沸腾换热

合集下载

第七章----沸腾换热

第七章----沸腾换热
tw ts
g
根据以上 8 个假设从边界层微分方程组推出努 塞尔的简化方程组,从而保持对流换热理论的 统一性。同样的,凝结液膜的流动和换热符合
边界层的薄层性质。
以竖壁的膜状凝结为例: x 坐标为重力方向,如 图所示。 在稳态情况下,凝结液膜流动的微分方程组为 :
u v x y 0 u u dp 2u v ) l g l 2 l (u x y dx y t t 2t u v al 2 y y x
gr hV 1.13 l l( t s t w )
2 l 3 l 1/ 4
(4)当是水平圆管及球表面上的层流膜状凝结时, 其平均表面传热系数为:
水平管:
gr hH 0.729 d( t t ) s w l
2 l 3 l
g
tw ts
特点:壁面上有一层液膜,凝结放出的
相变热(潜热)须穿过液膜才能传到冷
却壁面上, 此时液膜成为主要的换热
热阻
(2)珠状凝结
定义:凝结液体不能很好地湿润壁 面,凝结液体在壁面上形成一个个 小液珠的凝结形式,称珠状凝结。
g
tw ts
特点:凝结放出的潜热不须穿过液膜的阻力即 可传到冷却壁面上。
考虑假定(5) 膜内温度线性分布,即热量 转移只有导热
t t u v 0 x y
只有u 和 t 两个未知量,于是,上面得方 程组化简为:
2u l g l y 2 0 2 t a 0 l 2 y
边界条件: y 0 时, u 0, t t w
计算方法:对于竖壁紊流膜状换热,沿整个
壁面上的平均表面传热系数

沸腾换热计算式

沸腾换热计算式

沸腾换热计算式沸腾换热计算式(1)大容器饱和核态沸腾前面的分析表明,影响核态沸腾的因素主要是壁面过热度和汽化核心数,而汽化核心数又受到墨面材料及其表面状况、压力和物性的影响。

由于因素比较复杂,如墨面的表面状况受表面污染、氧化等影响而有不同,文献中提出的计算式分歧较大。

在此仅介绍两种类型的计算式:一种是针对某一种液体的;另一种是广泛适用于各种液体的。

当然,针对性强的计算式精确度往往较高。

对于水,米海耶夫推荐的在105~4×106Pa压力下大容器饱和沸腾的计算式为(3-4)按q=h△t的关系,上式也可转换成(3-5)以上两式中 h:沸腾换热表面传热系数,W/(m2·K)p:沸腾绝对压力,Pa;△t:壁面过热度,℃;q:热流密度,W/m2。

基于核态沸腾换热主要是气泡高度扰动的强制对流换热的设想,推荐以下使用性光的实验关联式:(3-6)式中 c pl:饱和液体的比定压热容,J/(kg·K);C wl:取决于加热表面-液体组合情况的经验常数;r:汽化潜热,J/kg;g:重力加速度,m/s2;Pr l:饱和液体的普朗数,Pr l=c plμl/k l;μl:饱和液体的动力粘度,kg/(m·s);ρl、ρv:饱和液体和饱和蒸汽的密度,kg/m3;γ:液体-蒸汽截面的表面张力,N/m;s:经验指数,对于水s=1,对于其他液体s=1.7。

由实验确定的C wl值见表3-1。

表3-1 各种表面-液体组合情况的C wl值图3-5 铂丝加热水的沸腾换热实验数据的整理水在不同压力下沸腾的实验数据与式(3-6)的比较见图3-5。

式(3-6)还可以改写成为以下便于计算的形式:(3-7)这里要着重指出两点:1)式(3-6)实际上也是形如Nu=f(Re,Pr)或St=f(Re,Pr)的主则式。

其中:是以单位面积上的蒸汽质量流速q/r为特征速度的Re数;为特征长度,它正比于旗袍脱离加热面时的直径。

沸腾换热计算式

沸腾换热计算式

沸腾换热计算式沸腾换热计算式(1)大容器饱和核态沸腾前面的分析表明,影响核态沸腾的因素主要是壁面过热度和汽化核心数,而汽化核心数又受到墨面材料及其表面状况、压力和物性的影响。

由于因素比较复杂,如墨面的表面状况受表面污染、氧化等影响而有不同,文献中提出的计算式分歧较大。

在此仅介绍两种类型的计算式:一种是针对某一种液体的;另一种是广泛适用于各种液体的。

当然,针对性强的计算式精确度往往较高。

对于水,米海耶夫推荐的在105~4×106Pa压力下大容器饱和沸腾的计算式为(3-4)按q=h△t的关系,上式也可转换成(3-5)以上两式中 h:沸腾换热表面传热系数,W/(m2·K)p:沸腾绝对压力,Pa;△t:壁面过热度,℃;q:热流密度,W/m2。

基于核态沸腾换热主要是气泡高度扰动的强制对流换热的设想,推荐以下使用性光的实验关联式:(3-6)式中 c pl:饱和液体的比定压热容,J/(kg·K);C wl:取决于加热表面-液体组合情况的经验常数;r:汽化潜热,J/kg;g:重力加速度,m/s2;Pr l:饱和液体的普朗数,Pr l=c plμl/k l;μl:饱和液体的动力粘度,kg/(m·s);ρl、ρv:饱和液体和饱和蒸汽的密度,kg/m3;γ:液体-蒸汽截面的表面张力,N/m;s:经验指数,对于水s=1,对于其他液体s=1.7。

