变频器恒压供水接线教学教材
变频器恒压供水接线图及供水设置和设置方法[图解]
变频器恒压供水接线图及供水设置和设置方法[图解]本文所介绍的变频器恒压供水接线图及供水设置和设置方法采用的是型号为HDI系列的变频器,此变频器用途广泛,许多客户都有拿它来做自动调速、水泵自动控制、恒压供水等。
有关恒压供水的接线图及供水设置和设置方法请细看以下内容。
变频器恒压供水设置有关的参数如下:Pr033起动指令来源(Pr033=0面板,1 端子)Pr034=0运行频率来源 0:操作器(注:PID恒压控制此参数要求是0)Pr052=32 PID开启端子X3与COM短接,PID开启Pr117-Pr119睡眠频率设定(详情查看说明书21页)Pr150-Pr152(先使用出厂设定值,供水压力恒定的情况下不需要更改)Pr153目标值(此参数设置为目标压力,数值根据远传压力表量程的百分比算)Pr154-Pr156(详情查看说明书22页)J1插针跳线应该在1-AI这个位置远传压力表信号接线端子为:+10V、AI、GND,中心线为AI最后还可以参照说明书75页恒压供水应用举例说明。
变频器恒压供水接线图:众所周知,使用恒压供水的好处有很多,一般来说主要体现在以下几点:⒈ 技术先进:采用了变频器和PLC(PC/智能控制器)的自动化控制,使设备根据各种供水要求实现智能化恒压变量供量供水;⒉ 高效节能:系统能按需设定压力,系统根据设定的压力自动调节水泵转速和水泵运行台数,使设备运行在高效节能的最佳状态;⒊ 供水压力稳定:系统实现闭环控制,能自动调节设定压力和系统压力的差值,是压力保持恒定;⒋ 操作稳定:系统由变频器或变频器加智能控制器自动控制,操作极为简单;⒌ 延长电机、水泵寿命:各泵皆为软启动,消除了启动时的冲击电流。
各泵循环启动,使备用水泵不会因长久不用而生锈或使用频繁而磨损。
对消防实现定期巡检;⒍ 完善的保护功能:具有过流、缺相、过压、过热、过载等多种保护,水泵运行如有故障,自动停止工作并报警输出;系统具有自检、故障判断、故障记忆、故障显示、自动启动备用泵等功能;⒎ 小流量睡眠功能:可配接附属小泵,使系统运行在夜间或其它小流量情况下,自动关闭主泵,开启附属小泵,从而避免因开大功率水泵而造成的浪费;⒏ 运行动作功能:变频器和控制器的编程与设定方便简单,容易掌握和操作。
变频器恒压供水接线
第一篇一、接线:按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。
关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。
压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器.压力表有红、黄、蓝三根引出线.压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红)二、开环调试:检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0。
0,按JOG键,检查水泵的转向,若反向,改变电机相序.按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如3.1V)。
按停车键STOP,变频器减速停车。
三、闭环变频恒压运行:合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。
增大F4。
06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低.第二篇一、前言目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。
