热处理--表面淬火技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我所关注的表面工程领域——表面淬火技术

一、表面淬火技术的原理和分类

采用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上,然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程,就称为表面淬火技术。实际上,不仅仅是钢铁,凡是能通过整体强化的金属材料,原则上都可以进行表面淬火。需要注意的是,表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织,使其表面硬度、耐磨性和疲劳强度均高。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些合金钢。

对于表面淬火的使用材料,原则上,碳的质量分数在0.35%--1.20%的中、高碳钢及基体相当于中碳钢的普通灰铸铁、球墨铸铁、可锻铸铁、合金铸铁均可以实现表面淬火,但中碳钢与球墨铸铁是最适宜于表面淬火的材料。

根据加热方法不同,表面淬火可分为感应加热(高频、中频、工频)表面淬火、火焰加热表面淬火、激光加热表面淬火、电子束表面淬火、接触电阻加热表面淬火、电解液加热表面淬火等。工业上应用最多的为感应加热、火焰加热、激光加热表面淬火。这里我主要介绍了感应加热、激光加热表面淬火技术,以及感应加热表面淬火国内外的发展现状及趋势。

二、感应加热表面淬火

感应加热表面淬火法是采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。生产中把工件放入由空心铜管绕成的感应线圈中,当感应线圈通以交流电时,便会在工件内部感应产生频率相同、方向相反的感应电流。感应电流在工件内自成回路,故称为“涡流”。涡流在工件截面上的分布是不均匀的,表面电流密度最大,心部电流密度几乎为零,这种现象称为集肤效应。由于钢本身具有电阻,因而集中于工件表面的涡流,几秒种可使工件表面温度升至800~1000℃,而心部温度仍接近室温,在随即喷水(合金钢浸油)快速冷却后,就达到了表面淬火的目的。

根据输出加热电流频率的不同可将感应加热表面淬火分为高频感应加热淬

火、中频感应加热淬火、低频感应加热淬火三种。近年来科技不断发展,又发展了超音频、双频感应加热淬火工艺。生产上常用的工艺是高频和中频感应加热淬火。

室温时感应电流流入工件表层的深度δ(mm)与电流频率f(HZ)的关系为δ频率升高,电流透入深度降低,淬透层降低。以下简单介绍高、中、低频感应加热淬火:

(1)高频加热

常用频率为(200~300)KHZ,淬硬层深度为(0.5~2.5)mm,适用于中、小型零件,如小模数齿轮、轴类等。

(2)中频加热

常用频率为(2500~8000)HZ,淬硬层深度为(2~10)mm,适用于直径较大的轴类和大、中模数齿轮以及钢轨、机床导轨等。

(3)低频加热

电流频率为50HZ,不需要频设备,城市用交流电即可,适用于淬硬层深度为(10~20)mm以上的大型工件或用于穿透加热。如火车车轮等的表面淬火。

感应加热时,工件截面上感应电流密度的分布与通入感应线圈中的电流频率有关。电流频率愈高,感应电流集中的表面层愈薄,淬硬层深度愈小。因此可通过调节通入感应线圈中的电流频率来获得工件不同的淬硬层深度,一般零件淬硬层深度为半径的1/10左右。对于小直径(10~20mm)的零件,适宜用较深的淬

硬层深度,可达半径的1/5,对于大截面零件可取较浅的淬硬层深度,即小于半径1/10以下。

感应加热表面淬火零件的一般工艺路线为:

选材:最适宜的钢种是中碳钢(如40#、45#钢)和中碳合金钢(如40Cr、40MnB钢等),常用零件有齿轮、轴、销类等。感应淬火后一般应采用180——200℃低温回火。也可用于高碳工具钢、含合金元素较少的合金工具钢及铸等。

工艺、性能:一般中碳钢感应淬火件加工工序:锻件→正火→机械加粗加工→调质处理→机械精(半精加工)→感应淬火→精加工。调质处理保证获得良好的心部强韧性,以承受复杂的交变应力;感应淬火可以获得表面高硬度,具有良好的耐磨性。

感应加热表面淬火的特点如下:

(1)表面晶粒细、硬度高。感应淬火得到很细小的马氏体组织,其硬度也比普通淬火高2~3HRC,且心部基本上保持了处理前的组织和性能。

(2)加热速度快,加热时间很短,一般只需几秒至几十秒即可完成。工件不容易产生氧化脱碳,淬火变形也很小。

(3)热效率高,生产率高,生产环境好,易实现机械化、自动化。

(4)淬硬层深度易于控制。通过控制电流频率来控制淬硬层深度,经验公式如下:

δ=(500~600)/f^0.5

式中:δ——淬硬层深度mm 、f——电流频率Hz

(5)设备投资大、维修困难,需根据零件实际制作感应器,适合于批量生产。

三、激光加热表面淬火

激光加热表面淬火是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹容易控制,易于实现自动化,不需要象感应淬火那样根据不同的零件尺寸设计相应的感应线圈,对大型零件的加工也无须受到渗

碳淬火等化学热处理时炉膛尺寸的限制,因此在很多工业领域中正逐步取代感应淬火和化学热处理等传统工艺。尤其重要的是激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3——2.0mm范围之间。对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。

激光加热表面淬火加热速度极度快(105~106℃/s),因此过热度大,相变驱动力大,奥氏体形核数目剧增,扩散均匀化来不及进行,奥氏体内碳及合金浓度不均匀性增大,奥氏体中碳含量相似的微观区域变小,随后的快冷(104℃/s)中不同微观区域内马氏体形成温度有很大差异,产生细小马氏体组织。由于快速加热,珠光体组织通过无扩散转化为奥氏体组织;由于快速冷却,奥氏体组织通过无扩散转化为马氏体组织,同时残余奥氏体量增加,碳来不及扩散,使过冷奥氏体碳含量增加,马氏体中碳含量增加,硬度提高。

激光淬火硬化层深度一般为0.3~1mm,硬化层硬度值一致。随零件正常相对接触摩擦运动,表面虽然被磨去,但新的相对运动接触面的硬度值并未下降,耐磨性仍然很好,因而不会发生常规表面淬火层由于接触磨损,磨损随之加剧的现象,耐磨性提高了50%,工件使用寿命提高了几倍甚至十几倍。

激光加热表面淬火具体有如下特点:

(1)无需使用外加材料,就可以显著改变被处理材料表面的组织结构,大大改善工件的性能。激光淬火过程中的急热急冷过程使得淬火后,马氏体晶粒极细、位错密度相对于常规淬火更高,进而大大提高材料性能。

(2)处理层和基本结合强度高。激光表面处理的改性层和基体材料之间是致密冶金结合,而且处理层表面也是致密的冶金组织,具有较高的硬度和耐磨性。

(3)被处理工件变形极小,适合于高精度零件处理,可作为材料和零件的最后处理工序。这是由于激光功率密度高,与零件上某点的作用时间很短,故零件的热变形区和整体变化都很小。

(4)加工性好,适用面广。激光光斑面积较小,不可能同时对大面积表面进行加工,但是可以利用灵活的导光系统随意将激光导向处理部分,从而可方便地处理深孔、内孔、盲孔等局部区域。改性层厚度与激光淬火中工艺参数息息相

相关文档
最新文档