球半径)处由静止释放,小钢球经过时间t 落到星球表面,该星球为密度均匀的球体,引力常量为G .(1)求该星球表面的重力加速度;(2)若该星球的半径为R ,忽略星球的自转,求该星球的密度. 【答案】(1)2h t 2 (2)3h2πGRt 2【解析】(1)小球做自由落体运动,根据h =12gt 2得星球表面的重力加速度为g =2ht 2.(2)根据GMm R 2=mg 得星球的质量为得M =gR 2G则星球的密度为ρ=M v =3h2πGRt 2.13.(15分)宇航员驾驶宇宙飞船到达月球,他在月球表面做了一个实验:在离月球表面高度为h 处,将一小球以初速度v 0水平抛出,水平射程为x .已知月球的半径为R ,万有引力常量为G .不考虑月球自转的影响.求:(1)月球表面的重力加速度大小g 0 ; (2)月球的质量M ;(3)飞船在近月圆轨道绕月球做匀速圆周运动的速度v .【答案】(1)2h v 20x 2 (2)2h v 20R2x 2G (3)v 0x2hR【解析】(1)设小球落地时间为t ,根据平抛运动规律 水平方向 x =v 0t 竖直方向 h =12g 0t 2解得g 0=2h v 20x2.(2)设飞船质量为m ,在月球表面忽略地球自转时有G MmR2=mg 0解得月球质量M =2h v 20R2x 2G.(3)由万有引力定律和牛顿第二定律 G MmR 2=m v 2R解得v =v 0x2hR .14.(16分)(2018衡水期末)如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为θ,已知该星球半径为R ,引力常量为G ,自转周期为T ,求:(1)该星球表面的重力加速度g 和质量M ; (2)该星球的第一宇宙速度v ;(3)该星球的同步卫星距离地面的高度h .【答案】(1)2v 0tan θt 2v 0R 2tan θGt(2)2v 0R tan θt(3)3T 2v 0R 2tan θ2π2t-R【解析】(1)根据tan θ=12gt 2v 0t 解得星球表面的重力加速度为g =2v 0tan θt星球表面,有G MmR 2=mg解得M =gR 2G =2v 0R 2tan θGt.(2)根据重力提供向心力,有mg =m v 2R解得第一宇宙速度为v =gR =2v 0R tan θt. (3)由公式GMm (R +h )2=m (R +h )4π2T 2G MmR 2=mg 联立以上结果得h =3T 2v 0R 2tan θ2π2t-R .。
人教版高中物理必修二第六章万有引力与航天测试(含答案)
绝密★启用前2020年秋人教版高中物理必修二第六章万有引力与航天测试本试卷共100分,考试时间90分钟。
一、单选题(共10小题,每小题4.0分,共40分)1.美国宇航局宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒-226”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于()A. 3.3×103m/sB. 7.9×103m/sC. 1.2×104m/sD. 1.9×104m/s2.将火星和地球绕太阳的运动近似看成是同一平面内的同方向绕行的匀速圆周运动,已知火星的轨道半径r1=2.3×1011m,地球的轨道半径为r2=1.5×1011m,根据你所掌握的物理和天文知识,估算出火星与地球相邻两次距离最小的时间间隔约为()A. 1年B. 2年C. 3年D. 4年3.“月-地检验”的结果说明()A.地面物体所受地球的引力与月球所受地球的引力是同一种性质的力B.地面物体所受地球的引力与月球所受地球的引力不是同一种性质的力C.地面物体所受地球的引力只与物体的质量有关,即G=mgD.月球所受地球的引力只与月球质量有关4.下列哪些运动不服从经典力学的规律()A.发射同步人造卫星B.电子绕原子核的运动C.云层在天空的运动D.子弹射出枪口的速度5.下列说法正确的是()A.“科学总是从正确走向错误”表达的并不是一种悲观失望的情绪B.提出“日心说”人是托勒密C.开普勒通过天文观测,发现了行星运动的三定律D.托勒密的“日心说”阐述了宇宙以太阳为中心,其它星体围绕太阳旋转6.设地球自转周期为T,质量为M,引力常量为G.假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为()A.B.C.D.7.某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2之间的距离为r,已知引力常量为G,由此可求出S2的质量为()A.B.C.D.8.(多选)a是静置在地球赤道上的物体,b是近地卫星,c是地球同步卫星,a、b、c在同一平面内绕地心做逆时针方向的圆周运动,某时刻,它们运行到过地心的同一直线上,如图所示.一段时间后,它们的位置可能是图中的()A.B.C.D.9.经长期观测,人们在宇宙中已经发现了双星系统.双星系统由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1∶m2=3∶2,下列说法中正确的是().A.m1、m2做圆周运动的线速度之比为3∶2B.m1、m2做圆周运动的角速度之比为3∶2C.m1做圆周运动的半径为LD.m2做圆周运动的半径为L10.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳位于()A.F2B.AC.F1D.B二、多选题(共4小题,每小题5.0分,共20分)11.(多选)关于重力和万有引力,下列说法正确的是()A.重力在数值上等于物体与地球间的万有引力B.重力是由于地球的吸引而使物体受到的力C.由于万有引力的作用,人造地球卫星绕地球转动而不离去D.地球和月亮虽然质量很大,但由于它们的距离也很大,所以它们间的万有引力不大12.(多选)随着太空探测的发展,越来越多的“超级类地行星”被发现,某“超级类地行星”半径是地球的1.5倍,质量是地球的4倍,下列说法正确的是()A.该星球表面的重力加速度是地球表面的重力加速度的倍B.该星球第一宇宙速度小于地球第一宇宙速度C.绕该星球运行的卫星的周期是半径相同的绕地球运行卫星周期的倍D.绕该星球运行的卫星的周期是半径相同的绕地球运行卫星周期的倍13.(多选)如图所示,牛顿在思考万有引力定律时就曾设想,把物体从高山上O点以不同的速度v 水平抛出,速度一次比一次大,落地点也就一次比一次远.如果速度足够大,物体就不再落回地面,它将绕地球运动,成为人造地球卫星,则下列说法正确的是()A.以v<7.9 km/s的速度抛出的物体可能落在A点B.以v<7.9 km/s的速度抛出的物体将沿B轨道运动C.以7.9 km/s<v<11.2 km/s的速度抛出的物体可能沿C轨道运动D.以11.2 km/s<v<16.7 km/s的速度抛出的物体可能沿C轨道运动14.(多选)有甲乙两颗近地卫星均在赤道平面内自西向东绕地球做匀速圆周运动,甲处于高轨道,乙处于低轨道,并用绳子连接在一起,下面关于这两颗卫星的说法正确的是()A.甲卫星一定处在乙卫星的正上方B.甲卫星的线速度小于乙卫星的线速度C.甲卫星的加速度大于乙卫星的加速度D.甲卫星的周期小于乙卫星的周期三、计算题(共4小题,每小题10.0分,共40分)15.事实证明,行星与恒星间的引力规律也适用于其他物体间,已知地球质量约为月球质量的81倍,宇宙飞船从地球飞往月球,当飞至某一位置时(如图),宇宙飞船受到地球与月球引力的合力为零。