这种控制系统电控部分较简单,国内外采用广泛。
变频器恒压供水接线
变频器恒压供水接线测量压力接入变频器控制是变频器使用过程中很常用的压力配置。
题目可以获知:水泵压力表既然出来了三根线,那么这三根线有两种可能性。
一,三根线是开关量信号:1,三根线组成。
三根线一般是由公共线,常开端子,常闭端子三根线组成。
2,开关量作为压力控制线原理:以电接点压力表为例:当管道或者系统的压力超过电接点压力表设定值时候,电接点压力表动作接通变频器,变频器控制电机启动,来为管道增压。
3,开关量压力表信号类型:一般输出的的信号为通,断信号,万用表电阻档可测量。
4,开关量压力表和变频器接线:1,参考变频器说明书,弄清楚变频器的输出端子和输入端子,找到接开关量信号的输入端,按要求接入即可。
特别注意:开关量信号因为存在公共端,所以要一定要注意三根线中公共端接线,和电源线不要弄混。
变频器上一般会很清晰的标明。
二、三根线是模拟量信号线。
1,三根线构成。
三根线一般情况下是由:起始电阻线,量程电阻线,满度电阻线构成。
2,以模拟量作为压力控制的原理:以远传压力表为例:当管道压力超过正常范围时,远传压力表可以将实时的管道压力信号转化为电阻信号,进而传递给变频器,通过变频器的PID参数对比,输出合适频率f的电压信号来控制电机的转速快慢,进而调整管道压力。
3,模拟量压力表信号类型:一般模拟量压力表输出的信号为:模拟量电压,电流信号。
常用的:4mA-20mA,0v-10v等等。
万用表可以测量。
4,模拟量信号和变频器接线:查看变频器说明书,分清楚模拟量输入端口,按要求正确接入。
特别注意:此时的三根线代表不同的起始电阻值(可通过万用表测量),所以接线一定要看清楚变频器接线图,不要接反,否则会严重影响变频器输出正确性。
综上所述:压力表和变频器的接线相对简单,只需要:1,分清楚压力信号类型。
2,按照变频器说明书参考图正确接线即可。
三,测量压力的方法还有很多种,我今天发表的“压力测量”文章里有基本的常用测压设备,不同的设备,线制和原理也不同,你可以看看,这里不做介绍了。
变频器恒压供水电路图和接线图
变频器恒压供水电路图和接线图其实在水处理,水净化和供水领域一直在用恒压供水控制器和用变频器组合来进行恒压供水的。
恒压供水控制器使各种设置傻瓜化,接线也更加简单。
使一般的日常维护人员都可以对供水进行调整设置。
使运行更加智能化,维护简单化。
怎么样,想不想了解一下专业的恒压供水是什么样子。
恒压供水控制器市面上非常常见,品牌众多,价格也不高。
说说它的功能:1,液晶汉字显示,参数设置,报警一目了然,不用说明书也可调试。
2,在线设定参数调整方便,运用加减键就可设定压力。
一键设定PID值。
报警功能齐全,变频器故障报警,远传压力表断线及短路故障,水位报警指示等等。
定时多段速供水。
小流量停机(即休功能)。
水泵轮起功能,有效防锈蚀。
一用一补功能,(功能全的有一用三补,按压力四台泵软起,供水)下面以TW2000型号介绍它的接线图。
背部接线端子可以看到控制器一共有13个接线端子。
下面详细说说各端子功能及接线。
请看各端子与变频器的接线图变频器与恒压供水控制器的接线图可以看到1,2,端子是电源输入端子。
3,4,端子各控制两个接触器,C1,和C2。
也是恒压供水的输出端,工作时C1和C2定时轮换,有效的防止泵的锈蚀。
它还有一个功能是,R1为固定频率泵,R2为固定工频泵,当频率达到50HZ且实际压力没有达到设定的压力经过设定的时间后,R2吸合,当实际压力达到设定压力且频率低于25HZ,则R2断开。
5,是运转指令(正转指令)它和变频器的正转指令FWD相连,各变频器不同端子符号不同,其实就是数字端子运转指令。