由实验确定的C wl值见表3-1。

表面-液体组合情况C wl水-铜烧焦的铜0.0068抛光的铜0.0130水-黄铜0.0060水-铂0.0130水-不锈钢磨光并抛光的不锈0.0060钢化学腐蚀的不锈钢0.0130机械抛光的不锈钢0.0130苯-铬0.101乙醇-铬0.0027表3-1 各种表面-液体组合情况的C wl值图3-5 铂丝加热水的沸腾换热实验数据的整理水在不同压力下沸腾的实验数据与式(3-6)的比较见图3-5。

式(3-6)还可以改写成为以下便于计算的形式:(3-7)这里要着重指出两点:1)式(3-6)实际上也是形如Nu=f(Re,Pr)或St=f(Re,Pr)的主则式。

传热学第六章凝结与沸腾换热

传热学第六章凝结与沸腾换热
实验查明,几乎所有的常用蒸气,在洁净 的材料表面上都形成膜状凝结。
珠状凝结:凝结液体不能很好地润湿壁面,凝结 液体在壁面上形成一个个小液珠。珠状凝结时, 所形成的液珠不断长大,在非水平的壁面上,因 受重力作用,液珠长大到一定尺寸后就沿壁面滚 下。在滚下的过程中,一方面会合相遇的液珠, 合并成更大的液滴,另一方面也扫清了沿途的液 珠,更利于蒸汽的凝结。凝结液只是局部隔断了 蒸汽与壁面间的换热,因此其热阻要远小于膜状 凝结。
层的导热热阻是主要热阻这一特点,忽略次要因 素,是分析求解换热问题的一个典范。 Nusselt膜状理论:凝结换热系数h只决定于膜的 厚度。
合理简化假设: 1)常物性; 2)蒸汽静止,汽液界面上无对液膜的粘滞应力; 3)液膜的惯性力可以忽略;
4)汽液界面无温差,界面上液膜温度等于饱和温度,tδ=ts;
7.凝结表面的几何形状
纯净水蒸气凝结表面传热系数很大,凝结侧热阻不是主要部 分。若实际运行中有空气漏入,则表面传热系数明显下降。
对制冷剂凝结,主要热阻在凝结一侧,必须对凝结换热进行 强化。方法:
(1)用各种带有尖锋的表面,使在其上凝结的液膜减薄; (2)使已凝结的液体尽快从换热表面排泄掉。 (3)对水平管外凝结,可采用各种类型锯齿管或低肋管冷凝
亦适用。实验表明:当膜层Re<1600时为层流。
2.湍流膜状凝结换热实验关联式
Nu = Ga1/(
Prw Prs
)
1 4
(Re
3 4

253)
+
9200
式中:Ga — 伽里略数,Ga = gl 3 .
ν2
Prw — 以tw为定性温度的 Pr Ga、Re 、Prs — 以ts为定性温度
4.液膜过冷度及温度分布的非线性

沸腾换热计算式

沸腾换热计算式

沸腾换热计算式沸腾换热计算式(1) 大容器饱和核态沸腾前面的分析表明,影响核态沸腾的因素主要是壁面过热度和汽化核心数,而汽化核心又受到墨面材料及其表面状况、压力和物性的影响。

由于因素比较复杂,如墨面的表面状况受表面污染、氧化等影响而有不同,文献中提岀的计算式分歧较大。

在此仅介绍两种类型的计算式:一种是针对某一种液体的;另一种是广泛适用于各种液体的。

当然,针对性强的计算式精确度往往较高。

对于水,米海耶夫推荐的在105〜4X 10 6Pa压力下大容器饱和沸腾的计算式为Cj = (JJ224 *5!°^ 疋巧按q=h At的关系,上式也可转换成h二G严旷小(3-5)C2二(L5W5 W\/伽"・V • K)以上两式中h:沸腾换热表面传热系数,W/(m2・K)p:沸腾绝对压力,Pa;△ t:壁面过热度,C;q:热流密度,W/m2基于核态沸腾换热主要是气泡高度扰动的强制对流换热的设想验关联式式中C pi:饱和液体的比定压热容,J/(kg • K);C wl:取决于加热表面-液体组合情况的经验常数,推荐以下使用性光的实(3-4)r:汽化潜热,J/kg;g:重力加速度,m/s 2;Pr i:饱和液体的普朗数,Pr i=C pi卩i/k i饱和液体的动力粘度,kg/(m • s);P i、p v:饱和液体和饱和蒸汽的密度,kg/mY :液体-蒸汽截面的表面张力,N/m;s:经验指数,对于水s=1,对于其他液体s=表面-液体组合情况Gvi水-铜烧焦的铜抛光的铜水-黄铜水-铂水-不锈钢磨光并抛光的不锈钢化学腐蚀的不锈钢机械抛光的不锈钢苯-铬乙醇-铬由实验确定的C wi值见表3-1表3-1各种表面-液体组合情况的C wi值0 . S 04图3-5铂丝加热水的沸腾换热实验数据的整理水在不同压力下沸腾的实验数据与式(3-6)的比较见图3-5式(3-6)还可以改写成为以下便于计算的形式2)由于沸腾换热的复杂性,目前在各类对流换热的准则式中以沸腾换热准回式与实验数据的偏差程度最大。