高中物理 第6章《万有引力与航天》全章测评 新人教版必修2(含解析)-新人教版高一必修2物理试题
第6章《万有引力与航天》全章测评(时间:60分钟总分为:100分)一、选择题(此题共10小题,每一小题5分,共50分。
在每一小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得5分,选不全的得2分,有选错或不答的得0分)1.人造卫星绕地球做匀速圆周运动,卫星所受万有引力F与轨道半径r的关系是( )A.F与r成正比B.F与r成反比C.F与r2成正比D.F与r2成反比解析:根据F=G可知,选项D正确。
答案:D2.如下列图,三颗人造地球卫星正在围绕地球做匀速圆周运动,如此如下有关说法中正确的答案是( )A.卫星可能的轨道为a、b、cB.卫星可能的轨道为a、cC.同步卫星可能的轨道为a、cD.同步卫星可能的轨道为a解析:不管什么轨道的卫星,均由万有引力提供向心力,所以所有卫星的轨道平面都必须通过地心。
而同步卫星与地球保持相对静止,其轨道平面一定与地球的赤道平面重合。
答案:BD3.某星球的半径为R,一重物在该星球外表附近做竖直下抛运动(忽略阻力),假设测得重物在连续两个T时间内下落的高度依次是h1和h2,如此该星球的第一宇宙速度为( )A. B.C. D.解析:由运动学公式可得h2-h1=gT2,如此g=,由mg=m得v=。
答案:B4.月球绕地球做匀速圆周运动的向心加速度大小为a,设月球外表的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的重力加速度为g2。
如此( )A.g1=aB.g2=aC.g1+g2=aD.g2-g1=a解析:根据月球绕地球做匀速圆周运动的向心力由地球引力提供,选项B正确。
答案:B5.火星直径约为地球的一半,质量约为地球的十分之一,它绕太阳公转的轨道半径约为地球公转半径的1.5倍。
根据以上数据,以下说法正确的答案是( )A.火星外表重力加速度的数值比地球外表小B.火星公转的周期比地球的长C.火星公转的线速度比地球的大D.火星公转的向心加速度比地球的大解析:由G=mg得g=,计算得火星外表的重力加速度约为地球外表的,A正确;由G=m()2r得T=2π,公转轨道半径大的周期长,B对;周期长的线速度小(或由v=判断轨道半径大的线速度小),C错;公转向心加速度a=,D错。
人教版高中物理必修二第六章《万有引力与航天》测试试题(含答案)
人教版高中物理必修二第六章《万有引力与航天》测试试题(含答案)1 / 7《万有引力与航天》测试题一、单选题1.理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零.现假设地球是一半径为R 、质量分布均匀的实心球体,O 为球心,以O 为原点建立坐标轴Ox ,如图所示.一个质量一定的小物体(假设它能够在地球n 内部移动)在x 轴上各位置受到的引力大小用F 表示,则F 随x 变化的关系图中正确的是A .B .C .D .2.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动。
不考虑其它天体的作用力,下列说法不正确的是 ( ) A .质量大的天体线速度较小 B .两天体的角速度总是相同C .若两天体的距离不变,则周期也不变D .若在圆心处放一个质点,它受到的合力不为零3.关于科学家在物理学上做出的贡献,下列说法正确的是 A .奥斯特发现了申磁感应现象 B .爱因斯坦发现了行星运动规律 C .牛顿提出了万有引力定律D .开普勒提出了狭义相对论4.“嫦娥一号”探月卫星沿地月转移轨道到达月球,在距月球表面200km 的P 点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200km 的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T 1、T 2、T 3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ上运动的周期,用a 1、a 2、a 3分别表示卫星沿三个轨道运动到P 点的加速度,则下面说法正确的是( )A.a1<a2<a3B.T1<T2<T3C.T1>T2>T3D.a1>a2>a35.下列说法正确的是()A.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因B.月球绕地球运动时受到地球的引力和向心力的作用C.哥白尼提出了日心说,牛顿提出了万有引力定律,并测定了引力常量的数值D.物体在转弯时一定受到力的作用6.下列说法正确的是()A.牛顿通过实验测出了万有引力常量B.同步卫星运行的角速度与地球自转角速度相同,相对地球静止,且处于平衡状态C.第一宇宙速度是人造卫星环绕地球运动的速度D.发射人造地球卫星所需的速度大小只决定于轨道高度,而与卫星的质量无关7.太空舱围绕地球做匀速圆周运动时,太空舱内的物体()A.处于完全失重状态,所受重力为零B.处于完全失重状态,所受重力不为零C.处于失重状态但不是完全失重,所受重力不为零D.处于平衡状态,所受合力为零8.下列说法中正确的是()A.两个互成角度(不共线)的匀变速直线运动的合运动一定是匀变速直线运动B.匀速圆周运动是加速度不变的曲线运动C.牛顿以天体之间普遍存在着引力为依据,运用严密的逻辑推理,建立了万有引力定律并测定了万有引力常量GD.地球绕太阳公转运动轨道半径R的三次方与其周期T的平方之比为常数,即32RkT,那么人教版高中物理必修二第六章《万有引力与航天》测试试题(含答案)3 / 7k 的大小只与太阳的质量有关,与地球的质量无关9.一颗人造卫星在不同轨道上绕地球做匀速圆周运动,下列正确的是: A .轨道半径越大,所受向心力越大B .轨道半径越大,运行的角速度越大C .轨道半径越大,运行的线速度越大D .轨道半径越大,运行的周期越大10.已知某质量分布均匀的星球密度为ρ,有一个物体静止在该星球表面的“赤道”上,若由于星球自转使物体对星球表面的压力恰好为零,则该星球自转的周期为(万有引力常量为G )( ) AB .3Gπρ C .43G ρπD11.如图所示,两个卫星 A 、 B 绕着同一行星做匀速圆周运动,轨道半径分别为 R 1 和 R 2, R 1>R 2。
人教版物理必修二:第六章 《万有引力与航天》章末检测