6,DCM端子和变频器的CM端子相连,这两个端子就是我们常用的公共端COM。
7,CM2和DCM一样是COM端,它和变频器的GND相连,图中的11端子。
8,端子和变频器的AI1相连。
图中的12端子。
图中变频器11,12,端子,其实就是变频器的模拟量输入端。
9,CT1端子是个能多功能端子,一种功能是外部停车控制。
一种功能是时钟多段速运转控制。
变频恒压供水控制系统安装操作说明
变频恒压供水控制系统安装操作说明:规格:输入交流3相380V 50Hz 15A输出交流3相0—380V 0-50Hz 13A功率 5.5KW安装:控制箱须安装在干燥清洁的室内,室外也可以但注意防雨,室内环境不能太潮湿也不能安装在灰尘太多的地方和太热的地方,压力表安装位置注意冬天防冻。
接线:从供电电源处用4m㎡铜线连接至变频控制箱内底部的接线端子左边的(R,S,T)上,接线端子右边的(U,V,W)用电缆连接水泵,压力表的3根线已经接好,如果需要延长的话从中间剪断,然后找3条线按照颜色一对一接好就可以。
(为了确认水泵的正反转向,水泵加水后等一会再下井)调试:确认线路连接好后,合上箱内右侧的自动断路器,此时变频器上电面板闪烁呈待机状态,门上的电源指示灯点亮,打开门上的供水开关,此时确认水泵的转向,如果反转,关掉供水开关后再将箱内断路器断开,等待2分钟后将接水泵的(U,V,W)3条线的任意2条对调即可。
变频器已设定好供水压力,变频器会根据系统压力自动调节水泵转速,其内部的相关数据已设定好,操作人员无需再去调整内部参数。
日常使用中,开停水泵只需操作门上的供水开关就可以了,无需操作箱内的断路器通断电源,这样会缩短变频器的使用寿命。
变频器状态:1.工作状态:面板显示4位数字的频率,根据压力的大小自动上下波动,在刚启动时频率高,随着压力上升频率会下降,直到恒定压力为止。
2.故障状态:若正常使用时频率始终保持在50.00Hz,排除系统用水量大和管路泄漏的情况下即可判定是井中水量小,水泵吸空,此时水泵将报故障并停机,变频器面板上显示EP。
若使用过程中压力表线因外力断线,为防止系统压力不正常升高,变频器也会报故障停机,面板显示PP。
3.若使用过程中变频器停机并报故障代码,可根据说明书P80页故障代码清单对照排除故障,故障排除后按动变频器操作键盘右下角红色按键使其复位,然后重新开启供水开关使变频器工作。
易出现故障:OC--------电流过大(水泵叶轮或轴卡住,电机绕组接地)OE--------电压过高(输入电压太高)PF0-------输出缺相(连接水泵的电缆有一相断开)PF1-------输入缺相(输入电源缺相)LU--------电压太低(输入电压偏低)OH--------变频器过热(环境温度过高,变频器风扇故障)重要:水泵停机后变频器出现故障代码不可盲目使其复位工作,一定要先查清故障原因并排除故障后,才能再次复位开机。
正泰变频器恒压供水接线与设定ppt课件
供水基本应用图
远传压力表反馈
电阻式远传压力表 0-10V电压信号
QF
F001 设为1 F003 设为5 F901 设定压力大小的= (目标压力/压力表量程)*75%*100% F902 设为0 J601跳线接到1、2脚
R
U
S
V
M
T
W
K1
V10 满度电阻
COM
量程电阻 3 AI1
睡眠功能 F9.11 设2 F9.12设30
恒压供水
电阻式远传压力表 0-10V电压信号
压力表内部接线图
压力变送器4-20mA 电流信号
1黄3红来自思考的问题: 某用户正在调试恒压供水系统,外接压力 表,但不知道怎么接线,测试压力表的三 个点的电阻分别为: 2 红和绿线测试电阻395欧 绿 黄和红线测试电阻22欧 黄和绿线测试电阻372 请问以上三根线分别怎么接到变频器的相 关端子上?