传热学第六章凝结与沸腾换热

传热学第六章凝结与沸腾换热

第六章 凝结与沸腾换热
17
7. 凝结表面的几何形状
❖ 强化凝结换热的原则是 尽量减薄粘滞在换热表 面上的液膜的厚度。
❖ 可用各种带有尖峰 的表面使在其上冷 凝的液膜拉薄,或 者使已凝结的液体 尽快从换热表面上 排泄掉。
第六章 凝结与沸腾换热
18
§6-4 沸腾换热现象
1 生活中的例子 • 蒸汽锅炉
l g
l
2u y 2
0
al
2t y 2
0
第六章 凝结与沸腾换热
7
边界条件:
y 0 时, u 0, t tw
y 时, du 0,
dy
t ts
求解上面方程可得:
(1) 液膜厚度
4l
l (
g
ts
l2 r
tw
)x 1/ 4
定性温度:
tm
ts
tw 2
注意:r 按 ts 确定
第六章 凝结与沸腾换热
10
横管与竖管的对流换热系数之比:
hHg hVg
0.77
l d
1
4
3 边界层内的流态
凝结液体流动也分层流和湍流,并 且其判断依据仍然时Re,
Re de ul
式中:
ul 为 x = l 处液膜层的平均流速;
de 为该截面处液膜层的当量直径。
第六章 凝结与沸腾换热
无波动层流
6
考虑(3)液膜的惯性力忽略
l
(u
u x
v
u y
)
0
考虑(7)忽 略蒸汽密度
dp dx
0
u
x
v y
0
l
(u
u x
v

沸腾换热计算式资料讲解

沸腾换热计算式资料讲解

沸腾换热计算式沸腾换热计算式(1)大容器饱和核态沸腾前面的分析表明,影响核态沸腾的因素主要是壁面过热度和汽化核心数,而汽化核心数又受到墨面材料及其表面状况、压力和物性的影响。

由于因素比较复杂,如墨面的表面状况受表面污染、氧化等影响而有不同,文献中提出的计算式分歧较大。

在此仅介绍两种类型的计算式:一种是针对某一种液体的;另一种是广泛适用于各种液体的。

当然,针对性强的计算式精确度往往较高。

对于水,米海耶夫推荐的在105~4×106Pa压力下大容器饱和沸腾的计算式为(3-4)按q=h△t的关系,上式也可转换成(3-5)以上两式中 h:沸腾换热表面传热系数,W/(m2·K)p:沸腾绝对压力,Pa;△t:壁面过热度,℃;q:热流密度,W/m2。

基于核态沸腾换热主要是气泡高度扰动的强制对流换热的设想,推荐以下使用性光的实验关联式:(3-6)式中 c pl:饱和液体的比定压热容,J/(kg·K);C wl:取决于加热表面-液体组合情况的经验常数;r:汽化潜热,J/kg;g:重力加速度,m/s2;Pr l:饱和液体的普朗数,Pr l=c plμl/k l;μl:饱和液体的动力粘度,kg/(m·s);ρl、ρv:饱和液体和饱和蒸汽的密度,kg/m3;γ:液体-蒸汽截面的表面张力,N/m;s:经验指数,对于水s=1,对于其他液体s=1.7。

由实验确定的C wl值见表3-1。

表面-液体组合情况C wl水-铜烧焦的铜0.0068抛光的铜0.0130水-黄铜0.0060水-铂0.0130水-不锈钢磨光并抛光的不锈0.0060钢化学腐蚀的不锈钢0.0130机械抛光的不锈钢0.0130苯-铬0.101乙醇-铬0.0027表3-1 各种表面-液体组合情况的C wl值图3-5 铂丝加热水的沸腾换热实验数据的整理水在不同压力下沸腾的实验数据与式(3-6)的比较见图3-5。

式(3-6)还可以改写成为以下便于计算的形式:(3-7)这里要着重指出两点:1)式(3-6)实际上也是形如Nu=f(Re,Pr)或St=f(Re,Pr)的主则式。

第六章-凝结和沸腾换热-2

第六章-凝结和沸腾换热-2

d.过渡沸腾 过渡沸腾 >50℃) 从C点继续提高沸腾温差 ⊿ t(>50℃) ,则热流密度 q不仅没 点继续提高沸腾温差 有增加,反而迅速降低至一极小值 极小值q 图中D点)。这是由于 有增加,反而迅速降低至一极小值qmin (图中 点)。这是由于 产生的汽泡过多且连在一起形成了汽膜, 产生的汽泡过多且连在一起形成了汽膜,覆盖在加热面上不易 脱离,使换热条件恶化所致。 脱离,使换热条件恶化所致。这时的汽膜不断破裂成大汽泡脱 离壁面,其换热状态是不稳定的。 这一阶段称为 离壁面,其换热状态是不稳定的。从C到D这一阶段称为过渡沸 到 这一阶段称为过渡沸 腾。
米海耶夫公式 其中 按 上式可转换为
h = C1 ∆ t 2 .33 p 0 .5
C1 = 0.122 W (m ⋅ N 0.5 ⋅ K 3.33 )
q = h∆t
h = C 2 q 0 .7 p 0 .15 C2 = 0.533W 0.3 (m0.3 ⋅ N 0.15 ⋅ K)
上式中: 上式中:
h = f ( ∆t , g ( ρ l − ρ v ), r , σ , C p , λ , µ , C w ,........)
其中C 为沸腾液体与接触表面材料有关的系数。 其中 w为沸腾液体与接触表面材料有关的系数。 常用的关于核态沸腾换热的经验计算公式有两个 (1)对于水的大容器饱和核态沸腾,推荐采用米海 对于水的大容器饱和核态沸腾,推荐采用米海 水的大容器饱和核态沸腾 耶夫公式,适用压力范围: 耶夫公式,适用压力范围:105~4×106 Pa 公式
12
3
可见, 因此, 可见,q ~ ∆t 3 ,因此,尽管有时上述计算公式得到的 q与实验值的偏差高达±100%,但已知 计算 与实验值的偏差高达± %,但已知 与实验值的偏差高达 %,但已知q计算∆t 时,则 可以将偏差缩小到±33%。这一点在辐射换热中更为明显。 %。这一点在辐射换热中更为明显 可以将偏差缩小到±33%。这一点在辐射换热中更为明显。 计算时必须谨慎处理热流密度。 计算时必须谨慎处理热流密度。 (3) 适用于制冷工质沸腾换热的 ) 适用于制冷工质沸腾换热的Cooper关联式 关联式