《万有引力与航天》章末检测时间:90分钟满分:100分第Ⅰ卷(选择题,共40分)一、选择题(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求)1.由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动.对于这些做匀速圆周运动的物体,以下说法正确的是() A.向心力都指向地心B.速度等于第一宇宙速度C.加速度等于重力加速度D.周期与地球自转的周期相等解析本题重点考查了地球上的物体做匀速圆周运动的知识.由于地球上的物体随着地球的自转做圆周运动,则其周期与地球的自转周期相同,D正确,不同纬度处的物体的轨道平面是不相同的,如图,m处的物体的向心力指向O′点,选项A错误;由于第一宇宙速度是围绕地球运行时,轨道半径最小时的速度,即在地表处围绕地球运行的卫星的速度,则选项B错误;由图可知,向心力只是万有引力的一个分量,另一个分量是重力,因此加速度不等于重力加速度,选项C错误.答案 D2.关于人造地球卫星,以下说法正确的是( )A .人造卫星绕地球运动的轨道通常是椭圆,应遵守开普勒三定律B .人造地球同步卫星一般做通信卫星,处于赤道上空,距地面的高度可以通过下列公式计算:G Mm (R +h )2=m (R +h )4π2T 2,其中T 是地球自转的周期,h 为卫星到地面的高度,R 为地球的半径,M 为地球质量,m 为卫星质量C .人造地球卫星绕地球转的环绕速度(第一宇宙速度)是7.9 km/s ,可以用下列两式计算:v =GMR 、v =Rg .其中R 为地球半径,g 为地球的重力加速度,M 为地球质量D .当人造卫星的速度等于或大于11.2 km/s 时,卫星将摆脱太阳的束缚,飞到宇宙太空解析 人造卫星绕地球转动的轨道是椭圆,卫星受到的作用力为地球对卫星的万有引力,所以遵守开普勒三定律,选项A 正确;同步卫星处于赤道上空,其周期与地球的自转周期相同,由万有引力提供向心力,G Mm (R +h )2=m (R +h )4π2T 2,选项B 正确;人造卫星的第一宇宙速度,即为卫星在地球表面绕地球运转时的线速度,由GMm R 2=m v 2R 得v = GM R ,地球表面的物体受到的重力mg =GMm R 2,可得Gm =gR 2,所以第一宇宙速度v =gR ,选项C 正确;当卫星的速度等于或大于11.2 km/s 时,卫星将摆脱地球的束缚绕太阳运转,选项D 错误.答案 ABC3.宇宙飞船到了月球上空后以速度v 绕月球做圆周运动,如图所示,为了使飞船落在月球上的B 点,在轨道A 点,火箭发动器在短时间内发动,向外喷射高温燃气,喷气的方向应当是( )A .与v 的方向一致B .与v 的方向相反C .垂直v 的方向向右D .垂直v 的方向向左解析 因为要使飞船做向心运动,只有减小速度,这样需要的向心力减小,而此时万有引力大于所需向心力,所以只有向前喷气,使v 减小,从而做向心运动,落到B 点,故A 正确.答案 A4.下列说法中正确的是( )A .经典力学能够说明微观粒子的规律性B.经典力学适用于宏观物体,低速运动问题,不适用于高速运动的问题C.相对论和量子力学的出现表示经典力学已失去意义D.对宏观物体的高速运动问题,经典力学仍能适用解析经典力学适用于低速宏观问题,不能说明微观粒子的规律性,不能适用于宏观物体的高速运动的问题,故A、D选项错误,B 选项正确;相对论和量子力学的出现,并不否定经典力学,只是说经典力学有其适用范围,故C选项错误.答案 B5.如图所示,图a、b、c的圆心均在地球的自转轴线上,对环绕地球做匀速圆周运动而言()A.卫星的轨道可能为aB.卫星的轨道可能为bC.卫星的轨道可能为cD.同步卫星的轨道只可能为b解析若卫星在a轨道,则万有引力可分为两个分力,一个是向心力,一个是指向赤道平面的力,卫星不稳定,A选项错误.对b、c轨道,万有引力无分力,故B、C选项正确.答案BC6.在绕地球做圆周运动的空间实验室内,能使用下列仪器完成的实验是()A.用天平测物体的质量B.用弹簧秤、刻度尺验证力的平行四边形定则C.用弹簧秤测物体的重力D.用水银气压计测定实验室的舱内气压解析绕地球做圆周运动的空间站处于完全失重状态,所以与重力有关的实验都要受到影响,故B选项正确.答案 B7.两颗靠得很近而与其他天体相距很远的天体称为双星,它们以两者连线上的某点为圆心做匀速圆周运动,如果二者质量不相等,则下列说法正确的是()A.它们做匀速圆周运动的周期相等B.它们做匀速圆周运动的向心加速度大小相等C.它们做匀速圆周运动的向心力大小相等D.它们做匀速圆周运动的半径与其质量成正比解析双星系统中两个天体绕着其连线上某一点做匀速圆周运动,它们之间的万有引力是各自做圆周运动的向心力,两天体具有相同的角速度,周期相等,故A、C项正确.根据F=Gm1m2r2=m1ω2r1=m2ω2r2,两者质量不等,故两天体的轨道半径不等,且m1r1=m2r2,故B、D选项错误.答案AC8.如图所示,卫星A、B、C在相隔不远的不同轨道上,以地球为中心做匀速圆周运动,且运动方向相同.若在某时刻恰好在同一直线上,则当卫星B经过一个周期时,下列关于三个卫星的位置说法中正确的是()A.三个卫星的位置仍在一条直线上B.卫星A位置超前于B,卫星C位置滞后于BC.卫星A位置滞后于B,卫星C位置超前于BD.由于缺少条件,无法比较它们的位置解析由卫星A、B、C的位置可知T A<T B<T C,原因是卫星运动的周期T=4π2r3GM.当卫星B运行一个周期时,A转过一周多,C转过不到一周,故答案应选B.答案 B9.下面是地球、火星的有关情况比较.),下列推测正确的是()A.地球公转的线速度小于火星公转的线速度B.地球公转的向心加速度大于火星公转的向心加速度C.地球的自转角速度小于火星的自转角速度D.地球表面的重力加速度大于火星表面的重力加速度解析 地球和火星都绕太阳公转,由G Mm r 2=m v 2r ,得v = GMr ,地球公转的半径小,故地球公转的线速度大,A 项错误;由G Mm r2=ma ,得地球公转的向心加速度大于火星公转的向心加速度,B 项正确;地球自转周期小于火星,由ω=2πT 得地球的自转角速度大于火星的自转角速度,C 项错误;由于题目没有给出地球和火星的质量及相应的半径,故不能比较它们表面的重力加速度,D 项错误.答案 B10.如图所示,A 为静止于地球赤道上的物体,B 为绕地球做椭圆轨道运行的卫星,C 为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A 、B 、C 绕地心运动的周期相同.相对于地心,下列说法中正确的是( )A .物体A 和卫星C 具有相同大小的加速度B .卫星C 的运行线速度的大小大于物体A 线速度的大小C .可能出现:在每天的某一时刻卫星B 在A 的正上方D .卫星B 在P 点的运行加速度大小与卫星C 的运行加速度大小相等解析A、C两者周期相同,转动角速度相同.由a=ω2r可知A 选项错误;由v=ωr,v A<v C,故B选项正确;因为物体A随地球自转,而B绕地球做椭圆运动,且周期相同,当B物体经过地心与A 连线与椭圆轨道的交点时,就会看到B在A的正上方,故C选项正确;P点是C卫星的圆形轨道与B卫星椭圆轨道的交点,到地心的距离都是C卫星的轨道半径,由GMmr2=ma可知,B在P点的加速度和卫星C的加速度大小相等时,D选项正确.