X1 GND 起始电阻
F9.13设80%(唤醒压力=设定值*目标压力)
F9.14设定值=(不用水时变频器频率/50)*100%
2
远传压力表
压力表有三根线一 1 般是:
红色(起始) 绿色(满度) 2 黄色(量程)
恒压供水
压力变送器反馈
睡眠功能设置同压力表反馈设定一至
3
V20-变频器PID-控制恒压供水操作指南
V20-变频器PID-控制恒压供水操作指南1.硬件接线西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。
通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示:图1-1.V20变频器用于恒压供水典型接线2调试步骤2.1 工厂复位当调试变频器时,建议执行工厂复位操作:P0010 = 30P0970 = 1(显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。
)2.2 快速调试表2-1 快速调试参数操作流程参数功能设置P0003 访问级别=3 (专家级)P0010 调试参数= 1 (快速调试)P0100 50 / 60 Hz 频率选择根据需要设置参数值:=0: 欧洲[kW] ,50 Hz (工厂缺省值)=1: 北美[hp] ,60 HzP0304[0] 电机额定电压[V] 范围:10 (2000)说明:输入的铭牌数据必须与电机接线(星形/ 三角形)一致P0305[0] 电机额定电流[A] 范围:0.01 (10000)说明:输入的铭牌数据必须与电机接线(星形/ 三角形)一致P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0说明:如P0100 = 0 或2 ,电机功率单位为[kW]如P0100 = 1 ,电机功率单位为[hp]P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000说明:此参数仅当P0100 = 0 或 2 时可见P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9说明:仅当P0100 = 1 时可见此参数设为0 时内部计算其值。
P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00P0311[0] 电机额定转速[RPM] 范围:0 (40000)P0314[0] 电机极对数设置为0时内部计算其值。
变频恒压供水统使用说明书2
变频恒压供水控制设备用户手册一、概述随着变频技术的推广运用,人们的认识不断深入,传统的供水方式已无法真正保证系统长期可靠运行,已逐步被新兴的变频恒压供水系统所替代。
本系统采用先进的变频器(VVVF)以及专用的恒压供水控制器对管网压力进行控制,大大地简化了操作的复杂程度。
在自动工作状态下,用户在据需要的压力值进行设定后,通过专用的恒压供水控制器与变频器之间的相互控制,使管网压力始终保持在设定的压力值误差范围以内。
在对生活管网进行供水时,系统执行管网设定压力。
若为消防与生活共用系统,则平时执行生活管网供水压力,当消防信号到达控制柜时执行消防压力,消防信号撤消时继续执行生活压力。
系统具有重新上电后自动启动的功能,无需人员值守。
水泵处于无水情况下将自动停机。
二、分类标记变频恒压供水控制设备分类标记设备的型号编制中包括设备特征标记、消防工作压力、消防工作流量、消防泵台数等内容H水泵台数工作流量L/S。
工作压力MPa。
特征标记(参阅特征标记说明)特征标记说明三、原理框图如下:3.1 生活水泵组为两用一备形式的变频恒压供水控制设备示意图如下:3.2 生活水泵组为两用一备形式的变频恒压供水控制设备产品简介生活水泵组为两用一备形式的变频恒压供水控制设备由三台生活水泵、电控系统、远传压力表、阀门管路、共同底座等组成。
设备运行前,需根据供水所需要的压力值预先设定稳压压力值,打开所有阀门。
水泵手动运行时,通过控制柜面板直接启停水泵(具体参阅消防专用自动恒压给水控制柜操作说明)水泵自动运行时,通过远传压力表构成闭环调节系统,按照恒压供水控制器恒压\节能\节水的优化运行原则, 随着用水量的变化, 恒压供水控制器不断进行压力采样, 逻辑运算和人工神经元控制算法调节运算,自动控制三台水泵,从而实现恒压变量全自动供水。