第七章凝结及沸腾换热_传热学

第七章凝结及沸腾换热_传热学

23
3 大空间饱和沸腾曲线:
表征了大容器饱和沸腾的全部过程,共包括4个换热规律不 同的阶段:自然对流、泡态沸腾、过渡沸腾和稳定膜态沸腾, 如图所示:
qmax
qmin
24
4.几点说明: (1)上述热流密度的峰值qmax 有重大意义,称为临界 热流密度,亦称烧毁点。一般用核态沸腾转折点DNB作 为监视接近qmax的警戒。这一点对热流密度可控和温度 可控的两种情况都非常重要。 (2)对稳定膜态沸腾,因为热量必须穿过的是热阻较 大的汽膜,所以换热系数比凝结小得多。
25
三. 大空间泡态沸腾表面传热系数计算
沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍 然适用,即
q h(tw ts ) ht
但对于沸腾换热的h却又许多不同的计算公式 影响泡态沸腾的因素主要是过热度和汽化核心数,而汽 化核心数受表面材料、表面状况、压力等因素的支配,所 以沸腾换热的情况液比较复杂,导致了个计算公式分歧较 大。目前存在两种计算是,一种是针对某一种液体,另一 种是广泛适用于各种液体的。
与膜状凝结换热不同,液体中的不凝结气体会使沸腾换热 得到某种程度的强化 2 过冷度
只影响过冷沸腾,不影响饱和沸腾,因自然对流换热时,
h (tw, 因t f 此)n ,过冷会强化换热。
30
3.液位高度
当传热表面上的液位足够高时, 沸腾换热表面传热系数与液位 高度无关。但当液位降低到一 定值时,表面传热系数会明显 地随液 位的降低而升高(临界 液位)。
2t y 2
5
考虑(3)液膜的惯性力忽略
l (u
u x
v
u y
)
0
考虑(7)忽略蒸汽密度
dp 0 dx
考虑(5) 膜内温度线性分布, 即热量转移只有导热

沸腾换热(课堂PPT)

沸腾换热(课堂PPT)
7-2 沸腾换热现象 (Boiling Heat Transfer) 蒸发:液-汽界面上液体汽化的相变过程 沸腾:液体内部产生汽泡的剧烈汽化过程
.
1
根据热力学理论:只要液体内部的温度等于或高于对应压 力下液体的饱和温度,该处液体就会发生相变,并可能产 生沸腾现象 液体沸腾可以分为两大类:容积沸腾、表面沸腾 容积沸腾(均相沸腾,homogeneous boiling):沸腾直接发生 在液体容积内部,且不存在固体加热壁面 表面沸腾(非均相沸腾,heterogeneous boiling):沸腾发生在 与液体接触的加热面上
表面沸腾(非均相沸腾)分类: 大空间沸腾(或大容器沸腾、池沸腾):
热表面沉浸在具有自由表面的液体中的沸腾
有限空间沸腾(或受迫对流沸腾、管内沸腾):
.
2
.
3
饱和沸腾:液体主体温度为ts,而壁面温度 tw> ts 即: tw> tf=ts
壁面附近有很大的温度梯 度;绝大部分液体的温度 略高于饱和温度
.
22
Cwl 为根据加热面与液体种类选取的经验常数;
.
23
33% 100%
.
24
(3)库珀(Cooper)公式(适用于制冷剂):
h C q 0 .6 7 M r 0 .5p rm lgp r 0 .5 5
C90W 0.33(m 0.66K)
m0.120.2lgRpμm
Mr为液体的相对分子质量(分子量) pr为对比压力,即液体压力与其临界压力之比。 Rp为表面平均粗糙度,单位为m。对于一般工业用材料表面, Rp=0.3~0.4 m。
.
25
7.5.2 大容器沸腾的临界热流密度计算公式
朱伯(N.Zuber)给出了大空间核态饱和沸腾临界热流密度 的计算公式 :