答案BCD第Ⅱ卷(非选择题,共60分)二、填空题(本题共3小题,共20分)11.(8分)此前,我国曾发射“神舟”载人航天器进行模拟试验飞行,飞船顺利升空,在绕地球轨道飞行数圈后成功回收.当今我国已成为继前苏联和美国之后第三个实现载人航天的国家,载人航天已成为全国人民关注的焦点.航天工程是个庞大的综合工程,理科知识在航天工程中有许多重要的应用.(1)地球半径为6 400 km,地球表面重力加速度g=9.8 m/s2,若使载人航天器在离地面高640 km的圆轨道上绕地球飞行,则在轨道上的飞行速度为________m/s.(保留两位有效数字)(2)载人航天器在加速上升的过程中,宇航员处于超重状态,若在离地面不太远的地点,宇航员对支持物的压力是他在地面静止时重力的4倍,则航天器的加速度为________.解析(1)航天器在轨道上运行时,地球对航天器的引力提供航天器所需的向心力,GMm(R+h)2=m v2R+h.在地面上GMmR2=mg,解得v=7.6×103 m/s.(2)加速上升时宇航员处于超重状态,根据牛顿第二定律得F N-mg=ma,由牛顿第三定律可知F N=4mg,解得a=3g.答案(1)7.6×103(2)3g12.(8分)一艘宇宙飞船飞近某一新发现的行星,并进入靠近该行星表面的圆形轨道绕行数圈后,着陆在行星上.宇宙飞船上备有以下实验仪器:A.弹簧测力计一个B.精确秒表一只C.天平一台(附砝码一套) D.物体一个为测定该行星的质量M和半径R,宇航员在绕行及着陆后各进行了一次测量,依据测量数据可求出M和R(已知引力常量为G).(1)绕行时测量所用的仪器为________(用仪器的字母序表示),所测物理量为________.(2)着陆后测量所用的仪器为_____,所测物理量为______.用测量数据求该行星的半径R=________,质量M=________.答案(1)B周期T(2)A、C、D物体质量m、重力F FT24πmF3T416Gπ4m313题图13.(4分)古希腊某地理学家经过长期观测,发现6月21日正午时刻,在北半球A城阳光与竖直方向成7.5°角下射,而在A 城正北方,与A城距离L的B城,阳光恰好沿竖直方向下射,如图所示.射到地球的阳光可看成平行光.据此他估算了地球的半径,其表达式为R=________.解析B点在A城的正北方,则A、B两点在同一经线圈上A 与B的距离为弧长L,由题意可知弧长L所对圆心角的7.5°,L=R·θ,R=Lθ=L7.5π180=24 Lπ.答案24 Lπ三、解答题(本题共3小题,共40分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)14.(12分)2012年4月30日4时50分,我国在西昌卫星发射中心用“长征三乙”运载火箭首次采用“一箭双星”的方式,成功发射两颗北斗导航卫星,卫星顺利进入预定转移轨道.北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),其空间端包括5颗静止轨道卫星和30颗非静止轨道卫星,如图甲所示.为简便起见,认为其中一颗卫星轨道平面与地球赤道平面重合,绕地心做匀速圆周运动(如图乙所示).已知地球表面重力加速度为g ,地球的半径R ,该卫星绕地球匀速圆周运动的周期为T ,求该卫星绕地球做匀速圆周运动的轨道半径r .甲 乙解析 设该卫星的质量为m ,地球的质量为M由万有引力提供向心力可得G Mm r 2=m 4π2T 2r , 而GM =gR 2,以上两式联立解得r = 3gR 2T 24π2. 答案 3gR 2T 24π215.(13分)晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内,一个可看成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动,春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地变暗而看不到了,已知地球的半径R 地=6.4×106 m .地面上的重力加速度为10 m/s 2.估算:(答案要求精确到两位有效数字)(1)卫星轨道离地面的高度;(2)卫星的速度大小.解析(1)根据题意作出如图所示由题意得∠AOA′=120°,∠BOA=60°,由此得卫星的轨道半径r=2R地,①卫星距地面的高度h=R地=6.4×106 m,②(2)由万有引力提供向心力得GMmr2=m v2r,③由于地球表面的重力加速度g=GMR2地,④由③④得v=gR2地r=gR地2=10×6.4×1062m/s≈5.7×103m/s.答案(1)6.4×106 m(2) 5.7×103 m/s16.(15分)2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A*”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A*做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A*就处在该椭圆的一个焦点上.观测得到S2星的运行周期为15.2年.(1)若将S2星的运行轨道视为半径r=9.50×102天文单位的圆轨道,试估算人马座A*的质量M A是太阳质量M S的多少倍(结果保留一位有效数字);(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为m 的粒子具有势能为E p =-G Mm R (设粒子在离黑洞无限远处的势能为零),式中M 、R 分别表示黑洞的质量和半径.已知引力常量G =6.7×10-11N·m 2/kg 2,光速c =3.0×108 m/s ,太阳质量M S =2.0×1030 kg ,太阳半径R S =7.0×108 m ,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A *的半径R A 与太阳半径R S 之比应小于多少(结果按四舍五入保留整数).解析 (1)S2星绕人马座A *做圆周运动的向心力由人马座A *对S2星的万有引力提供,设S2星的质量为m S2,角速度为ω,周期为T ,则G M A m S2r 2=m S2ω2r ,ω=2πT . 设地球质量为m E ,公转轨道半径为r E ,周期为T E ,则G M S m E r 2E =m E (2πT E)2r E . 综合上述三式得M A M S =(r r E)3(T E T )2, 式中T E =1年,r E =1天文单位,代入数据可得M A M S=4×106. (2)引力对粒子作用不到的地方即为无限远,此时粒子的势能为零.“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零.此时势能仍为负值,则其能量总和小于零.根据能量守恒定律,粒子在黑洞表面处的能量也小于零,则有12mc 2-G Mm R <0. 依题意可知R =R A ,M =M A ,可得R A <2GM A c 2, 代入数据得R A <1.2×1010 m ,故R A R S<17. 答案 (1)4×106倍(2)17。