四、系统性能特点1.系统运行过程中无功损耗小,功率因素高,一般可达0.85以上,运行效率为90%以上,系统基本处于经济运行状况。
变频器恒压供水接线
、接线:按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上 空气开关,变频器上电,数码管显示 0.0 0关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流 电阻等,变频器和电动机接地端子可靠接地,并仔细检查。
压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力 表适用于一般压力表适用的工作环境场所, 应的电信号,输出的电信号传至远端的控制器。
二、开环调试:检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0, 按JOG 键,检查水泵的转向,若反向,改变电机相序。
按运行键RUN 运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频 率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子和GND 之间电压值,随着变频器输出频率升高,压力增加, VF 和GND 之间的反 馈电压上升,记录下将要设定的恒定压力(比如 5Kg )对应的反馈电压值(比如 3.1V )。
按停车键STOP 变频器减速停车。
第一篇既可直观测出压力值,又可以输出相 压力表有红、黄、蓝三根引出线。
压力表电气技术参数:电阻满量程:400Q< 20 Q (黄、红) ;满量程压力上限电阻值:W(蓝、红);零压力起始电阻值: 360Q (黄、红) ;接线端外加电压:W 10V (蓝、 红) MCCB 三相 电源运行/停止开关 故障复位,卜 按钮 .R SINB005 打倉咯5■地接地 ~ 水泵 RUM RST ■XL1 01 712-150 远班力表VF 进水口三、闭环变频恒压运行:合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz 到达30.0Hz 后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。
增大F4.06的参数设定值,出水口的压力增加,减小F4.06 的参数设定值,出水口的压力降低。
第二篇、前言目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI 调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。
变频器恒压供水课程设计
变频器恒压供水课程设计一、课程目标知识目标:1. 让学生理解变频器的基本工作原理,掌握恒压供水系统中变频器的应用。
2. 使学生掌握恒压供水系统的组成、运行原理及其控制策略。
3. 帮助学生了解电气自动化技术在供水系统中的应用,提高对现代自动化技术的认识。
技能目标:1. 培养学生运用变频器进行恒压供水系统设计和调试的能力。
2. 培养学生分析实际工程问题,提出解决方案并实施的能力。
3. 提高学生团队协作、沟通交流及动手操作的能力。
情感态度价值观目标:1. 激发学生对电气自动化技术的兴趣,培养其探索精神。
2. 培养学生关注环境保护,认识到节能降耗的重要性。
3. 培养学生具备良好的职业道德,尊重劳动,热爱劳动。
课程性质分析:本课程属于电气自动化专业课程,以实践操作为主,理论联系实际。
针对学生特点,注重培养学生的学习兴趣和动手能力。
学生特点分析:学生具备一定的电气基础知识和实践技能,对新技术具有好奇心,但可能缺乏系统设计和调试经验。
教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力。
2. 结合实际工程案例,培养学生分析和解决问题的能力。
3. 强化团队合作,提高学生的沟通能力和职业素养。
