示波器的原理和应用

合集下载

示波器的原理与应用

示波器的原理与应用

示波器的原理与应用摘要:示波器是现代电子技术中不可缺少的一种仪器设备,它能够将电信号转化为目测直观的波形图,为电路分析、调试、诊断等提供了方便、快捷的手段。

本文介绍了示波器的基本原理,包括信号输入、采样、放大、显示等方面,以及示波器的常见应用和注意事项,希望能为工程技术人员提供一些帮助和参考。

关键词:示波器、原理、应用、信号输入、采样、放大、显示正文:一、示波器的基本原理示波器是一种电子测量仪器,它的作用是将电信号转化为能够直观观察的波形图。

示波器可以用来观察不同频率、不同形状、不同幅度的电信号,并能够在波形图上显示出电信号的各种特征参数,如周期、频率、幅度、相位等。

示波器是电子技术领域中必备的仪器之一,它应用广泛,被广泛应用于电路设计、调试、维修、教育和科研等领域。

具体而言,示波器基于的是振荡器原理,通过调节电荷和电流来达到电信号可视化的目的。

信号的输入通过探头进行,示波器需要通过类比数字转换器(ADC)将信号转换成数字信号后存储在数字存储器中。

为了减少数字存储器过多的开销,示波器需要对信号进行采样,示波器内置高速模拟数字转换器(ADC)将信号进行采样后转换成数字信号,并存储在数字存储器中。

示波器还需要放大信号,使得信号能够在显示屏上显示出来。

示波器需要放大信号,通常使用线性放大器或者非线性放大器。

最后,示波器在显示器上将数字信号转换成模拟信号,进行屏幕显示。

二、示波器的应用透视到示波器的应用,可以看到示波器是广泛应用于电路设计、调试、维修、教育和科研等领域中的仪器设备。

比如,在电路设计和调试中,示波器可以用来分析电路中的各种问题,如电源噪声、串扰、幅度偏差等等。

在维修中,示波器可以用来检测电机的运行状态、检查电缆连接、检测电器设备输出波形等。

在教育中,示波器可以用来展示各种电子元器件和电路的工作原理。

在科研领域中,示波器可以用来测量和分析一些高速和复杂电信号,如微波电路、芯片和通用集成电路(IC)等。

示波器原理与使用

示波器原理与使用

示波器原理与使用
示波器是一种用来观测、测量电信号的仪器。

它能够将电信号转换为对应的图形波形,并将其显示在示波器的屏幕上。

示波器的基本原理是利用电子束在示波管内偏转,从而在屏幕上显示电信号的波形。

其中,电子束的运动是由垂直和水平偏转系统控制的。

垂直偏转系统负责控制电子束在屏幕上的垂直位置,从而显示电信号的振幅。

水平偏转系统则控制电子束的水平位置,表示时间。

示波器的使用通常包括以下几个步骤:
1. 连接电源和信号源:将示波器与电源和待测电路连接。

确保电源电压和信号源频率符合示波器的规格要求。

2. 调整示波器参数:根据需要,设置示波器的垂直灵敏度、水平扫描速度等参数,以确保波形可见且适合观测。

3. 观察波形:打开示波器的电源,将待测信号输入示波器。

在屏幕上可以看到电信号的波形。

根据需要,可以调整显示的时间和垂直位置。

4. 测量信号参数:示波器还可以提供一些测量功能,如测量波形的频率、幅值、周期等。

可以根据需要使用相应的测量功能。

5. 记录和分析数据:如果需要记录和分析波形数据,可以将示波器与计算机或存储设备连接,并使用相应的软件进行数据处
理。

总之,示波器是一种重要的测试工具,能够帮助工程师观测和测量电信号,用于故障排查、信号分析等工作。

正确使用示波器,可以提高工作效率,确保电路和设备的正常运行。

简述示波器工作原理和使用方法

简述示波器工作原理和使用方法

简述示波器工作原理和使用方法示波器是一种广泛应用于科学、工程和医学领域的仪器,它的工作原理和使用方法至关重要。

本文将对示波器的工作原理和使用方法进行简要阐述,并逐步深入探讨其各个方面,以帮助读者更全面、深入地理解示波器的功能和应用。

一、示波器的工作原理示波器的工作原理可以通过以下几个关键步骤来解释:1. 信号采集:示波器通过探头将待测信号输入到示波器的输入端。

信号可以是电压、电流或其他形式的波形信号。

探头通常带有一个细针状探头,用于接触被测电路或电子设备。

2. 信号放大:示波器将输入信号放大到合适的幅度范围,以便能够在示波器的显示屏上清晰地观察到信号。

3. 时基控制:示波器通过时基控制电路生成一个参考时钟,并使用这个时钟来控制图像在示波器屏幕上的扫描速度。

时基控制可以根据需要进行调整,以便观察到不同时间尺度下的信号变化。

4. 图像显示:示波器使用电子束在示波器的显示屏上绘制图像。

电子束的位置由信号的电压值和时基控制决定。

例如,较高的电压值将使电子束在屏幕上绘制较高位置的图像,而较低的电压值将使电子束绘制较低位置的图像。

二、示波器的使用方法使用示波器需要一些基本步骤和技巧,下面将对其进行简要的阐述:1. 连接电路:将示波器的探头与待测电路连接。

确保连接正确,以避免信号损失或干扰。

在连接时,应注意探头的匹配和校准。

2. 设置幅值和时间基准:根据待测信号的幅值范围和变化速度,设置示波器的幅值和时间基准。

这样可以使信号在示波器屏幕上完整显示,并以合适的速度进行扫描。

3. 观察信号:根据需要选择观察信号的时间范围和垂直放大倍数。

示波器的控制面板提供了一些选项和按钮,可以方便地调整这些参数。

4. 测量和分析:示波器通常提供一些测量和分析功能,例如峰值测量、频率测量和波形存储等。

根据需要使用这些功能来获取更多的信号信息和数据。

三、结论和观点在本文中,我们简要介绍了示波器的工作原理和使用方法。

示波器是一种非常重要的仪器,广泛应用于各个领域。

示波器的工作原理和使用方法

示波器的工作原理和使用方法

示波器的工作原理和使用方法示波器是一种测量电信号的仪器,它可以将电信号转换为图形,从而方便我们观察和分析。

本文将介绍示波器的工作原理和使用方法。

一、示波器的工作原理示波器的工作原理基于示波管和电子束的原理。

示波管是一种真空管,它由一个阳极、一个阴极和一个聚焦极组成。

当阴极发射电子时,电子会被阳极吸引,并在聚焦极的作用下聚集成电子束。

电子束穿过一个偏转板,偏转板会根据输入信号的大小和方向控制电子束的偏转。

电子束在荧光屏上形成一个图形,这个图形就是我们看到的波形。

示波器有两种偏转方式:正弦偏转和直线偏转。

正弦偏转是指通过一个正弦信号控制偏转板的偏转,直线偏转是指通过一个线性电压控制偏转板的偏转。

正弦偏转可以得到正弦波形,直线偏转可以得到任意波形。

示波器还有两种触发方式:自动触发和外部触发。

自动触发是指示波器自动检测信号并触发,外部触发是指示波器根据外部信号触发。

触发是指控制示波器开始采集信号的时刻。

二、示波器的使用方法1. 连接电路首先需要将示波器连接到待测电路。

示波器有两个输入通道,可以同时测量两个信号。

将待测电路的信号分别连接到示波器的输入通道上即可。

2. 调节示波器接下来需要调节示波器,使其适应待测信号。

示波器有多个控制按钮和旋钮,需要根据需要进行调节。

首先需要选择偏转方式。

如果待测信号是正弦波形,可以选择正弦偏转;如果待测信号是任意波形,可以选择直线偏转。

选择偏转方式后,需要调节偏转灵敏度和时间基准,使得示波器可以正确显示待测信号的波形和频率。

接下来需要选择触发方式。

如果待测信号是周期性的,可以选择自动触发;如果待测信号是不规则的,可以选择外部触发。

选择触发方式后,需要调节触发电平和触发延迟,使得示波器可以正确触发待测信号。

最后需要调节荧光屏的亮度和对比度,使得示波器的显示效果最佳。

3. 测量信号调节好示波器后,即可开始测量信号。

示波器会将待测信号转换为波形显示在荧光屏上。

可以通过示波器的控制按钮和旋钮对波形进行放大、平移、截取等操作,以便更好地观察和分析信号。

示波器的原理及应用误差

示波器的原理及应用误差

示波器的原理及应用误差一、示波器的原理示波器是一种用于显示电压波形的仪器,它可以将电信号转换成可视化的波形,使信号的特征、频率和幅度等参数能够直观地被观测和分析。

示波器的工作原理主要包括以下几个方面:1.信号采集:示波器通过探头将待测信号引入示波器,探头负责将电压信号转换成示波器可以处理的电信号,一般来说示波器采用阻抗匹配的方式,以尽量减小对被测电路的影响。