高中物理 第六章 万有引力与航天章末检测 新人教版必修2[1]
高中物理 第六章 万有引力与航天章末检测 新人教版必修2[1]一、选择题(本大题共12小题,每小题4分,共48分)1. [2013·河北冀州]对于质量为m 1和m 2的两个物体间的万有引力的表达式F =G m 1m 2r 2,下列说法正确的是( )A. 公式中G 是引力常量,它是由实验得出的,而不是人为规定的B. 当两物体间的距离r 趋于零时,万有引力趋于无穷大C. m 1和m 2所受引力大小总是相等的D. 两个物体间的引力总是大小相等,方向相反的,是一对平衡力 答案:AC解析:物理学家卡文迪许通过测量几个铅球之间的万有引力,比较准确地测出了G 的数值,故A 对.当两物体间距离r 趋于零时,F =Gm 1m 2r 2不再适用,故B 错.两个物体间的引力是一对相互作用力,大小总相等,故C 对,D 错.2. [2013·广州高一检测]关于人造地球卫星,下列说法正确的是 ( ) A. 运行的轨道半径越大,线速度也越大 B. 其发射速度可以达到16.7 km/sC. 卫星绕地球做匀速圆周运动的速度不能大于7.9 km/sD. 卫星在降落过程中向下减速时处于超重状态 答案:CD解析:由万有引力提供向心力可得v =GMr,知r 越大,线速度越小,A 错;16.7 km/s 为第三宇宙速度,达到这一速度则要脱离太阳的引力,B 错;第一宇宙速度7.9 km/s 是最大的运行速度,C 对;卫星降落过程中有向上的加速度,超重,D 对.3. 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R 和2R (R 为地球半径).下列说法中正确的是( )A. a 、b 的线速度大小之比是2∶1B. a 、b 的周期之比是1∶2 2C. a 、b 的角速度大小之比是36∶4D. a 、b 的向心加速度大小之比是9∶4 答案:CD解析:两卫星均做匀速圆周运动,F 万=F 向,向心力选不同的表达形式分别分析.由GMm r 2=m v 2r 得v 1v 2=r 2r 1=3R 2R =32,A 错误;由GMm r 2=mr (2πT )2得T 1T 2=r 31r 32=2323,B 错误;由GMm r 2=mrω2得ω1ω2= r 32r 31=364,C 正确;由GMm r 2=ma 得a 1a 2=r 22r 21=94,D 正确. 4. [2012·福建高考]一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v ,假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G ,则这颗行星的质量为 ( )A. mv 2GNB. mv 4GNC. Nv 2GmD. Nv 4Gm答案:B解析:设行星表面重力加速度为g ,则g =N m,① 由G Mm R2=mg ②由G Mm R 2=m v 2R③联立①②③得,M =mv 4GN,故选B.5. 一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为 ( )答案:D解析:压力为零说明万有引力等于向心力,则Gρ43πR 3mR2=mR (2πT )2,所以T =3πρG,故选D.6. 一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙飞船所在处的地球引力加速度,F N 表示人对台秤的压力.下列表达式中正确的是 ( )A. g ′=0B. g ′=R 2r2gC. F N =0D. F N =m R rg答案:BC解析:在地球表面处G Mm R 2=mg ,即GM =gR 2,在宇宙飞船内:G Mm r 2=mg ′,g ′=GM r 2=gR 2r2,B 正确;宇宙飞船绕地心做匀速圆周运动时,其内物体处于完全失重状态,故F N =0,C 正确.7. 已知地球同步卫星离地面的高度约为地球半径的6倍.若某行星的平均密度为地球平均密度的一半,它的同步卫星离其表面的高度是其半径的2.5倍,则该行星的自转周期约为 ( )A. 6小时B. 12小时C. 24小时D. 36小时答案:B解析:地球的同步卫星的周期为T 1=24小时,轨道半径为r 1=7R 1,密度ρ1.某行星的同步卫星周期为T 2,轨道半径为r 2=3.5R 2,密度ρ2.根据牛顿第二定律和万有引力定律分别有Gm 1×ρ143πR 31r 21=m 1(2πT 1)2r 1Gm 2×ρ243πR 32r22=m 2(2πT 2)2r 2.化简得T 2=12小时,故选B.8. 某行星和地球绕太阳公转的轨道均可视为圆.每过N 年,该行星会运行到日地连线的延长线上,如下图所示.该行星与地球的公转半径之比为( )答案:B解析:设地球和行星的轨道半径分别为r 1、r 2,运行周期分别为T 1、T 2.由万有引力定律和牛顿第二定律得G Mm r 2=mr (2πT )2,从而有r 2r 1=(T 2T 1)23 ,又NT 1=(N -1)T 2,联立解得r 2r 1=(NN -1)23.9. 地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a n ,要使赤道上物体“飘”起来,则地球的转速应为原来转速的 ( )A. g a n倍 B. g +a na n 倍 C.g -a na n倍 D.g a n倍 答案:B解析:原来状态应满足公式G Mm R2-mg =ma n =mω2R飘起来时G Mm R2=mω′2R ,M 为地球质量,m 为物体质量,R 为地球半径,ω′为飘起时角速度,ω为原来的角速度,联立求解可得ω′=ωg +a na n,所以B 对. 10. [2012·新课标全国卷]假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A. 1-d RB. 1+d RC. (R -d R)2D. (RR -d)2答案:A解析:根据万有引力与重力相等可得,在地面处有:Gm ·43πR 3ρR 2=mg在矿井底部有:G m ·43πR -d 3ρR -d 2=mg ′,所以g ′g =R -d R =1-dR. 故选项A 正确. 11. 某物体在低速(接近0)情况下质量为m 0,在速度为v 的高速(接近光速)情况下质量为m ,则由狭义相对论,物体速度v 为( )A. m 0m ·cB. 1-m 20m 2·c C. (1-m 0m)·cD.1+m 20m2·c 答案:B 解析:根据m =m 01-v 2c2可得v =1-m 20m2·c ;B 项正确. 12. 