二、教学内容1. 理论知识:- 变频器工作原理及其选型- 恒压供水系统组成及运行原理- 变频调速技术在恒压供水中的应用- 电气自动化控制策略2. 实践操作:- 变频器的安装与调试- 恒压供水系统的设计与实现- 系统调试与故障排查- 节能分析及优化3. 教学大纲:- 第一周:变频器工作原理、选型及应用- 第二周:恒压供水系统组成、运行原理及控制策略- 第三周:变频器安装与调试方法- 第四周:恒压供水系统设计、实现及调试- 第五周:系统故障排查、节能分析及优化教学内容安排与进度:- 前两周:理论教学,结合教材相关章节,讲解基础知识。
- 第三周:实践操作,指导学生进行变频器的安装与调试。
- 第四周:综合实践,引导学生完成恒压供水系统的设计与实现。
正泰变频器恒压供水接线与设定[优质ppt]
压力表内部接线图
压力变送器4-20mA 电流信号
1
黄3
红
思考的问题:
某用户正在调试恒压供水系统,外接压力 2 表,但不知道怎么接线,测试压力表的三 绿
个点的电阻分别为:
红和绿线测试电阻395欧
黄和红线测试电阻22欧
供水基本应用图
远传压力表反馈
电阻式远传压力表 0-10V电压信号
QF
F001 设为1 F003 设为5 F901 设定压力大小的= (目标压力/压力表量程)*75%*100% F902 设为0 J601跳线接到1、2脚RUSVM
T
W
K1
V10 满度电阻
COM
量程电阻 3 AI1
睡眠功能 F9.11 设2 F9.12设30
X1 GND 起始电阻
F9.13设80%(唤醒压力=设定值*目标压力)
F9.14设定值=(不用水时变频器频率/50)*100%
2
远传压力表
压力表有三根线一 1 般是:
红色(起始) 绿色(满度) 2 黄色(量程)
恒压供水
压力变送器反馈
睡眠功能设置同压力表反馈设定一至
畅想网络
Imagination Network
感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
1_第六章 变频器在恒压供水系统中的应用
第一节 概 述
2.供水系统的工作点
图6-4 供水系统的工作点
第一节 概 述
(1)工作点 扬程特性曲线和管阻特性曲线的交点,称为供水系 统的工作点,如图6-4中的A点所示。 (2)供水功率 PG=CPHTQ(6⁃2)
三、泵的特性分析与节能原理
1.调节流量的方法 在供水系统中,最根本的控制对象是流量,因此要研究节能问题 必须从考虑如何调节流量入手。
PID控制属于闭环控制,是使控制系统的被控量在各种情况下, 都能迅速而准确地无限接近控制目标的一种手段。 1.变频器的PID接线
第二节 变频调速恒压供水系统的实现
各种系列的变频器都有标准接线端子,只不过标识的符号各厂家 有所区别,它们的这些接线端子、功能和使用要求相差不大。 (1)PID控制基本原理接线 PID控制基本原理接线如图6-13所示。
第二节 变频调速恒压供水系统的实现
1)由于变频器内部往往具有转差初始补偿功能,因此,同是在50 Hz的情况下,水泵在变频运行时,实际转速高于工频运行时的转 速,从而增大了水泵和电动机的负载。 2)变频调速系统如在50Hz运行时,还不如直接在工频下运行为好, 这样可减少变频器本身的损耗。 所以,将上限频率预置为49Hz或49.5Hz是恰当的。 (3) 下限频率 在供水系统中,转速过低,会出现水泵的全扬程 小于实际扬程,形成水泵“空转”的现象。 (4) 起动频率 起动前,水泵叶轮全部在水中,起动时,存在着 一定的阻力。
第二节 变频调速恒压供水系统的实现
② 设定值输入端子2~5。由变频器端子2~5输入PID设定值(目 标值)。Pr.73设定为5,且AU端子开通,运行有效;否则外部输 入无效。0V电压对应0%,5V电压对应于100%变化量。 ③ 偏差信号输入端子1~5。偏差信号由端子1~5输入。当输入 外部计算偏差信号时,参数Pr.128设定为“10”或“11”。0V电 压对应0%,5V电压对应于100%变化量。 ④ 反馈量输入端子4~5。从传感器来的4~20mA 的反馈量由端 子4~5输入。4mA对应于0%,20mA对应于100%变化量。
电力电子与变频技术项目八 恒压供水变频控制系统接线
(3)模拟输出不正常,变频器运行频率与控制器输出不符? 原因分析: 首先,应确定是什么硬件出了问题。使控制器进入手动调试状态, 分别用万用表量出控制器输出0Hz及50Hz时所对应的模拟量输出值。 如果控制器的模拟输出 值在0Hz时大于30mV,或在50Hz时小于控制 器第5项参数定标的电压值,则说明控制器输出存在问题。这里有 几种情况: 如果随着控制器的频率变化,输出一直保持不变,说明控制器的 模拟输出电路损坏。 如果模拟输出值也是变化的,但不能达到最大值,可通过调节控 制器小窗口中VR3电位器可解决。 其次,如果控制器的输出值正常,当控制器输出达到最大值时, 变频器不能达到50Hz,说明是变频器的设定值存在问题,可调节 变频器的频率增益解决。