沸腾换热 对流换热现象

沸腾换热 对流换热现象

沸腾换热对流换热现象
沸腾换热是指两个物质在彼此之间通过温度和压力耦合的动力学过程
而进行热传递的一种特殊热传递形式。

它是指当其中一个物质处于沸点时,由于其蒸汽压力较大,蒸汽中的能量可以穿过低温的另一个物质,从而使
它的温度上升,从而达到换热的目的。

传统的沸腾换热,典型的热源只有
液体,如水,而物质汇热只有气体,如汽水。

例如在一个真空环境下,水
在沸点时,沸气会通过物质层,把热量传给气体层,起到换热的作用,从
而使得低温的气体温度上升。

沸腾换热是一种高效换热方式,具有很高的换热系数,可以大大减少
换热所需的时间,从而提高整个换热系统的整体性能,同时也可以一定程
度上降低能耗。

然而,沸腾换热的温差也比较高,它的换热效率也会随着
温差的增大而降低,因此沸腾换热只适用于温差较大的情况。

对流换热是指一种热传递方式,即由于热源和物质汇热之间的温度差,彼此之间的空气层形成热对流,使热量从高温物质向低温物质传递,从而
达到换热的目的。

对流换热的特点是其换热效率较高、所需温差较小,换
热过程中涉及体积和能量变化较小,不需要利用任何额外的机械装置即可
实现换热。

热质交换原理与设备-第三章

热质交换原理与设备-第三章

对于水,米海耶夫推荐的在105~ 4x106Pa压力下大容 器饱和沸腾的计算式为
按q=hΔt的关系,上式亦可转化为
基于核态沸腾换热主要是气泡高度扰动的强制对流换 热的设想,文献[9,10]推荐以下适用性广的实验关联式:
水在不同压力下沸腾的实验数据与式(3-6)的比较见图 3-5。 式(3-6)还可以改写成为以下便于计算的形式:
高时,壁面上越来越小的存气凹穴处将成为工作的汽化核 心,从而汽化核心数随壁面过热度的提高而增加。
关于加热表面上汽化核心的形成及关于气泡在 液体中的长大与运动规律的研究,无论对于掌握沸腾换热 的基本机理以及开发强化沸腾换热的表面都具有十分重要 的意义。现有的预测沸腾换热的各种物理模型都是基于对 成核理论及气泡动力学的某种理解面建立起来的。正是20 世纪50年代末关于汽化核心首先是在表而上一些微小凹坑 上形成的这一基本观点的确立,才导致了20世纪70年代关 于沸腾换热强化表面开发工作的开展。
的压力pv必大于气泡外的压力pt。根据力平衡条件,气泡内
外压差应被作用于汽液界面上的表面张力所平衡,即
若忽略液柱静压的影响,则pt可认为近似等于沸腾系统
的环境压力,即 pt ps 。而热平衡则要求气泡内蒸汽
的湿度为pv压力下的饱和温度tv。界面内外温度相t等l ,tv即
所以气泡外的液体必然是过热的,过热度为tv ts
式中,hc、hr分别为按对流换热及辐射换热计算所得的 表面传热系数,其中hc按式(3-10)计算,而hr则按下式确定:
(4)制冷剂水平管束外大空间的沸腾放热 制冷剂的沸腾放热是一个很复杂的过程,目前尚
未有统一的、适用范围广泛的公式予以描述,只能采用某 些在特定条件下得出的经验公式进行计算。
对于光管管束上的沸腾,其放热公式可按如下公 式近似计算:

热工学基础:沸腾换热

热工学基础:沸腾换热

工程实际中一般总是设法控制在泡态沸腾区内操作,沸腾温差t 要严格
控制在临界点以下。
临界点C
临界温差tc 临界热流密度qc
3. 管内沸腾换热过程
液体一方面在加热面上沸腾,一方面又以一定的速度流过加热面,受空间的限制,使 沸腾产生的气体和液体混合在一起,构成汽液两相的混合物。
管内沸腾换热涉及到管 内的两相流动的问题
管内沸腾换热在工程应用较为广泛,如管式蒸发器和水管锅炉等。
竖直管内沸腾换热
水平管内沸腾换热
管内沸腾换热
(块状流 雾状流
泡状流 环状流 单相流
换热类型
对流换热 泡态沸腾 湿蒸汽换热
过冷沸腾 液体对流沸腾 过热蒸汽换热
管内沸腾换热
(2) 水平管内沸腾换热
水平管内的沸腾换热情形与流速有关。
➢ AB 段,常压下t<5℃,q、h 随t 缓慢增加。 ➢ q 较低,即使壁面上产生了汽泡也不能脱离上浮。其换热过程符合无相变的对流换热规律。
大容器沸腾换热
② 泡态沸腾
➢ BC 段,t5~25℃,有大量汽泡在壁面上迅速生长和激烈运动,强烈扰动周围液体, 使h 和q 都显著增大,且h 达到峰值;
➢ BC 段的沸腾换热主要取决于汽泡的生成和运动 。
③ 膜态沸腾
➢ C点以后,t>25℃,
不稳定膜态沸腾 稳定膜态沸腾
大容器沸腾换热
不稳定膜态沸腾区
➢ CD 段,大量汽泡在壁面汇合在一起形成一层不稳定的汽膜,汽膜的附加热阻使得h和q
都急剧下降。
稳定膜态沸腾
➢ DE 段 ,壁面全部被一层稳定的汽膜所覆盖,这时汽化只能在膜的汽液交界上进行,以 后h 随t 的增加基本不变,而q又开始随t 的增加而上升。
管内沸腾换热受管子的放置(垂直、水平或倾斜)、管长与管径、壁面状况、气液比、液体 初参数、流速、流量等多方面因素影响,比大容器沸腾换热复杂得多。

