风电并网对电网影响浅析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风电并网对电网影响浅析 [摘要]介绍了风电场常用的风力发电机型,总结了目前风电对电网运行影响分析方法及初步结论,提出了改进建议。

[关键词]风力机;电能质量;风电并网;

近年来,特别是《可再生能源法》实施以来,中国的风电产业和风电市场发展十分迅速, 2007 年新增装机容量340万千瓦,累计装机容量达到604万千瓦,超过丹麦,成为世界第五风电大国,07年装机仅次于美国和西班牙,超过德国和印度,成为世界上最主要的风电市场之一。

风电场出力的主要特点是随机性、间歇性及不可控性,主要随风俗变化。因此,风电并网运行给电网带来诸多不利影响。随着风电场的容量越来越大,对系统的影响也越来越明显,研究风电并网对系统的影响已成为重要课题,本文将就风电并网研究中的一些问题进行浅述。

1 风力机主要形式

分析风电并网的影响,首先要考虑风力发电机类型的不同。不同风电机组工作原理、数学模型都不相同,因此,分析方法也有差异。目前国内风电场选用机组主要有3种:

1.1异步风力发电机

目前是我国主力机型,国内已运行风电场大部分机组是异步风力发电机。主要特点是结构简单,运行可靠,此种发电机为定速恒频机组,运行中转速基本不变,风力发电机组运行在风能转换最佳状态下的机率比较小,因而,发电能力比新型机组低。同时,运行中需要从

电力系统中吸收无功功率。为满足电网对风电场功率因素的要求,采用在机端并联补偿电容器的方法,其补偿策略是异步发电机配有若干组固定容量电容器。由于风速大小随机变化,驱动异步发电机的风机不可能经常在额定风速下运转。

1.2双馈异步风力发电机

兆瓦级风力发电机普遍采用双馈异步发电机形式,是目前世界主力机型,该机型称为变速恒频发电系统。由于风力机变速运行,其运行速度能在一个较宽的范围内调节,使风机风能利用系数C p得到优化,获得高的系统效率;可以实现发电机较平滑的电功率输出;与电网连接简单,发电机本身不需要另外附加的无功补偿设备,可实现功率因素一定范围内的调节,例如从0 .95领先到0 .95滞后范围内,因而具有调节无功功率出力的能力。

1.3直驱式交流永磁同步发电机

从大型风电机组实际运行经验中,齿轮箱是故障率较高部件。采用无齿轮箱结构则避免了这种故障的出现,可以大大提高风电机组的可利用率、可靠性,降低风电机组载荷,提高风力机组寿命。该机组采用直接驱动永磁式同步发电机,全部功率经A -D-A变换,接入电力系统并网运行。与其他机型比较,需考虑谐波治理问题。

2、风电并网对电网影响分析方法

由于风速变化是随机的,因此风电场出力也是随机的,风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。

在风电容量比较高的电网中,可能产生电能质量问题,例如电压

波动和闪变、频率偏差,谐波问题等。更重要的是,需分析稳定性问题,系统静态稳定、动态稳定、暂态稳定、电压稳定等。当然,相同装机容量的风电场在不同接入点对电网的影响是不同的,在短路容量大的接入点对系统影响小,反之,影响大。

定量分析风电场对电网运行的影响,要从稳态和动态两方面进行分析。

稳态分析,就是对含风电场的电力系统进行潮流计算。在稳态潮流分析中,风电场高压母线不能简单视为PQ节点或PUjiedian。

含风电场电力系统对平衡节点的有功、无功平衡能力提出更高要求,要分析含风电场电网在电网大、小运行方式下,是否满足系统的安全稳定运行的各种约束。

动态分析过程,一般采用仿真的方法,要考虑异步发动机、双馈异步发动机等不同发电机的模型以及风速、风机、桨距调节等环节,用仿真程序PSS/E、PSCAD、PSASP等进行分析,分析的关键是各种风力发电机模型的选用。

分析风电并网对电网影响,还需考虑风电场无功问题。风电场无功消耗包括:异步发动机消耗;风机出口出口升压变压器;风电场升压站主变压器消耗等,如有必要,可采用动态电压控制设备。

目前风电的容量可信度常用的有两种评价方法:一种是计算含风电系统的可靠性指标,在保证系统可靠性不变的前提下,风电能够替代的常规发电机组容量即为其容量可信度,这种方法适合于系统的规划阶段;一种方法是时间序列仿真,选择合适的时间段作为研究对象,

通过计算风电场的容量系数(风电场实际出力与理论发电量的比值)来估算容量可信度,在负荷高峰时段,可以认为容量系数等于容量可信度,该方法适用于为系统的运行提供决策支持。

3、风电并网对电网影响

通过上述分析方法,风电并网对电网影响主要表现为以下几方面:

3.1 电压闪变

风力发电机组大多采用软并网方式, 但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时, 风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作, 这种冲击对配电网的影响十分明显。不但如此, 风速的变化和风机的塔影效应都会导致风机出力的波动, 而其波动正好处在能够产生电压闪变的频率范围之内(低于25 Hz) , 因此, 风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角) 十分敏感。

3.2 谐波污染

风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生

谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。

3.3 电压稳定性

大型风电场及其周围地区,常常会有电压波动大的情况。主要是因为以下三种情况。风力发电机组启动时仍然会产生较大的冲击电流。单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。

风电场风速条件变化也将引起风电场及其附近的电压波动。比如当风场平均风速加大,输入系统的有功功率增加,风电场母线电压开始有所降低,然后升高。这是因为当风场输入功率较小时,输入有功功率引起的电压升数值小,而吸收无功功率引起的电压降大;当风场输入功率增大时,输入有功引起的电压升数值增加较大,而吸收无功功率引起的电压降增加较小。如果考虑机端电容补偿,则风电场的电压增加。特别的,当风电场与系统间等值阻抗较大时,由于风

相关文档
最新文档