4)加泵时的减速时间是工频辅泵投入运行时,变频器的 输出频率从上限频率减速到下限频率的时间。 5)减泵时的加速时间是工频辅泵退出运行时,变频器的 输出频率从下限频率加速到上限频率的时间,减、加速 这两个指令预置直接影响压力变化的平稳,如果设定过 短则容易发生过电流、过电压。 通过正确地接线、合理的功能预置完全实现了设计功能, 而且运行平稳;尤其是在自动投入/退出工频泵时,管网 压力变化稳定。
功能预置,方能达到设计使用效果。如下为本系统功能
和参数设置步骤: 1) 在该系统中电动机控制模式,预置为内置PID控制模式。 2) 供水基板控制模式预置为变频泵固定方式;预置模拟反 馈偏置压力,分别对应变送器的上限值。 3) 为防止水泵“空转”将下限频率预置为30~35Hz;一般 来讲,上限频率以等于额定频率为宜;上限频率持续时间 是变频器输出频率达到上限之后,投入工频辅泵的判断时间, 下限频率持续时间是变频器输出频率达到下限之后,退出工 频辅泵的判断时间,这两个指令预置要根据实际运行工况, 在不发生振荡的范围内越短越好。
变频恒压供水系统主电路和控制线路图
变频恒压供水系统主电路和控制线路图变频恒压供水系统主电路和控制线路图:控制原理简述如下:系统由变频器、plc和两台水泵构成。
利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。
具有自动/手动切换功能。
变频故障时,可切换到手动控制水泵运行。
控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。
当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。
至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。
如此循环不已。
需要明说一下的是:变频器必须设置好PID运行的相关参数,和配合PLC控制的相关工作状态触点输出。
详细调整,参见东元M7200的明说书。
在本例中,须大致调整以下几个参数。
1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID运行方式,压力设定值由AUX端子进入。
反馈信号由VIN端子进入;4、对变频器控制端子——输出端子的设置。
设定RA、RC为变频故障时,触点动作输出;设定R2A、R2C为变频零速时,触点动作输出;设定DO1、DOG为变频器全速(频率到达)时,触点动作输出。
上图为PLC控制接线图。
水泵和变频器的故障信号未经PLC处理,而是汇总给继电器KA2。
其手动/自动的切换控制继电器KA1来切换。
变频/工频的运行由接触器触点来互锁,以提高运行安全性。
可以看出,R2A和DO1是PLC的两个关键输入信号。
在PLC的控制动作输出中,对变频到工频的切换是通过DO1(变频器零速信号)来进行的;对工频到变频的切换是通过R2A(变频器频率到达信号)来进行的。
THBAHY1型变频恒压供水实训指导书
目录第一章系统概述与软件使用说明 (1)第一节系统概述 (1)第二节GX DeveloPer 7.0软件使用说明与下位机通讯 (5)第三节上位机工程软件安装与使用 (7)第二章基本实验 (8)实验一控制屏结构认识与调试实验 (8)实验二单泵控制变频恒压供水实验 (11)实验三双泵切换变频恒压供水实验 (13)实验四生活水系统静态压力控制实验 (15)实验五生活水系统动态压力控制实验 (17)实验六生活水系统的分时控制实验 (19)实验七夜间休眠模式下的供水实验 (21)实验八消防状态控制实验 (24)实验九综合控制系统实验 (26)第一章系统概述与软件使用说明第一节系统概述变频恒压供水系统是现代建筑中普遍采用的一种水处理系统,随着变频调速技术的发展和人们节能意识的不断增强,变频恒压供水系统的节能特性被广泛地应用于住宅小区、高层建筑的生活及消防供水系统。