2.信号放大:示波器会对采集到的信号进行放大处理,使得信号波形能够在示波器的屏幕上得到清晰的显示。

3.信号显示:经过放大处理的信号波形会在示波器的屏幕上显示出来,示波器的屏幕一般是由阴极射线显示器或液晶显示器组成。

4.触发与扫描:示波器需要通过触发电路来确定信号的起始点,以保证每一次显示的信号波形都是连续的。

同时,示波器还通过扫描电路来控制水平和垂直方向的信号显示,以实现波形的水平和垂直移动、放大和缩小等操作。

示波器可以通过选择合适的时间基准和垂直增益来调整波形的显示范围,以便更好地观测和分析电信号的特征。

二、示波器的应用误差在实际应用中,示波器的测量结果可能存在误差,以下是一些常见的示波器的应用误差:1.带宽误差:示波器的带宽是指示波器所能测量的最高频率信号。

然而,示波器的实际带宽可能会存在误差,这是因为示波器的输入电路和放大器在工作时会引入一定的频率响应误差,从而导致示波器在高频信号测量时会出现幅度衰减和相位失真。

2.垂直增益误差:示波器的垂直增益是指示波器的输入电压与显示屏上垂直尺度的对应关系。

然而,示波器的垂直增益可能会存在误差,这是由于示波器的放大器、探头和输入电路等因素引入的增益非线性误差。

3.时间测量误差:示波器的时间基准是指示波器在测量时间时所使用的参考信号。

然而,示波器的时间测量可能会存在误差,这是因为示波器内部的触发电路、扫描电路以及时钟稳定性等因素引入的时间测量误差。

4.示波器通道间的差异:示波器通常具有多个通道,每个通道都可以独立地测量信号。

示波器的原理与应用数据

示波器的原理与应用数据

示波器的原理与应用数据1. 示波器的原理示波器是一种电子测量仪器,用于显示电压信号的波形。

它可以通过垂直和水平的电子束在荧光屏上绘制出波形图像,以帮助工程师分析和诊断电路中的问题。

示波器的工作原理基于电子束在电场和磁场的作用下产生的偏转。

当示波器接收到电压信号时,它会通过电场偏转电子束的垂直位置,同时通过磁场偏转电子束的水平位置,从而在荧光屏上绘制出相应的波形图像。

示波器可以根据输入信号的频率和幅度进行调节,以便更好地显示波形。

示波器还具有多个通道,可以同时显示多个信号的波形图像,这对于分析多路信号互相之间的关系非常有用。

2. 示波器的应用数据示波器广泛应用于电子、通信、自动化等领域的各种测量和测试任务中。

以下是一些示波器的常见应用数据。

2.1 测量信号频率示波器可用于测量输入信号的频率。

在示波器的设置中,选择合适的时间基准和垂直缩放,然后观察信号的周期性波形图像。

根据波形图像上波峰或波谷之间的时间间隔,可以计算出信号的频率。

2.2 测量信号幅度示波器还可用于测量信号的幅度。

根据示波器的垂直缩放设置,将信号的振幅显示在示波器的荧光屏上。

通过调整垂直缩放和偏移参数,可以准确测量信号的幅度。

2.3 捕获和分析瞬态信号示波器是捕获和分析瞬态信号的理想工具。

瞬态信号通常发生在电路故障或瞬时事件触发时,例如电路瞬时启动、开关的打开或关闭等。

示波器可以快速捕获并显示瞬态信号的波形,以帮助工程师分析和定位故障。

2.4 观察信号的相位差示波器可用于观察不同信号之间的相位差。

通过将两个或多个信号连接到示波器的不同通道上,并选择合适的触发设置,可以在示波器的荧光屏上同时显示这些信号的波形图像。

通过观察波形图像上的时间差,可以计算出信号之间的相位差。

2.5 分析频谱信息示波器还可以通过使用频谱分析仪功能来分析信号的频谱信息。

通过将信号连接到示波器的输入通道,并选择频谱分析模式,示波器可以将信号的频谱图显示在荧光屏上。

示波器的原理及使用

示波器的原理及使用

示波器的原理及使用
示波器是一种用来测量电压、电流和其他电信号的仪器。

它具有一个触发电路,可用来稳定地显示波形信号。

以下是示波器的原理和使用。

原理:
1. 示波器的基本原理是通过控制电子束在屏幕上的运动来显示输入信号的波形。

电子束通过垂直和水平偏转系统控制,然后在屏幕上显示出相应的波形。

2. 示波器将输入信号分为若干离散的时间间隔,并将每个间隔的电压值转换为电子束的垂直位置。

水平控制系统则将这些离散的时间间隔在水平方向上显示出来,形成一个波形图像。

使用:
1. 连接电路:首先,将待测的电路连接到示波器的输入端。

可以使用探头将电路与示波器连接,以避免对待测电路造成干扰。

2. 调整控制:通过触发电路和示波器面板上的控制旋钮,可以调整示波器的各种参数,如时间和电压刻度、扫描速率等,以获得所需的波形显示。

3. 观察波形:一旦示波器设置正确,波形将在示波器屏幕上显示出来。

可以观察波形的振幅、频率、相位等特性,进而分析电路的性能和问题。

4. 测量:示波器还可以进行一些测量,如测量波形的峰峰值、平均值、频率等。

它还可以进行波形的比较和数学运算,如求积分、微分等。

总结:
示波器通过控制电子束在屏幕上的运动来显示输入信号的波形。

使用示波器可以连接待测电路、调整控制参数、观察和测量波形等,以便分析电路的性能和问题。

示波器的原理和使用教程

示波器的原理和使用教程

示波器的原理和使用教程示波器是一种广泛应用于电子工程领域的测量仪器,它能够对电信号进行观测和分析。

本文将为您介绍示波器的原理和使用教程。

1. 示波器的原理示波器基于振动的原理,通过将电信号转化为图形显示,使人们能够直观地了解信号的特性。

示波器主要包含以下几部分:1.1 垂直放大器垂直放大器负责对信号进行放大,使其能够在显示屏上清晰可见。

通过调节放大倍数,我们可以改变显示信号的幅度。

1.2 水平放大器水平放大器用于调节示波器的时间基准,即在显示屏上横向延展信号。

通过调节水平放大倍数,我们可以改变信号在时间轴上的显示速度。

1.3 示波管示波管是示波器的核心部件,它能够将电信号转化为图像显示在屏幕上。

示波管通过电子束在荧光屏上绘制出波形图。

2. 示波器的使用教程接下来,我们将详细介绍如何正确地使用示波器来观测和分析电信号。

2.1 连接电路首先,将待测电路与示波器正确连接。

应确保电路与示波器的地线连接良好,以避免干扰。

2.2 调整垂直放大倍数根据信号的幅度范围进行调整。

如果信号幅度过大或过小,会导致波形显示不清晰或超出显示范围。

2.3 调整水平放大倍数根据信号的频率进行调整。

当频率较高时,适当增大水平放大倍数,以确保波形显示完整。

2.4 观测波形调整示波器的触发方式和触发电平,使波形能够稳定地显示在屏幕上。

观测波形时,应注意波形的形状、周期、幅值等特征。

2.5 进行信号分析利用示波器的触发、光标、测量等功能,可以对信号进行进一步分析。

通过触发功能,我们可以准确地捕捉特定事件发生的瞬间;通过光标功能,我们可以测量波形的时间间隔、幅值等参数。