下列说法中正确的是( )①当物体运动速度远小于光速时,相对论物理学和经典物理学的结论没有区别 ②当物体运动速度接近光速时,相对论物理学和经典物理学的结论没有区别 ③当普朗克常量h (6.63×10-34J·s)可以忽略不计时,量子力学和经典力学的结论没有区别④当普朗克常量h (6.63×10-34 J·s)不能忽略不计时,量子力学和经典力学的结论没有区别A. ①③B. ②④C. ①④D. ②③答案:A解析:经典力学可以认为是相对论物理学在低速、宏观状态下的特例,故A 正确. 二、计算题(本大题共5小题,共52分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)13. (8分)火星半径是地球半径的一半,火星质量约为地球质量的1/9,那么地球表面质量为50 kg 的人受到地球的吸引力约为火星表面同质量的物体受到火星引力的多少倍?答案:94解析:设火星半径为R ,地球半径为2R ;火星质量为M ,地球质量为9M . 在地球上F =G 9Mm4R 2,在火星上F =G MmR2,所以同质量的人在地球表面受到的吸引力是在火星表面受到的吸引力的94倍.14. (10分)宇航员驾驶一宇宙飞船在靠近某行星表面附近的圆形轨道上运行,已知飞船运行的周期为T ,行星的平均密度为ρ,试证明ρT 2=k (引力常量G 为已知,k 是恒量).证明: 设行星半径为R ,质量为M ,飞船的轨道半径为r ,因为飞船在靠近行星表面附近的轨道上运行,所以有r =R .由万有引力提供向心力有G Mm R 2=m (2πT )2R 即M R 3=4π2GT2 又因为行星密度ρ=M V =M43πR3将①式代入②式得ρT 2=3πG=k 证毕.15. (10分)宇宙中恒星的寿命不是无穷的,晚年的恒星将逐渐熄灭,成为“红巨星”,有一部分“红巨星”会发生塌缩,强迫电子同原子核中的质子结合成中子,最后形成物质微粒大多数为中子的一种星体,叫做“中子星”,可以想象,中子星的密度是非常大的.设某一中子星的密度是ρ,若要使探测器绕该中子星做匀速圆周运动以探测中子星,探测器的运转周期最小值为多少?答案:3πG ρ解析:设该中子星的半径为R ,探测器质量为m . 则中子星的质量:M =ρV =43πR 3ρ.探测器做匀速圆周运动的向心力由万有引力提供,假设探测器飞行高度为h ,有:GMm R +h2=m4π2T 2(R +h ).得T 2=4π2R +h 3GM.代入M 值得T =3πR +h 3GρR 3. 当h =0时,T 有最小值为T min =3πGρ.16. (12分) 2012年6月16日,我国成功发射“神舟九号”飞船.假设“神舟九号”飞船返回舱内有一体重计,体重计上放一物体,火箭点火前,宇航员刘洋观察到体重计的示数为F 0.在“神舟九号”载人飞船随火箭竖直向上匀加速升空的过程中,当飞船离地面高度为H 时刘洋观察到体重计的示数为F ,设地球半径为R ,第一宇宙速度为v ,求:(1)该物体的质量. (2)火箭上升时的加速度.答案:(1)F 0R v 2 (2)Fv 2F 0R -v 2R R +H2解析:(1)设地面附近重力加速度为g 0,由火箭点火前体重计示数为F 0,可知物体质量为m =F 0g 0由第一宇宙速度公式v =g 0R可得地球表面附近的重力加速度g 0=v 2R联立解得该物体的质量为m =F 0R v 2(2)当飞船离地面高度为H 时,物体所受万有引力为F ′=GMm R +H 2而g 0=G M R2对物体由牛顿第二定律得F -F ′=ma联立以上各式解得火箭上升时的加速度a =Fv 2F 0R -v 2RR +H2.17. (12分)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可以推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )答案:4π2T 2Gr 3解析:设两颗恒星的质量分别为m 1、m 2,做匀速圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2.根据万有引力定律,对m 1有G m 1m 2r 2=m 1ω21r 1,得m 2=ω21r 1r 2G 对m 2有G m 1m 2r 2=m 2ω22r 2,得m 1=ω22r 2r 2G根据角速度与周期的关系及题意知ω1=ω2=2πT,r =r 1+r 2联立解得m 1+m 2=4π2T 2Gr 3.。
物理人教版高中必修2人教版高一物理必修二第六章:《万有引力与航天》单元测试题(有答案)
《万有引力与航天》单元测试题一、选择题。
1.对于万有引力定律的表达式F = Gm 1m 2r 2,下列说法正确的是( ) A .公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B .当r 趋近于零时,万有引力趋近于无穷大C .m 1与m 2受到的引力总是大小相等的,而与m 1和m 2是否相等无关D .m 1与m 2受到的引力总是大小相等、方向相反的,是一对平衡力 答案:AC 2.(2012·北京理综)关于环绕地球运行的卫星,下列说法正确的是( )。
A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同 D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合答案:B 解析:环绕地球运动的卫星,由开普勒第三定律32R T =常数,当椭圆轨道半长轴与圆形轨的半径相等时,两颗卫星周期相同,选项A 错误;沿椭圆轨道运行的卫星,只有引力做功,机械能守恒,在轨道上相互对称的地方(到地心距离相等的位置)速率相同,选项B 正确;所有地球同步卫星相对地面静止,运行周期都等于地球自转周期,由2224πGMm mRRT ,R=22T 4πGM ,轨道半径都相同,选项C 错误;同一轨道平面不同轨道半径的卫星,相同轨道半径、不同轨道平面的卫星,都有可能(不同时刻)经过北京上空,选项D 错误。
3、1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元。
如图所示,“东方红一号”的运行轨道为椭圆轨道,其近地点M 和远地点N 的高度分别为439 km 和2 384 km,则( )。