沸腾换热的重要特征

沸腾换热的重要特征

沸腾换热的重要特征
沸腾换热是一种在液体与固体或液体与气体之间进行热传递的现象。

它具有以下重要特征:
1. 高传热系数:沸腾换热过程中,由于液体物质的剧烈搅动和蒸汽形成的泡沫层的存在,使得传热系数大幅提高,比传统的对流换热方式高几个数量级。

2. 均匀的温度分布:沸腾换热能够实现热量在液体中均匀分布,从而减小局部热应力,确保传热表面温度均匀。

3. 高热传递功率密度:由于沸腾时产生的大量蒸汽可以带走更多的热量,因此沸腾换热可以实现高热传递功率密度,适用于需要高能量密度的热传递应用。

4. 自冷却效应:沸腾换热过程中,蒸汽的生成会使得换热表面自行冷却,从而提高了换热效率和系统的稳定性。

5. 抗污积效应:沸腾过程中,蒸汽泡沫的形成和运动可以将表面附着物冲刷掉,从而减少了换热表面的污积,提高了换热效率和长期稳定性。

总之,沸腾换热具有高传热系数、均匀温度分布、高热传递功率密度、自冷却效应和抗污积效应等重要特征,使其在许多工业和科学领域得到广泛应用。

凝结与沸腾换热

凝结与沸腾换热
加热表面
4 汽泡动力学简介
(1) 汽泡旳成长过程
试验表白,一般情况下,沸腾开始时汽泡只发生在加 热面旳某些点,而不是整个加热面上,这些产愤怒泡 旳点被称为汽化关键,较普遍旳看法以为,壁面上旳 凹穴和裂缝易残留气体,是最佳旳汽化关键,如图所 示。
(2) 汽泡旳存在条件 汽泡半径R必须满足下列条件才干存活
hH
0.729
l
gr d(
l2l3
ts tw
1/ 4
)
式中:下标“ H ”体现水平管。
定性温度与前面旳公式相同
定性尺寸:单管为管外径d 水平管束为nd
6 水平管内凝结换热
利用上面思想,整顿旳整个表面旳平均努塞尔数:
h 0.555[ g( v )3r]1/ 4 d (ts tw )
r r 0.68cp( ts tw )
5 大容器饱和沸腾曲线:
qmax
qmin
6 沸腾换热计算式
沸腾换热也是对流换热旳一种,所以,牛顿冷却公式依然合用, 即
q h(tw ts ) ht
但对于沸腾换热旳h却有许多不同旳计算公式 为此,书中分别推荐了两个计算式 (1)米海耶夫公式——水
对于水旳大容器饱和核态沸腾,教材推荐使用,压力范围: 105~4 106 Pa
(2)优良旳等温性。热管内腔旳蒸汽是处于饱和状态,饱和蒸汽旳压 力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生旳压降 很小,根据热力学中旳方程式可知,温降亦很小,因而热管具有 优良旳等温性。
(3)采用不同旳工作液,热管合用-200到2200℃温度范围内旳工作。 (4)热流密度可变性。热管能够独立变化蒸发段或冷却段旳加热面积,
2 膜状液膜旳流态
凝结液体流动也分层流和湍流,而 且其判断根据依然是Re,

第六章 凝结与沸腾换热

第六章 凝结与沸腾换热
饱和沸腾: (1) 池内液体主体温度达到 t s (2) 壁温 t w t s
t tw ts 0
大容器沸腾(池内沸腾) 强制对流沸腾(管内沸腾) 液→气
过热度、温压
1、大容器饱和沸腾过程及换热规律曲线
ห้องสมุดไป่ตู้
图6-11 常压下饱和沸腾的典型曲线
饱和沸腾过程: 1) t 4℃

t t w t s
(2)tm
ts tw 2
附录10或13

…(物理性质)
(6-4)得 h (3)设为层流由式(6-10)、 (4)校核是否 Re 1600 ,否用式(6-12) (5) nhAt (亦称为热负荷)
n ——管数, A ——单管面积 qm ㎏/ s 见例题6-1 , p211 r
g ( l v ) c pl t C r Pr s ∵ q ht l r wl l
12 3
(6-18)
5)制冷介质的沸腾换热 h ,用式(6-19) 应用:
1)q , t s(或 p ) 式(6-17) t
式(6-18)

14
(6-6)
•同条件时横管换热强, •冷凝器常用横管布置。 说明:1)卧式凝汽器或横管均为层流; 2)较长竖壁、横管才出现湍流。
二、层流膜状凝结的准则方程 1、膜层雷诺数 Re
ul d e Re 定义: ν
d e ——当量直径
其中 则
4 Ac 4b 4 P b u 4 4 ul 4qml Re l de
(6-13)
5)管子排数 n根横管: 式(6-4)的特征长度
d nd
6)管内凝结 7)凝结表面的几何形状 强化凝结换热表面 (表面形状)

沸腾换热名词解释

沸腾换热名词解释

沸腾换热名词解释
嘿,咱今儿来聊聊沸腾换热这个事儿哈!你说啥是沸腾换热呀?就好比你煮开水的时候,水咕嘟咕嘟地冒泡,那热量不就从火传递到水里啦,这过程就是沸腾换热呀!
想象一下,那水在锅里欢快地翻滚着,热气腾腾的,这可不就是热量在欢快地传递嘛!沸腾换热就像是一场热闹的舞会,热量是主角,水就是那个尽情舞动的舞者。

你看啊,在我们的生活中,沸腾换热可太常见啦!家里的水壶烧水,不就是沸腾换热在发挥作用嘛。

还有那锅炉房里,热水通过管道把温暖送到各个房间,这也是沸腾换热的功劳呀!它就像一个勤劳的小蜜蜂,默默地为我们服务着。

那沸腾换热有啥特点呢?嘿嘿,这可多了去了。

它的换热效率可高啦!就像一个超级大力士,能快速地把热量传递出去。

而且呀,它还很灵活呢,可以在不同的条件下工作,不管是高温还是低温,它都能应对自如。

就好比一个优秀的运动员,不管是在炎热的夏天还是寒冷的冬天,都能发挥出自己的实力。

沸腾换热不也是这样嘛,不管环境怎么变,它都能稳稳地完成自己的任务。

你说这沸腾换热神奇不神奇?它虽然看不见摸不着,但却在我们生活中无处不在呀!没有它,我们的生活可就没那么方便咯!
咱再想想,要是没有沸腾换热,那冬天我们怎么取暖呀?洗澡水怎么烧热呀?哎呀,简直不敢想象没有它的日子会是啥样!
所以呀,沸腾换热可真是个了不起的东西呢!我们可得好好珍惜它,好好利用它,让它为我们的生活带来更多的便利和温暖。

它就像是我们生活中的一个好朋友,默默地陪伴着我们,为我们付出着。

你说,我们能不爱它吗?反正我是爱死它啦!哈哈!。

传热学《沸腾换热现象》PPT课件-10分钟试讲课件

传热学《沸腾换热现象》PPT课件-10分钟试讲课件

4 )稳定膜态沸腾
从 qmin 开始,随着 t 的上升, 气泡生长速度与跃离速度趋于平衡。 此时,在加热面上形成稳定的蒸汽膜 层,产生的蒸汽有规律地脱离膜层, 致使 t 上升时,热流密度 q 上升, 此阶段称为稳定膜态沸腾。
情况说明:
( 1 )峰值 qmax ,称为临界热流密度,亦称烧毁点。 对于依靠控制热流密度的设备如点加热器、核 反应堆,一旦热流密度超过峰值,工况将沿虚 线调至稳态膜态沸腾,温差将猛的突升1000℃,