通过本文的介绍,我们了解了示波器的原理和使用教程。

在实际应用中,正确地使用示波器能够帮助我们观测和分析电信号,为电子工程提供准确的数据支持。

掌握示波器的使用技巧,将有助于提高工作效率和准确性。

在使用示波器时,还应注意安全操作,防止电路短路等意外情况的发生。

希望本文对您有所帮助,谢谢阅读!。

简述示波器的工作原理和使用方法

简述示波器的工作原理和使用方法

简述示波器的工作原理和使用方法示波器是一种常见的电子测试仪器,用于检测和显示电信号的波形。

它在电子工程、通信、医学等领域中发挥着重要作用。

本文将简要介绍示波器的工作原理和使用方法。

一、工作原理示波器通过接收和处理电信号,并将其转换为可视化的波形图形。

它主要由以下几个部分组成:1. 输入电路:示波器的输入电路用于接收被测信号,常见的输入方式有电压探头、电流探头等。

输入电路通常具有不同的带宽范围和灵敏度,可以适应不同频率和振幅的信号。

2. 触发电路:触发电路确定了示波器何时开始采集和显示波形。

触发通常基于信号的特定条件,如信号达到或超过某个阈值等。

触发电路的设置对于正确显示信号的波形非常重要。

3. 垂直放大器:垂直放大器用于放大输入信号的电压。

示波器通常具有多个垂直放大器,允许对不同幅度的信号进行测量和显示。

垂直放大器通常具有可调的放大倍数和直流耦合/交流耦合模式。

4. 水平放大器和扫描发生器:水平放大器和扫描发生器控制示波器屏幕上波形的时间轴。

水平放大器决定了横向显示的时间范围,而扫描发生器则控制屏幕上波形的扫描速率。

5. 显示屏:示波器的显示屏用于显示波形。

现代示波器通常采用液晶显示屏,具有高分辨率和清晰度。

二、使用方法使用示波器需要以下几个步骤:1. 连接信号:使用正确的电压探头或电流探头将被测信号连接到示波器的输入端口。

确保连接正确,并选择合适的探头放大倍数。

2. 设置触发条件:根据被测信号的特点,设置合适的触发条件。

可以选择边沿触发或脉冲触发,设置触发电平等。

3. 调整垂直和水平放大器:根据被测信号的振幅和频率调整垂直和水平放大器。

确保波形在显示屏上具有适当的大小和清晰度。

4. 调整扫描速率:根据被测信号的周期和需要显示的波形数量,调整扫描速率。

较高的扫描速率可以显示更多的细节,但可能导致波形在屏幕上移动得很快,不易观察。

5. 观察和分析波形:开始采集和显示波形后,观察并分析波形特征。

可以测量波形的振幅、频率、周期等参数,并进行进一步的信号分析。

示波器的原理和应用实验

示波器的原理和应用实验

示波器的原理和应用实验一、示波器的原理示波器是一种电子测量仪器,用于观测和测量电信号的波形。

它能够显示电压随时间变化的波形图,帮助工程师们进行电路故障排查和信号分析。

示波器的原理基于电压信号的采样和显示技术。

1. 采样原理示波器通过将连续的电压信号转换为离散的采样点,从而以数字形式表示信号的波形。

采样率是示波器采样的速率,通常用每秒采样点数(Sample Rate)来表示。

采样率需要满足奈奎斯特采样定理,即采样率至少是被测信号最高频率的两倍。

采样的精度也会影响示波器的性能,通常用比特深度(Bit Depth)来表示,比特深度越高,表示数字化的信号可以更准确地还原原始模拟信号。

2. 显示原理示波器通过将采样的离散数据转换为模拟信号,并通过显示器将其呈现给用户。

这一过程通常分为两个步骤:数字-模拟转换(DAC)和显示器驱动。

DAC将数字信号转换为模拟信号,使得信号能够在显示器上进行显示。

显示器驱动则控制显示器的工作方式,例如扫描方式、屏幕刷新率等。

3. 示波器类型示波器根据工作原理和应用场景的不同,可以分为模拟示波器和数字示波器两种类型。

•模拟示波器(Analog Oscilloscope):采用模拟技术显示波形,主要用于低频信号观测和分析。

具有较高的信号质量和较低的成本;•数字示波器(Digital Oscilloscope):采用数字技术显示波形,主要用于高频信号观测和分析。

具有更高的采样率、存储和处理能力。

二、示波器的应用实验示波器作为一种广泛应用的电子测量仪器,在各个领域都有着重要的应用。

下面列举了几个示波器应用实验的场景和方法:1. 信号观测与分析示波器最基本的功能就是观测和分析电信号的波形。

通过连接待测信号和示波器输入端,我们可以观测到信号的幅值、频率、相位等特性。

在实验中,可以通过改变输入信号的幅值、频率和波形等参数,来观察示波器上的波形变化,从而理解信号在电路中的传递和变化过程。

2. 电路故障排查示波器在电路故障排查中有着重要的作用。

示波器的工作原理和使用方法

示波器的工作原理和使用方法

示波器的工作原理和使用方法示波器是一种用于观察电信号波形的仪器,它可以将电信号转换成可视化的波形图形,以便工程师和技术人员对电路的性能进行分析和调试。

本文将介绍示波器的工作原理和使用方法。

一、示波器的工作原理示波器的工作原理基于电信号的振荡和放大。

当电信号进入示波器时,它会被放大并转换成可视化的波形图形。

示波器的核心部件是电子枪和荧光屏。

电子枪会发射一束电子束,这束电子束会被加速并聚焦成一束细线,然后通过一个偏转系统,将电子束偏转成水平和垂直方向。

当电子束击中荧光屏时,它会激发荧光屏上的荧光物质,从而形成一个波形图形。

二、示波器的使用方法1. 连接电路:首先需要将示波器与待测电路连接起来。

通常情况下,示波器会有两个探头,一个用于连接待测电路的信号源,另一个用于连接地线。

2. 调整示波器:在连接电路之后,需要对示波器进行调整。

首先需要调整示波器的触发模式,以便触发电路的波形。

然后需要调整示波器的时间基准,以便调整波形的时间轴。

最后需要调整示波器的垂直增益,以便调整波形的幅度。

3. 观察波形:在调整示波器之后,可以开始观察波形了。

通常情况下,示波器会显示出电信号的波形图形,包括波形的幅度、频率、周期等信息。

通过观察波形,可以分析电路的性能,找出电路中的问题。

4. 调试电路:如果发现电路中存在问题,可以通过示波器来进行调试。

例如,可以通过调整电路的参数,来改变波形的形状和幅度。

通过不断地调试,可以找出电路中的问题,并进行修复。

示波器是一种非常重要的电子测试仪器,它可以帮助工程师和技术人员对电路进行分析和调试。

通过了解示波器的工作原理和使用方法,可以更好地使用示波器,提高工作效率。

示波器的原理和应用的实验原理

示波器的原理和应用的实验原理

示波器的原理和应用的实验原理
示波器的原理是利用了信号的振幅、频率、相位等信息来显示波形。

示波器原理分为两大类:模拟示波器和数字示波器。

模拟示波器工作原理:
1. 采样:示波器通过垂直放大器将输入信号放大到合适的幅度,并使用水平放大器将信号在时间上进行放大。

2. 水平扫描:示波器会发出一定的扫描电子束,在水平方向上扫描CRT屏幕,形成水平方向上的光点。

3. 垂直放大:扫描电子束经过垂直放大器,根据输入信号的电压变化控制电子束在银幕上的垂直位置,形成波形。

数字示波器工作原理:
1. 采样:输入信号经过模数转换器(ADC)进行采样,将模
拟信号转换为数字信号。

2. 数字处理:数字示波器将采样的数字信号进行数学处理,例如存储、平均、滤波等。

3. 显示:通过数字信号将处理后的数据转换为模拟信号,再通过模拟示波器的原理进行显示。

示波器的应用实验原理:
示波器常用于观察、测量电子设备的信号波形,例如:
1. 波形分析:通过观察信号的形状和特征,判断电路是否正常工作,诊断故障。

2. 信号测量:示波器可以测量电压、频率、相位、占空比等信号参数。

3. 信号发生器:示波器可以通过外部输入产生信号,用于测试
其他电子设备的响应性能。

4. 存储和比较:示波器通过存储信号波形,可以与其他波形进行比较,分析电路的变化和干扰情况。

示波器的原理与应用实验

示波器的原理与应用实验

示波器的原理与应用实验一、介绍示波器是一种电子测量仪器,主要用于显示电信号的波形,通过示波器可以观察信号的幅度、频率、相位以及其他相关特性。

示波器在电子实验、电路设计、维修和故障排除等领域都有广泛的应用。

二、示波器的原理示波器的原理主要基于安培定律和电位差定律。

当电信号通过示波器的输入端口时,信号会经过放大器进行放大,然后传输到垂直偏转系统和水平偏转系统。

垂直偏转系统控制电压的放大倍数,而水平偏转系统控制信号在水平方向上的移动速度。

最终,通过电子束在荧光屏上扫描的方式,将信号的波形显示出来。

三、示波器的应用实验在实验室中,我们可以通过搭建实验电路和使用示波器来进行各种实验,以探索电信号的特性和反应。

1. 观察简单电压信号的波形搭建一个简单的电路,包括一个直流电源和一个电阻。

将示波器的输入端口连接到电路的两端,然后打开电源和示波器。

调整示波器的垂直和水平偏移,以便看到电压信号的完整波形。

2. 测量交流电压的幅度和频率使用一个变压器将交流电源转换为所需的电压,并将示波器的输入端口连接到变压器的两端。

调整示波器的水平和垂直放大倍数,观察波形的变化。

通过读取示波器上的刻度线,可以测量信号的幅度和频率。

3. 分析信号的频谱连接示波器到一个音频发生器,调整发生器的频率和振幅,观察示波器上显示的频谱图。

频谱图显示信号在不同频率下的强度分布,可以用于分析音频信号的特性。

4. 观察信号的相位差连接示波器到一个相位差电路,通过调整相位差电路的参数,观察示波器上的波形变化。

通过测量波形的相位差,可以了解信号在电路中的传播和延迟情况。

5. 检测信号的噪声将示波器的输入端口连接到一个信号发生器和一个噪声源,观察示波器上显示的波形。

通过比较信号和噪声的幅度和频率,可以评估信号质量和噪声水平。

6. 分析调制信号连接示波器到一个调制电路,观察示波器上的波形变化。

调制电路可以将一个信号调制到另一个信号上,通过观察示波器上的波形,可以了解信号调制的效果和参数。

示波器的工作原理和使用方法

示波器的工作原理和使用方法

示波器的工作原理和使用方法示波器是一种常见的电子测试仪器,它可以用来观测和分析电信号的波形、幅度、频率等参数,是电子工程师和电子爱好者必备的工具之一。

本文将介绍示波器的工作原理和使用方法,帮助读者更好地理解和应用示波器。

一、示波器的工作原理示波器的主要功能是显示电信号的波形,它的工作原理可以简单地概括为:将待测信号与参考信号进行比较,然后将结果显示在屏幕上。

具体来说,示波器的工作原理如下:1. 信号输入示波器的输入端口接收待测信号,可以是电压、电流、频率等类型的信号。

通常示波器有多个输入通道,可以同时显示多个信号波形。

2. 信号放大示波器将输入信号放大,以便更好地观测和分析。

放大倍数可以手动调节或自动调节。

3. 参考信号示波器的参考信号可以是一个内部信号源,也可以是外部信号源。

参考信号和待测信号进行比较,产生一个测量结果。

4. 比较和显示示波器将待测信号和参考信号进行比较,然后将结果显示在屏幕上。

通常示波器的屏幕是一个二维坐标系,横轴表示时间,纵轴表示电压或电流,信号波形在坐标系中显示为一条曲线。

二、示波器的使用方法示波器是一种复杂的测试仪器,需要一定的使用技巧和经验才能正确地进行测量和分析。

下面介绍一些示波器的使用方法,帮助读者更好地应用示波器。

1. 连接示波器首先需要将待测信号连接到示波器的输入端口,通常使用BNC 接口或者探头连接。

接口和探头需要选择合适的类型和规格,以保证信号传输的质量和准确性。

2. 调整示波器在进行测量之前,需要对示波器进行一定的调整。

包括选择合适的通道、选择合适的触发方式、调节放大倍数等。

示波器的每个参数都会对测量结果产生影响,需要根据实际情况进行调整。

3. 观测信号当示波器调整完成后,可以开始观测待测信号的波形。

通常可以通过调节触发电平、触发边沿、触发延迟等参数来获取更清晰、更准确的信号波形。

观测时需要注意信号的幅度、频率、周期等参数,以便分析信号的特性和问题。

4. 分析信号示波器可以用来分析信号的各种特性和问题,包括幅度、频率、相位、峰峰值、周期、占空比等。

示波器的原理和应用仪器

示波器的原理和应用仪器

示例标题副标题一:示波器的原理•示波器是一种电子测量仪器,用于观察电信号的波形。

它通过将电信号转换为可见的图形来帮助工程师分析和诊断电路问题。

示波器主要由控制电路、信号放大电路、显示电路和触发电路等组成。

•示波器的工作原理基于两个关键概念:采样和显示。

首先,示波器将输入信号的电压进行采样,即对信号进行离散化处理。

然后,它将这些采样值通过放大器进行放大,以在显示屏上呈现出原始信号的波形。

•示波器的核心部分是垂直放大器,它将输入信号进行放大,使其能够在显示屏上更清晰地显示。

示波器还包括水平放大器,用于控制波形在横向上的位置和宽度。

触发器是另一个重要的部分,它可以确定在何时开始采样以及如何显示波形。

•示波器的工作原理很复杂,但它们在电子工程领域中起着重要的作用。

它们可以帮助工程师检测电路中的故障、分析信号的特性以及测量电路的性能。

示波器还常用于调试和验证电子设备、监测电子信号以及进行实验和研究。

副标题二:示波器的应用示波器被广泛应用于各个领域,包括但不限于以下几个方面:1.电子测试与测量:示波器可以用于测量电压、电流、频率、相位差等电路参数。

工程师可以通过示波器观察和测量不同信号的特征,以验证电路的设计和性能。