A.卫星在M 点的势能大于N 点的势能B.卫星在M 点的角速度大于N 点的角速度C.卫星在M 点的加速度大于N 点的加速度D.卫星在N 点的速度大于7.9 km/s 答案:BC解析:卫星从M 点到N 点,万有引力做负功,势能增大,A 项错误;由开普勒第二定律知,M 点的角速度大于N 点的角速度,B 项正确;由于卫星在M 点所受万有引力较大,因而加速度较大,C 项正确;卫星在远地点N 的速度小于其在该点做圆周运动的线速度,而第一宇宙速度7.9 km/s 是线速度的最大值,D 项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《万有引力与航天》章末检测时间:90分钟满分:100分第Ⅰ卷(选择题,共40分)一、选择题(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求) 1.由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动.对于这些做匀速圆周运动的物体,以下说法正确的是( )A.向心力都指向地心B.速度等于第一宇宙速度C.加速度等于重力加速度D.周期与地球自转的周期相等解析本题重点考查了地球上的物体做匀速圆周运动的知识.由于地球上的物体随着地球的自转做圆周运动,则其周期与地球的自转周期相同,D正确,不同纬度处的物体的轨道平面是不相同的,如图,m处的物体的向心力指向O′点,选项A错误;由于第一宇宙速度是围绕地球运行时,轨道半径最小时的速度,即在地表处围绕地球运行的卫星的速度,则选项B错误;由图可知,向心力只是万有引力的一个分量,另一个分量是重力,因此加速度不等于重力加速度,选项C 错误.答案D2.关于人造地球卫星,以下说法正确的是( )A.人造卫星绕地球运动的轨道通常是椭圆,应遵守开普勒三定律B.人造地球同步卫星一般做通信卫星,处于赤道上空,距地面的高度可以通过下列公式计算:GMmR+h2=m(R+h)4π2T2,其中T是地球自转的周期,h为卫星到地面的高度,R为地球的半径,M为地球质量,m为卫星质量C.人造地球卫星绕地球转的环绕速度(第一宇宙速度)是7.9 km/s,可以用下列两式计算:v=GMR、v=Rg.其中R为地球半径,g为地球的重力加速度,M为地球质量D.当人造卫星的速度等于或大于11.2 km/s时,卫星将摆脱太阳的束缚,飞到宇宙太空解析人造卫星绕地球转动的轨道是椭圆,卫星受到的作用力为地球对卫星的万有引力,所以遵守开普勒三定律,选项A 正确;同步卫星处于赤道上空,其周期与地球的自转周期相同,由万有引力提供向心力,G Mm R +h 2=m (R +h )4π2T 2,选项B 正确;人造卫星的第一宇宙速度,即为卫星在地球表面绕地球运转时的线速度,由GMm R 2=mv 2R 得v = GM R ,地球表面的物体受到的重力mg =GMm R2,可得Gm =gR 2,所以第一宇宙速度v =gR ,选项C 正确;当卫星的速度等于或大于11.2 km/s 时,卫星将摆脱地球的束缚绕太阳运转,选项D 错误.答案 ABC3.宇宙飞船到了月球上空后以速度v 绕月球做圆周运动,如图所示,为了使飞船落在月球上的B 点,在轨道A 点,火箭发动器在短时间内发动,向外喷射高温燃气,喷气的方向应当是( )A .与v 的方向一致B .与v 的方向相反C .垂直v 的方向向右D .垂直v 的方向向左解析 因为要使飞船做向心运动,只有减小速度,这样需要的向心力减小,而此时万有引力大于所需向心力,所以只有向前喷气,使v减小,从而做向心运动,落到B点,故A正确.答案A4.下列说法中正确的是( )A.经典力学能够说明微观粒子的规律性B.经典力学适用于宏观物体,低速运动问题,不适用于高速运动的问题C.相对论和量子力学的出现表示经典力学已失去意义D.对宏观物体的高速运动问题,经典力学仍能适用解析经典力学适用于低速宏观问题,不能说明微观粒子的规律性,不能适用于宏观物体的高速运动的问题,故A、D选项错误,B选项正确;相对论和量子力学的出现,并不否定经典力学,只是说经典力学有其适用范围,故C选项错误.答案B5.如图所示,图a、b、c的圆心均在地球的自转轴线上,对环绕地球做匀速圆周运动而言( )A.卫星的轨道可能为aB.卫星的轨道可能为bC.卫星的轨道可能为cD.同步卫星的轨道只可能为b解析若卫星在a轨道,则万有引力可分为两个分力,一个是向心力,一个是指向赤道平面的力,卫星不稳定,A选项错误.对b、c轨道,万有引力无分力,故B、C选项正确.答案BC6.在绕地球做圆周运动的空间实验室内,能使用下列仪器完成的实验是( )A.用天平测物体的质量B.用弹簧秤、刻度尺验证力的平行四边形定则C.用弹簧秤测物体的重力D.用水银气压计测定实验室的舱内气压解析绕地球做圆周运动的空间站处于完全失重状态,所以与重力有关的实验都要受到影响,故B选项正确.答案B7.两颗靠得很近而与其他天体相距很远的天体称为双星,它们以两者连线上的某点为圆心做匀速圆周运动,如果二者质量不相等,则下列说法正确的是( )A.它们做匀速圆周运动的周期相等B.它们做匀速圆周运动的向心加速度大小相等C.它们做匀速圆周运动的向心力大小相等D.它们做匀速圆周运动的半径与其质量成正比解析双星系统中两个天体绕着其连线上某一点做匀速圆周运动,它们之间的万有引力是各自做圆周运动的向心力,两天体具有相同的角速度,周期相等,故A、C项正确.根据F=Gm1m2r2=m1ω2r1=m2ω2r2,两者质量不等,故两天体的轨道半径不等,且m1r1=m2r2,故B、D选项错误.答案AC8.如图所示,卫星A、B、C在相隔不远的不同轨道上,以地球为中心做匀速圆周运动,且运动方向相同.若在某时刻恰好在同一直线上,则当卫星B经过一个周期时,下列关于三个卫星的位置说法中正确的是( )A.三个卫星的位置仍在一条直线上B.卫星A位置超前于B,卫星C位置滞后于BC.卫星A位置滞后于B,卫星C位置超前于BD.由于缺少条件,无法比较它们的位置解析由卫星A、B、C的位置可知T A<T B<T C,原因是卫星运动的周期T=4π2r3GM.当卫星B运行一个周期时,A转过一周多,C转过不到一周,故答案应选B.答案B9.下面是地球、火星的有关情况比较.确的是( )A.地球公转的线速度小于火星公转的线速度B.地球公转的向心加速度大于火星公转的向心加速度C.地球的自转角速度小于火星的自转角速度D.地球表面的重力加速度大于火星表面的重力加速度解析地球和火星都绕太阳公转,由G Mmr2=mv2r,得v=GMr,地球公转的半径小,故地球公转的线速度大,A 项错误;由G Mm r 2=ma ,得地球公转的向心加速度大于火星公转的向心加速度,B 项正确;地球自转周期小于火星,由ω=2πT得地球的自转角速度大于火星的自转角速度,C 项错误;由于题目没有给出地球和火星的质量及相应的半径,故不能比较它们表面的重力加速度,D 项错误.答案 B10.如图所示,A 为静止于地球赤道上的物体,B 为绕地球做椭圆轨道运行的卫星,C 为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A 、B 、C 绕地心运动的周期相同.相对于地心,下列说法中正确的是( )A .物体A 和卫星C 具有相同大小的加速度B .卫星C 的运行线速度的大小大于物体A 线速度的大小C .可能出现:在每天的某一时刻卫星B 在A 的正上方D .卫星B 在P 点的运行加速度大小与卫星C 的运行加速度大小相等解析 A 、C 两者周期相同,转动角速度相同.由a =ω2r 可知A 选项错误;由v=ωr,v A<v C,故B选项正确;因为物体A随地球自转,而B绕地球做椭圆运动,且周期相同,当B物体经过地心与A连线与椭圆轨道的交点时,就会看到B在A的正上方,故C选项正确;P点是C卫星的圆形轨道与B卫星椭圆轨道的交点,到地心的距离都是C卫星的轨道半径,由GMmr2=ma可知,B在P点的加速度和卫星C的加速度大小相等时,D选项正确.