研究表明:壁面上狭缝、凹坑、细缝等最有可能成为气化核心, 因为相比于平直面上的液体,这些地方的液体更容易受到加热的 影响,且狭缝更容易残留气体。
本章小结:
(1) 沸腾换热定义及分类 (2) 大容器饱和沸腾曲线 (3) 汽化核心形成
③随着 t 的增大, q 增大,当 t 增 大到一定值时, q 增加到最大值 ,汽 泡扰动剧烈,汽化核心对换热起决定作 用,则称该段为核态沸腾(泡状沸腾)。
其特点:温压小,换热强度大,其终点 的热流密度 q 达最大值 。工业设计中 应用该段。
3)过渡沸腾
从峰值点进一步提高 t ,热流密度 q 减小;当 增大到一定值时,热流密度 减小到 qmin ,这一阶段称为过渡沸腾。该 区段的特点是属于不稳定过程。 原因:汽泡的生长速度大于汽泡跃离加 热面的速度,使汽泡聚集覆盖在加热面 上,形成一层蒸汽膜,而蒸汽排除过程 恶化,致使 q m 下降。
不同的阶段:自然对流、核态沸
腾、过渡沸腾、稳定膜态沸腾, 如图所示:
从曲线变化规律可知:随壁面过热度的增大,区段Ⅰ、 Ⅱ、Ⅲ、Ⅳ将整个曲线分成四个特定的换热过程,其特 性如下: 1)自然对流段(液面汽化段)
壁面过热度小时(图中 t 4 ℃)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
气泡能够存在而不消失的条件: 2 pv pl R 如果压强差作用力大于表面张力,气泡就能继续长大 2 pv pl R ( pv pl ) R2 2 R
15
(2)气泡被加热的途径 热量一方面由壁面与 气泡直接接触的表面 传给气泡;另一方面 热由壁面传给液体, 再由液体传到气泡表 面
38
CPU纯铜热管散热器
North China Electric Power University
39
显卡热管散热器·
North China Electric Power University
40
热管在高寒地区的应用
North China Electric Power University
41
22
Cwl 为根据加热面与液体种类选取的经验常数;
23
33%
100%
24
(3)库珀(Cooper)公式(适用于制冷剂):
h Cq
0.67
M
0.5 r
p
m r
lg pr
0.55
C 90W0.33 ( m0.66 K)
m 0.12 0.2lg Rp
μm
Mr为液体的相对分子质量(分子量) pr为对比压力,即液体压力与其临界压力之比。 Rp为表面平均粗糙度,单位为m。对于一般工业用材料表面, Rp=0.3~0.4 m。
27
7.6 沸腾传热的影响因素及其强化
1.不凝结气体 与膜状凝结不同,溶解于液体中的不凝结气体会使传热得 到某种强化。 2.过冷度 如果大容器沸腾中流体主要部分的温度低于相应压力下的 饱和温度,则这种沸腾称为过冷沸腾。 3.液位高度 当传热表面上的液位足够高时,沸腾传热表面传热系数与 液位无关。 当液位降低到一定值时,沸腾传热的表面传热系数会明显 地随液位降低而升高。
28
5.管内沸腾 水管锅炉及制冷系统中的管式蒸发器中 的沸腾 管内沸腾时,由于沸腾空间的限制,沸 腾产生的蒸汽与液体混合在一起,构成 汽液两相混合物——两相流 垂直管内沸腾时的流型: 单相流、泡状流、块状流、环状流
29
水平管内沸腾:流速较高时,情形与垂直管类似;流速低时, 由于重力的影响,气液将分别趋于集中在管的上半部和下半部 管内沸腾换热还取决于管的放臵位臵、管长与管径、壁面状 况、液体的初参数、流量、汽液的比例等。比大空间沸腾复 杂
t tw ts 为过热度,p为绝对压力。 q ht t q h 0.7 0.15 h C2q p
C2 0.533W /(m N
0.3 0.3 0.15
K)
21
(2)罗森诺公式:
c pl Δt q Cwl s rPrl l r g ( l v )
tl >ts
气泡存在和长大的动力条件是液体的过热度
气泡膨胀长大,受到的浮升力也增加;当浮升力大于气泡与 壁面的附着力时,气泡就脱离壁面升入液体,附着力与液体 对壁面的湿润能力有关。
17
气泡难于脱离壁;传热量低
18
(3)气泡的生长点及最小气泡半径 气泡能够存在不消失并继续长大的力学条件: 2 pv pl R 半径R越小的气泡需要较大的压强差
热表面沉浸在具有自由表面的液体中的沸腾
有限空间沸腾(或受迫对流沸腾、管内沸腾):
2
3
饱和沸腾:液体主体温度为ts,而壁面温度 tw> ts 即: tw> tf=ts
壁面附近有很大的温度梯 度;绝大部分液体的温度 略高于饱和温度
4
过冷沸腾:液体主体温度低于ts,而壁面温度 tw> ts 即: tw> ts >tf
气泡内饱和蒸汽压力pv相对应的饱和温度为tv;为使气泡长大, 气泡壁须不断蒸发,所以气泡壁周围的液体温度tl大于或至少等 于tv (tl ≥tv )
16
气泡内饱和蒸汽压力pv相对应的饱和温度为tv;为使气泡长 大,气泡壁须不断蒸发,所以气泡壁周围的液体温度tl大于 或至少等于tv(tl≥tv)
2 pv pl R 与pl相对应的是饱和温度为ts:tv>ts tw >tl >tv >ts pv pl
26
7.5.3 大容器膜态沸腾换热的计算公式
膜态沸腾中气膜的流动和换热类似于膜状凝结中液膜的流动与 换热,可用类似的分析方法分析,得到的解的函数形式也很相 似: 1/ 4 3 g v l ( l v )r h 0.62 ( t t ) d v w s 定性温度:l 和 r采用饱和温度ts,其余物性参数用tm=(tw+ts)/2。 对于球面,系数0.62改为0.67。
4个阶段: (1)自然对流 (2)核态沸腾A~C (3)过渡沸腾C~D
C
E
(4)膜态沸腾D~
A
B D
8
核态沸腾
9
过渡沸腾
10
膜态沸腾
11
沸腾危机:
(DNB: departure from nucleate boiling)偏离核沸腾点, 安全警界点
12
7.4.3 汽泡动力学简介
汽化核心:加热表面上能产生汽泡的地点。 (1)气泡得以存在的力学条件 气泡受到两种力作用: 表面张力σ、压强 p 表面张力σ使气泡表面积缩小 要使气泡长大,气泡内压力需 克服表面张力对外做功
North China Electric Power University
36
热管(Heat Pipe)是一种高效的传热元件。
热管的工程应用:
(1)温度控制(如:航天器); (2)热量传递;
空气 烟气 空气预热器示意图 大功率晶体管冷却
37
传统热管的广泛应用与局限
加热炉烟气余热回收热管换热器
North China Electric Power University
13
假设:气泡体积膨胀了微元体积dV, 相应地表面积增加了dA. 作功量为:
dW ( pv pl )dV dA
当气泡处于平衡状态时:
dW 0 ( pv pl )dV dA
球形气泡:
4 V R 3 , A 4 R 2 3
( pv pl )4 R2dR 8 RdR 2 pv pl R
、 Ts 、 r
Rmin 气泡核增多
h
20
7-5 大容器沸腾传热实验关联式 7.5.1.大容器饱和核态沸腾换热计算公式
(1)米海耶夫公式(适用 C1t 2.33 p0.5
C1 0.122 W /(m N0.5 K3.33 )
7-2 沸腾换热现象 (Boiling Heat Transfer) 蒸发:液-汽界面上液体汽化的相变过程 沸腾:液体内部产生汽泡的剧烈汽化过程
1
根据热力学理论:只要液体内部的温度等于或高于对应压 力下液体的饱和温度,该处液体就会发生相变,并可能产 生沸腾现象 液体沸腾可以分为两大类:容积沸腾、表面沸腾 容积沸腾(均相沸腾,homogeneous boiling):沸腾直接发生 在液体容积内部,且不存在固体加热壁面 表面沸腾(非均相沸腾,heterogeneous boiling):沸腾发生在 与液体接触的加热面上 表面沸腾(非均相沸腾)分类: 大空间沸腾(或大容器沸腾、池沸腾):
33
热管的工作特点:
(1)传热能力强:一根钢-水热管 的传热能力大致相当于同样尺寸紫铜 棒导热能力的1500倍; (2)传热温差小;
(3)结构简单、工作可靠、传输距 离长; (4)热流密度可调(通过改变加热 段和放热段的长度或加装肋片);
(5)采用不同的工质可适用不同的 温度范围(-200~2200度)
传统热管的局限性