2.电路故障排除:当电路出现问题时,示波器可以帮助工程师快速定位和排除故障。

它们可以显示信号的波形和幅度,以帮助工程师找出故障点并做出相应的修复。

3.信号分析和调试:示波器可以分析信号的频谱、波形、幅度等特性。

工程师可以通过示波器观察信号在不同频段下的表现,以便进行信号处理、优化和调试。

4.通信系统分析:示波器可以用于分析和监测通信系统中的信号质量、时序等参数。

工程师可以利用示波器来测试通信信号的传输性能,并进行系统调整和优化。

5.电子设备验证:示波器可以用于测试和验证电子设备的性能和一致性。

通过观察和分析设备输出的信号波形,工程师可以判断设备是否符合规格要求。

6.实验和研究:示波器广泛应用于科研机构和实验室中。

示波器原理,条件,方法

示波器原理,条件,方法

示波器原理,条件,方法示波器原理、条件和方法示波器是一种用于显示电信号波形的仪器,它利用电子技术和光学原理来观察和测量电信号的变化。

示波器广泛应用于电子工程、通信、医学等领域,可用于测量频率、幅值、相位等参数。

下面将从示波器的原理、使用条件和常用方法三个方面进行介绍。

一、示波器的原理示波器的基本原理是利用电子束在荧光屏上产生亮度变化的原理来显示电信号的波形。

当电信号进入示波器后,经过放大、滤波等处理后,被连接到电子枪的垂直偏转板和水平偏转板上。

电子枪会发射出一束高速电子,经过垂直和水平偏转板的作用,电子束在荧光屏上形成一个点。

由于电信号的变化,垂直和水平偏转板会控制电子束的位置,从而在荧光屏上显示出相应的波形。

二、示波器的使用条件示波器的使用条件主要包括以下几个方面:1. 输入信号的频率范围应在示波器的测量范围之内。

示波器一般会标注其最高可测量的频率范围,用户在选择示波器时需要根据实际需要来确定。

2. 输入信号的幅度范围应在示波器的测量范围之内。

如果输入信号的幅度超过示波器的测量范围,可能会导致显示不准确甚至损坏示波器。

3. 输入信号的波形形状应与示波器的测量模式匹配。

示波器一般支持多种测量模式,如正弦波、方波、脉冲等,用户需要选择合适的测量模式来保证测量结果的准确性。

三、示波器的常用方法示波器作为一种测量仪器,有多种常用方法可以用来观察和测量电信号的波形。

以下是一些常用的方法:1. 垂直调节:通过调节示波器的垂直偏移、增益和衰减等参数,可以使波形在荧光屏上居中、放大或缩小,以便更好地观察和测量。

2. 水平调节:通过调节示波器的水平扫描速度和水平偏移等参数,可以改变波形在时间轴上的显示位置和速度,以便更好地观察和测量波形的周期和相位。

3. 触发设置:通过设置示波器的触发模式、触发电平和触发源等参数,可以使波形在荧光屏上稳定显示,以便更好地观察和测量。

4. 自动测量:示波器一般提供自动测量功能,可以自动测量波形的频率、幅值、占空比等参数,方便用户进行快速测量和分析。

示波器的原理及应用

示波器的原理及应用

示波器的原理及应用示波器是一种用于测量电信号波形的仪器。

它通过将电信号转换成可见的图形,以便我们能够方便地观察和分析信号的特性。

示波器在电子工程、通信、计算机科学等领域具有广泛的应用。

本文将详细介绍示波器的原理和应用。

一、示波器的原理示波器的原理基于傅里叶分析理论,即任何复杂的周期信号都可以表示为一系列不同频率和不同振幅的正弦和余弦波的叠加。

示波器采用了一种叫做“示波管”的设备,通过控制电子束在屏幕上的位置和强度,将电信号转化为可见的波形图形。

示波器的基本工作原理如下:1. 信号输入:将待测信号连接到示波器的输入端口。

示波器通常提供多个通道,可以同时测量和显示多个信号。

2. 垂直放大:示波器通过垂直放大电路来扩大输入信号的幅度范围,以便在垂直方向上能够准确显示信号的变化。

垂直放大通常由放大器和控制电路组成。

3. 水平放大:示波器通过水平放大电路来控制波形在水平方向上的显示范围。

水平放大通常由放大器和控制电路组成。

4. 时间基准:示波器通过时间基准电路来确定波形在水平方向上的时间间隔。

时间基准通常由一个稳定的时钟信号或外部触发信号提供。

5. 示波管:示波管是示波器的核心部件,它由一个电子枪和一个荧光屏组成。

电子枪发射出高速电子束,经过垂直和水平偏转系统控制后,打在荧光屏上,形成可见的波形图形。

6. 对比度和亮度调节:示波器提供对比度和亮度调节,以便在观察波形时能够得到清晰的图像。

二、示波器的应用示波器在各个领域都有广泛的应用,下面将重点介绍几个主要的应用:1. 电子工程:在电子工程领域,示波器被广泛用于测量和研究电路中的信号波形。

使用示波器,工程师可以检查和分析电路中的各种信号,如电压、电流、频率等,并确保电路正确工作。

2. 通信:示波器在通信领域中起着重要作用。

它可以用于分析和检测各种通信信号的波形和特性,如调制解调器、雷达、无线电和电视信号等。

示波器能够帮助工程师定位和解决通信系统中的故障。

3. 计算机科学:示波器在计算机科学领域中广泛应用于嵌入式系统的调试和分析。

示波器的原理及使用

示波器的原理及使用
“拍”频:f3 f2 f1
垂直方式选ADD, 通道2极性选NORM, 扫描速率调到合 适值, 调可调标准信号源信号频率, 使屏上出现稳定的“拍”波 形, 观察 “拍”现象。
5.利用双踪示波器测量相位差
方法一: 将一个待测信号输 入示波器的CH1轴,另一个 待测信号输入示波器的CH2 轴, 则两个待测信号间相 位差就转化为CH1与CH2间相 位差 Ф
Tx=nTy , fy=nfx
紊乱的波形
触发同步电路, 它从垂直放大电路中取出部分待 测信号, 输入到扫描发生器, 迫使锯齿波与待测信号 同步, 此称为“内同步”.操作时使用“电平” (LEVEL)旋钮 。
3.示波器面板控制件的作用简介
校准信号 电源开荧关光屏 电源指示灯
亮度: 轨迹 亮度调节
聚焦: 轨迹清 晰度调节
的轨迹是封闭的稳定几何图形, 称为李萨如图。
将不同信号源信号分别输入CH1和CH2通道, 扫描速率旋钮置X-Y(逆 时针到底)状态, 调节信号幅度或改变通道偏转因数, 使图形不超出荧光 屏视场, 调节CH1和CH2频率比观察李萨如图 。
测量信号频率
测量原理
fx
ny nx
fy
调出 f y : fx nx : ny =1:1、1:2、2:3、3:4的李萨如图形,
触发极性选择: 选择上升或下降 沿触发扫描
选择触发信号 耦合方式: AC/DC TV
接地
外触发输入
30: CH1输出 31: 电源插座 32: 电源设置 33: 保险丝座
4.函数信号发生器简介
本实验所用函数信号发生器可以输出频率在0.2Hz-2MHz
的正弦波、三角波、方波信号。 面板主要控制件的作用:
电压衰减及扫描速率