答案BCD第Ⅱ卷(非选择题,共60分)二、填空题(本题共3小题,共20分)11.(8分)此前,我国曾发射“神舟”号载人航天器进行模拟试验飞行,飞船顺利升空,在绕地球轨道飞行数圈后成功回收.当今我国已成为继前苏联和美国之后第三个实现载人航天的国家,载人航天已成为全国人民关注的焦点.航天工程是个庞大的综合工程,理科知识在航天工程中有许多重要的应用.(1)地球半径为6 400 km,地球表面重力加速度g=9.8 m/s2,若使载人航天器在离地面高640 km的圆轨道上绕地球飞行,则在轨道上的飞行速度为________m/s.(保留两位有效数字)(2)载人航天器在加速上升的过程中,宇航员处于超重状态,若在离地面不太远的地点,宇航员对支持物的压力是他在地面静止时重力的4倍,则航天器的加速度为________.解析(1)航天器在轨道上运行时,地球对航天器的引力提供航天器所需的向心力,GMmR+h2=mv2R+h.在地面上GMmR2=mg,解得v=7.6×103 m/s.(2)加速上升时宇航员处于超重状态,根据牛顿第二定律得F N-mg=ma,由牛顿第三定律可知F N=4mg,解得a=3g.答案(1)7.6×103(2)3g12.(8分)一艘宇宙飞船飞近某一新发现的行星,并进入靠近该行星表面的圆形轨道绕行数圈后,着陆在行星上.宇宙飞船上备有以下实验仪器:A.弹簧测力计一个 B.精确秒表一只C.天平一台(附砝码一套) D.物体一个为测定该行星的质量M和半径R,宇航员在绕行及着陆后各进行了一次测量,依据测量数据可求出M和R(已知引力常量为G).(1)绕行时测量所用的仪器为________(用仪器的字母序号表示),所测物理量为________.(2)着陆后测量所用的仪器为_____,所测物理量为______.用测量数据求该行星的半径R=________,质量M=________.答案(1)B 周期T(2)A、C、D 物体质量m、重力FFT24πmF3T416Gπ4m313题图13.(4分)古希腊某地理学家经过长期观测,发现6月21日正午时刻,在北半球A城阳光与竖直方向成7.5°角下射,而在A城正北方,与A城距离L的B城,阳光恰好沿竖直方向下射,如图所示.射到地球的阳光可看成平行光.据此他估算了地球的半径,其表达式为R=________.解析B点在A城的正北方,则A、B两点在同一经线圈上A与B的距离为弧长L,由题意可知弧长L所对圆心角的7.5°,L=R·θ,R=Lθ=L7.5π180=24 Lπ.答案24 L π三、解答题(本题共3小题,共40分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)14.(12分)2012年4月30日4时50分,我国在西昌卫星发射中心用“长征三号乙”运载火箭首次采用“一箭双星”的方式,成功发射两颗北斗导航卫星,卫星顺利进入预定转移轨道.北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),其空间端包括5颗静止轨道卫星和30颗非静止轨道卫星,如图甲所示.为简便起见,认为其中一颗卫星轨道平面与地球赤道平面重合,绕地心做匀速圆周运动(如图乙所示).已知地球表面重力加速度为g,地球的半径R,该卫星绕地球匀速圆周运动的周期为T,求该卫星绕地球做匀速圆周运动的轨道半径r.甲乙解析设该卫星的质量为m,地球的质量为M由万有引力提供向心力可得G Mmr2=m4π2T2r,而GM=gR2,以上两式联立解得r=3gR2T24π2.答案3gR2T24π215.(13分)晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内,一个可看成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动,春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地变暗而看不到了,已知地球的半径R地=6.4×106 m.地面上的重力加速度为10 m/s2.估算:(答案要求精确到两位有效数字)(1)卫星轨道离地面的高度;(2)卫星的速度大小.解析(1)根据题意作出如图所示由题意得∠AOA′=120°,∠BOA=60°,由此得卫星的轨道半径r=2R地,①卫星距地面的高度h=R地=6.4×106 m,②(2)由万有引力提供向心力得GMmr2=mv2r,③由于地球表面的重力加速度g=GMR2地,④由③④得v=gR2地r=gR地2=10×6.4×1062m/s≈5.7×103 m/s.答案(1)6.4×106 m(2) 5.7×103 m/s16.(15分)2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A*”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A*做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A*就处在该椭圆的一个焦点上.观测得到S2星的运行周期为15.2年.(1)若将S2星的运行轨道视为半径r=9.50×102天文单位的圆轨道,试估算人马座A*的质量M A是太阳质量M S的多少倍(结果保留一位有效数字);(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为m的粒子具有势能为E p=-G MmR(设粒子在离黑洞无限远处的势能为零),式中M、R分别表示黑洞的质量和半径.已知引力常量G=6.7×10-11N·m2/kg2,光速c=3.0×108 m/s,太阳质量MS=2.0×1030 kg,太阳半径R S=7.0×108 m,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A*的半径R A与太阳半径R S之比应小于多少(结果按四舍五入保留整数).解析(1)S2星绕人马座A*做圆周运动的向心力由人马座A*对S2星的万有引力提供,设S2星的质量为m S2,角速度为ω,周期为T,则G MAmS2r2=m S2ω2r,ω=2πT.设地球质量为m E,公转轨道半径为r E,周期为T E,则G MSmEr2E=m E(2πTE)2r E.综合上述三式得MAMS=(rrE)3(TET)2,式中T E=1年,r E=1天文单位,代入数据可得MAMS=4×106.(2)引力对粒子作用不到的地方即为无限远,此时粒子的势能为零.“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零.此时势能仍为负值,则其能量总和小于零.根据能量守恒定律,粒子在黑洞表面处的能量也小于零,则有1 2mc2-GMmR<0.依题意可知R=R A,M=M A,可得R A<2GM A c2,代入数据得R A<1.2×1010 m,故RARS<17.答案(1)4×106倍(2)17。