运行极限 加热位置受限制 微型化难度大
由于传统热管凝结液的回流 传统热管的工作状态在很大 是依靠重力和毛细力的作用, 程度上受到汽、液工质传输 所以冷热端的位置也受到限 特性的影响。由于运行极限 制,通常必须底部加热。 的存在,使它的传热率受到 一定的限制,达到这些极限 随着热管管径的减小,热管 值时,传热量无法再增加, 单位面积的传热能力也越来 否则会出现毛细芯的干涸和 越低。另外由于内部有吸液 过热现象。 芯 ,微型化难度大。当流 通截面直径为1mm2时,传 输极限为50W/cm2。
重力热管示意图
34
(6)热管应用中存在的主要问题:密封性、热管管材与工 质间的相容性。
35

1967年热管首次空间试验成功,美国第 一次将热管用于卫星的温度控制。 70年 代以后,在空间应用热管成功的基础上, 热管在地面民用领域的应用也快速发展 由于其良好的传热特性,得到人们的重视并加以广 起来,热管被大量用于工业余热回收、 泛应用。 空调低温余热回收、空气预热器等等。 目前,在世界范围内,从空间到地面, 从军工到民用,在航天、航空、电子、 电机、核工业、热工、电力、建筑、医 疗、温度调节、余热回收以及太阳能与 地热利用等领域得到了广泛应用。
25
7.5.2 大容器沸腾的临界热流密度计算公式 朱伯(N.Zuber)给出了大空间核态饱和沸腾临界热流密 度的计算公式 :
qmax

24
r
1/2 v

g ( l v )
1/ 4
适用条件:大空间核态饱和沸腾,加热表面的特征尺寸 远大于汽泡平均直径。 临界热流密度的数值与压力密切相关,在比压力(液体 的压力与其临界压力之比)大约等于0.3处临界热流密度具有 极大值。
30
7.6 .2 强化沸腾传热的原则和技术 1、强化大容器沸腾的表面结构 1)烧结、钎焊、火焰喷涂、电离沉积等物理与化学方法在 换热表面上造成一层多孔结构 2)采用机械加工方法在换热表面上造成多孔结构
31
32
7.6.3 热管 1942年,美国俄亥俄通用发动机公司的Gargler首次提 出热管设想 1964年,美国Los Alamos 科学实验室的Grover等发明 了第一根传统热管
相关文档
最新文档