示波器工作原理和使用方法

示波器工作原理和使用方法

示波器工作原理和使用方法示波器是一种广泛应用于电子工程和通信领域的测量仪器,用于观察和测量电信号的波形和参数。

它工作原理简单,使用方法也相对容易掌握。

一、示波器的工作原理示波器的工作原理基于电子束在电场作用下的运动规律。

它主要由示波管、水平和垂直扫描系统以及触发和放大系统组成。

1. 示波管:示波管是示波器的核心部件,它采用了阴极射线管的原理。

在示波管内部,通过加热阴极产生电子,然后经过加速电极加速,进入一个带有偏转电极的空间。

在偏转电极的作用下,电子束可以在屏幕上形成可见的亮点。

2. 水平和垂直扫描系统:示波器的水平和垂直扫描系统用于控制电子束的移动。

水平扫描系统控制电子束在水平方向上的移动速度,垂直扫描系统控制电子束在垂直方向上的移动速度。

通过控制水平和垂直扫描系统,可以在示波管屏幕上显示出精确的波形。

3. 触发和放大系统:触发系统用于控制示波器何时开始扫描信号,以确保波形显示的稳定性。

放大系统则用于放大输入信号,使其能够在示波管屏幕上可见。

二、示波器的使用方法示波器的使用方法主要包括信号连接、参数设置、触发调整、波形观察和测量等步骤。

1. 信号连接:首先,需要将被测信号通过信号线连接到示波器的输入端口。

确保信号线的连接正确、稳固,并注意接地的正确性。

2. 参数设置:在使用示波器前,需要设置适当的参数,以适应被测信号的特点。

参数包括扫描速度、垂直灵敏度、触发级别等。

根据被测信号的频率和幅度调整参数,使波形在示波管屏幕上能够清晰可见。

3. 触发调整:触发是示波器显示波形的关键。

通过调整触发电平和触发模式,可以确保示波器在稳定状态下工作。

触发电平是指触发系统开始扫描信号的电平,触发模式可以选择自动触发或外部触发,根据实际需要进行调整。

4. 波形观察:设置好参数和触发后,可以开始观察波形。

示波器的屏幕上会显示出被测信号的波形,可以通过调整垂直灵敏度和水平扫描速度等参数,以获得清晰的波形图像。

5. 测量:示波器不仅可以观察波形,还可以进行波形的测量。

示波器的工作原理和应用

示波器的工作原理和应用

示例波器的工作原理和应用一、示波器工作原理示波器是一种用于显示电信号波形的仪器,它通过将电信号转换为可视化的图像,帮助工程师分析和调试电路性能。

以下是示波器的工作原理:1.输入信号采集:示波器通过探头连接到待测电路上,将电信号转换为电压信号,并进行采样。

2.信号处理:示波器会对采集到的电压信号进行放大、滤波和调整,使其适合显示在示波器屏幕上。

3.时间基准:示波器使用一个可调的时间基准信号,控制采样间隔和显示时间跨度。

这样可以确定波形在屏幕上的位置和时间分辨率。

4.显示:示波器通过将处理后的电压信号转换为亮度变化或线条显示在屏幕上,形成波形图像。

通常,水平轴表示时间,垂直轴表示电压。

二、示波器的应用示波器是电子工程师和其他科学领域专业人士必备的工具之一。

以下是示波器在实际应用中常见的用途:1. 电路调试和故障排除示波器可以帮助工程师检测电路中的故障和问题。

通过观察电信号的波形,工程师可以确定信号是否失真、幅度是否正确、频率是否稳定等,从而定位问题所在并进行修复。

2. 波形分析和频谱分析示波器可以实时显示电信号的波形,使工程师能够快速分析信号的特性。

通过测量波形的频率、振幅、周期、上升时间等参数,可以计算出信号的频谱分布,进一步分析信号的频谱特性。

3. 信号发生器一些示波器配备了信号发生器功能,可以产生特定频率和振幅的信号。

这对于测试电路响应、频率响应、滤波器性能等非常有用。

4. 数字信号分析现代示波器通常具备对数字信号的分析功能。

它们可以捕获和分析高速数字信号,帮助工程师评估数据传输质量,检测噪声和时序问题,并优化数字系统的性能。

5. 教学和研究示波器是电子工程教学和研究的重要工具。

学生可以通过示波器观察和理解电路的波形变化,帮助他们更好地理解理论概念,并进行实验、测量和分析。

6. 音频和视频分析示波器还可以用于音频和视频信号的分析。

它们可以测量音频信号的频率、幅度和失真,并帮助工程师进行音频系统的校准和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3-9 示波器的原理及应用前言示波器是经常使用的电子仪器。

凡是随时间变化的各种电信号都可以用示波器来观察它们的波形,测量它们的相位、频率以及电流、电压的大小。

因此一切可以转化为电量的非电信号都可以用示波器来观察。

本实验主要是学习示波器的使用,利用示波器对电信号的波形进行观察,并对电信号的变化进行测量。

【实验目的】1.了解示波器的主要组成部分、工作原理及使用方法。

2.会正确使用示波器展示波形,并利用其测量信号和观测李沙育(Lissajous)图形等。

【仪器用具】CS-4125双踪示波器,信号源【实验原理】电子示波器是利用电子束的偏转来复现电信号的瞬时图像的一种电子测试仪器。

它能将电信号随时间迅速变化的规律以可见光的形式显示出来,这是普通的电工测试仪表所无法胜任的。

示波器具有直观、灵敏、反应速度快、输入阻抗高等优点。

示波器的型号和规格很多,它们都包括下图3-9-1所示的几个基本组成部分:示波管、Y轴系统、X轴系统和电源等。

示波管是电子示波器的核心,如图3-9-2所示。

它是一个高真空度的静电控制的电子束玻璃管。

示波管的阴极被灯丝加热后发射出大量电子,这些电子穿过控制栅后,受第一、第二阳极的聚焦和加速作用,形成一束电子束,电子束通过偏转板打在示波管的荧光屏上,形成亮点。

亮点的亮度与通过控制栅极中心小孔的电子密度成正比,改变控制栅极的电压,就可以改变光点亮度,此即为辉度(亮度)调节。

改变聚焦阳极和加速阳极的电压可以影响电子束的聚焦程度,使光点的直径最小,图像最清晰,这就是聚焦调节。

亮点在荧光屏上的位移与偏转板上所加的电压成正比,因此,亮点的运动轨迹描绘出纵偏和横偏信号合成运动规律的图像。

如果在Y 偏转板上加上电压,则两极板间就会形成一个电场。

当电子束运动经过两极板中间时,由于受电场力的作用,其运动放心将发生改变,打到荧光屏上产生的光点也将发生Y 方向的位移。

改变Y 偏转板的极间电压,光点的位移量也就随之改变。

如果将被测信号电压加到Y 偏转板上,则光点在Y 方向的位移也就随被测信号电压的变化而变化。

X 偏转板作用原理与Y 偏转板相同,所不同的只是一般在X 偏转板上加上一个随时间线性变化的锯齿波电压,让光点在X 方向上的位移与时间成正比。

依靠这两对偏转板,电子束可以到达荧光屏的任一位置。

因此,当示波管的X 、Y 偏转板上同时加上上述电压时,光点在两个方向上位移的合成就将Y 轴信号随时间变化的规律在荧光屏上显示出来了。

如图3-9-3所示,假设加在Y 偏转板上的信号是正弦电压,X 偏转板上加的是锯齿波电压,且y x T T 2=,则在o t 时刻, 0==y x U U ,光点在荧光屏上O 点(也称起始扫描点);在10~t t 期间,x U 由0x U 上升到1x U ,光点沿水平方向运动到1x 点;同时,y U 随时间变化到ym U ,使光点沿y 方向运动到m y ,二者合成运动到1点。

同理,在821...t t t ---期间,荧光屏上光点将顺序运动到2,3,…,8点。

在8t 时刻,x U 由8x U 突变为0x U ,而y U 不变,则光点由点8跳回到原起始扫描点O (光点这样一个往复运动过程就称为一次扫描)。

从8t 时刻开始,y U 继续按其原规律变化,而x U 重新由0x U 上升到,1x U ,2x U …,8x U ,反映到荧光屏上就是光点又重复上一次的扫描。

这样,我们只要保证每一次扫描的起始点重合,且让重复扫描的频率高于人眼的分辨率(约25Hz ),荧光屏上就会看到一个稳定的波形。

示波器的Y 轴系统用来放大Y 轴输入信号的幅度,以供给Y 偏转板一个合适的工作电压。

调节它的增益,可以改变单位输入电压所引起的光点在Y 方向上的偏转距离(即Y 轴灵敏度y s )。

X 轴系统的主要作用是产生一个随时间线性变化的锯齿波电压(又称扫描电压),经放大后加到X 偏转板,形成一条时间轴线。

调节扫描电压的斜率(t u ∆∆),可以改变单位时间内光点在X 方向上的偏转距离(即扫描速率x v )。

X 轴系统的另一个作用是作为X 外输入信号的放大器,以得到适当的幅度(电压)送到X 偏转板,与Y 轴信号垂直合成。

从上所述可见:(1)要想得到Y 轴输入电压的图形,必须加上横偏扫描电压,把输入信号电压的垂直振动“展开”来,这个展开过程称为“扫描”。

如果扫描电压与时间呈线性变化(锯齿波扫描),则称为线性扫描。

线性扫描能把输入电压波形如实地描绘出来。

就像利用一条水平匀速运动的纸带来把作简谐运动的漏斗的沙子展开来得到简谐运动曲线一样。

如果横偏电压加非锯齿波电压,则称为非线性扫描,扫描出来的波形将不是原来的波形。

(2)只有输入电压与横偏扫描电压的周期严格形同,或者后者是前者的整数倍时,图形才会稳定(表示每次扫描起点相同,打出来的点在同一个位置重合)。

也就是说,构成稳定波形的条件是横偏扫描电压的周期x T 与输入纵偏电压的周期y T 之比为整数,即:n T T yx = (n=1,2,3,…)这时示波器上显示n 个稳定波形,n 代表完整波形的数目。

然而,两个独立发生的电振荡频率在技术上难以调节成准确的整数倍,克服的办法通常是用Y 轴输入信号频率去控制扫描发生器的频率,使扫描周期准确地等于输入信号周期或成整数倍。

电路的这个控制作用,称为“整步”或“同步”。

上述用Y 轴输入信号频率控制扫描电压频率实现的同步称为“内同步”;用外加信号频率控制扫描发生器的频率而实现的同步则称为“外同步”。

同步功能的实现是由示波器上的“TRIGGERING ”功能区来完成的。

(3)如果Y 轴加正弦输入信号,横偏也加正弦扫描电压,则一般情况下光点的运动非常复杂,但只要两个交流电压的频率成整数比,光点便可描绘出李萨育图形(Lissajous ),这时两个互相垂直的简谐振动合成的运动图形。

图3-9-4给出了不同频率比的李萨育图形。

李萨育图形即可以用来测量频率,还可以用来测量相位差,功率等。

本实验讨论用其测量频率的方法。

测量关系式为:yx x yn n f f 式中:x y f f ,分别为Y 方向和X 方向上输入信号的频率,y x n n 和分别为李萨育图形假想外方框横方向和垂直方向上的切点数。

只要知道Y 或X 方向上的某个频率,利用李萨育图形和上述关系式就可得到另一个未知频率。

应该指出,若两个正弦电压信号是彼此独立的,其李萨育图形是调不到稳定不动的。

因此李萨育图形方法测频率法只适合频率较低,两频率相近的情况下。

最后对本实验所用的示波器CS-4125进行简单介绍(见图3-9-5):(1)CRT:显示范围为垂直8div(80mm),水平10div(100mm)。

1div=1cm=1大格。

(2)POWER ON/OFF:示波器电源开关。

(3)电源指示灯(4)CAL端子:标准方波输出端,正极性1V P-P,1000Hz,校准示波器用。

(5)INTENSITY:调整显示亮线的亮度。

(6)FOCUS:清晰度调节。

(7)TRACE ROTA:调整水平亮线的倾角。

当水平亮线水平度受地磁作用影响时,可用起子来调整此电位器使其水平。

(8)GND:接地端,与其他仪器共同接地时使用。

(9)POSITION:调整屏幕上CH1波形的垂直位置。

(10)VOLTS/DIV:CH1端的垂直灵敏度调节旋钮。

此旋钮可在1-2-5级数间切换。

将V ARIABLE旋钮旋至CAL位置时,可得到校准的垂直灵敏度大小。

在X-Y状态下则是Y 轴衰减器。

(11)VARIABLE:CH1垂直灵敏度微调旋钮。

(12)AC-GND-DC:用以选择CH1垂直输入信号的耦合方式。

AC:AC耦合。

只允许交流信号通过,若有直流成分或f<10Hz的交流成分则被除去。

GND:将垂直增幅器的输入端接地,用以确认其接地电位。

DC:直接耦合。

将交直流信号同时加入到输入端。

(13)CH1 INPUT:CH1垂直信号输入端。

在X-Y情况下则是Y轴的输入端。

(14) POSITION:调整屏幕上CH2波形的垂直位置。

(15) VOLTS/DIV:CH2端的垂直灵敏度调节旋钮。

此旋钮可在1-2-5级数间切换。

将V ARIABLE旋钮旋至CAL位置时,可得到校准的垂直灵敏度大小。

在X-Y状态下则是Y 轴衰减器。

(16) V ARIABLE:CH2垂直灵敏度微调旋钮。

(17) AC-GND-DC:用以选择CH2垂直输入信号的耦合方式。

(18) CH1 INPUT:CH2垂直信号输入端。

在X-Y情况下则是X轴的输入端。

(19)VERTICAL MODE:用以选择输入信号显示方式。

CH1:仅显示CH1端输入的信号。

CH2:仅显示CH2端输入的信号。

ALT:每次扫描交替显示CH1及CH2信号。

CHOP:断续扫描CH1和CH2信号,即与CH1和CH2输入信号频率无关,而以150KH 在两个信道之间切换显示。

仅适合用于观察低频信号。

ADD:显示CH1及CH2输入信号的合成波形,即CH1+CH2或CH1-CH2。

注:ALT与CHOP MODE的区别:仅由显示时间加以区分。

在CHOP MODE仅将两信道细分,然后在两信道间交替显示,并非完全扫描完一个信道再显示另一个信道,通常用于小于1ms/div的低速扫描即闪动率小的观测中。

而ALT MODE方式则在每次扫描完后交替切换显示,故各信道显示比较鲜明,通常用于高速扫描上。

(20)CH2 INV:CH2输入信号极性反相按键。

(21)X-Y:CH2水平垂直切换开关。

当按下此钮时,VERTICAL MODE的设定不再有效,而将CH1变为Y轴,CH2变为X轴。

(22)TRIGGERING MODE:同步触发方式选择。

AUTO:由触发信号启动扫描,若无触发信号则显示FREE RUN亮线。

NORM:由触发信号启动扫描,但与AUTO不同的是,若无正确的触发信号则不会显示水平扫描亮线。

FIX:将同步电平LEVEL固定。

此时的同步与(25)LEVEL无关,每次扫描固定电平为0左右开始。

TV-FRAME:将电视复合信号中的垂直同步脉冲分离出来与触发电路结合来使波形同步。

TV-LINE:将电视复合信号中的水平同步脉冲分离出来与触发电路结合来使波形同步。

(23)SOURCE:触发信号来源选择。

VERT MODECH1:触发信号源为CH1端输入的信号。

CH2:触发信号源为CH2端输入的信号。

LINE:触发信号源为市电。

EXT:触发信号源为外部接入的信号(TRIGGER EXT.TRIG)(24)SLOPE:升降沿的选择。

用于选择触发扫描信号的升降沿选择。

当此按钮凸出时,采用触发信号的上升沿进行触发;当按下此钮时采用触发信号的下降沿进行触发。

(25)LEVEL:触发电平调节旋钮。

相关文档
最新文档