在智能建筑教学领域,恒压供水系统已成为一个研究的重要课题,其典型结构是由压力传感器、可编程控制器(PLC)、变频器、供水泵组等组成。
然而,实际应用的变频恒压供水系统因其结构庞大、分布广、不形象直观,故不适宜直接作为教学实验装置。
为满足科研和教学要求,目前市场上也出现不少恒压供水的实验设备,但其性能大多参差不齐,缺乏系统的全面性、集成性。
有些厂家生产的恒压供水系统采用继电器接触器控制电路,通过控制水泵的起停和调节泵出水阀的开度来实现恒压供水,这样不但线路复杂,操作麻烦、维护困难,而且由于驱动电机是恒速运转,而水量是靠水泵出水阀开度的控制,这样浪费了大量能源。
许多厂家虽然也生产出了变频恒压供水系统的实验装置,但仅模拟了一路管道和一台或几台水泵机组,采用PLC进行简单的逻辑控制。
这种过于简化的系统,完全忽略了工程的概念,只是一种简单的单回路控制实验装置,失去了楼层供水的意义;有些厂家虽然也设计出了楼层模型,但其水网仅有一路系统,无法模拟真实的楼层供水系统(包含消防水系统、生活水系统、生产水系统);在控制系统设计上,仅靠PLC等控制设备独立完成自动控制过程,缺乏牢靠的手动措施,从而使系统投运前的不确定因素无法排除。
变频调速恒压供水的电路
变频调速恒压供水的电路通常状况下,日子给水设备分红两种型式,即非匹配式与匹配式。
非匹配式的特征是水泵的供水量总坚持大于体系的用水量。
匹配式的特征是水泵的供水量跟着用水量的改动而改动,无剩余水量,不设蓄水设备。
变频调速恒压供水就归于此类型。
经过核算机操控,改动水泵电动机的供电频率,调度水泵的转速,主动操控水泵的供水量,以保证在用水量改动时,供水量随之改动,然后坚持水体系的压力不变,结束了供水量和用水量的彼此匹配。
1. 变速泵主张改换开关至“主动”位,QF1↑、QF2↑→KGS↑,KT1↑→(延时)→KM1↑→变速泵M1主张作业供水。
2. 用水量较小时,变速泵作业当体系用水量↗,水压↘,操控器KGS使变频器VVVF 的输出频率f↗,水泵加快作业,以结束需水量与供水量的匹配。
当体系用水量↘,水压↗,操控器KGS使变频器VVVF的输出频率↘,水泵减速作业。
3. 用水量大时,两台泵一同作业当变速泵主张后,跟着用水量添加,变速泵不断加快,但假定仍无法满意用水量央求时,操控器KGS使2号泵操控回路中的2—11与2—17号线接通(即操控器KGS的触点此刻闭合),KT2↑→(延时)→KT4↑→KM2→定速泵M2主张作业以跋涉供水量。
4. 用水量减小,定速泵接连当体系用水量减小到必定值时,KGS触点断开,使KT2、KT4
失电开释,KT4延时断开后,KM2失电,定速泵M2接连。
《变频器应用技术》教案 第18课 认识恒压供水系统
课题认识恒压供水系统课时2课时(90 min)教学目标知识技能目标:(1)了解变频器控制恒压供水的特点(2)了解恒压供水系统的构成(3)掌握恒压供水系统的硬件组成及变频器的选择方法素质目标:(1)养成脚踏实地、求真务实的工作作风(2)培养精益求精、认真负责的职业精神教学重难点教学重点:变频器控制恒压供水的特点,恒压供水系统的构成,变频器的选择方法教学难点:恒压供水系统的构成,变频器的选择方法教学方法情景模拟法、问答法、讨论法、讲授法、实践法教学用具电脑、投影仪、多媒体课件、教材教学过程主要教学内容及步骤考勤【教师】使用APP进行签到【学生】班干部报请假人员及原因任务导入【教师】提出问题,随机邀请学生回答城市中的高楼大厦越来越多,你知道水是怎么运到大楼的各个楼层的吗?【学生】聆听、思考、回答【教师】总结学生回答,讲述“任务导入”的相关内容城市自来水管网的水压一般规定保证6层以下楼房的用水,其余上部各层均须增加水压才能满足用水要求。
以往大多采用水塔、高位水箱或气压罐增压设备来提升水压,但无论实际用水量的多少,这些设施的水泵都在全速运转,并提供固定数值的流量,导致在用水量较小时,水泵的功率有很大一部分被白白地浪费掉了。
由于水泵属于二次方律负载,其消耗的电功率与水泵转速的3次方成正比,如果能够控制水泵的转速使之按照用水量的多少来变化,且确保供水压力不变,就可以既不影响正常用水,又能起到节能的效果。
采用恒压供水技术,即通过应用变频器根据水压的大小,自动对水泵进行变频调速调节,即可实现上述目标。
【学生】聆听、思考传授新知【教师】讲解新知一、恒压供水系统概述【教师】播放微课视频“恒压供水系统”(详见教材),提出问题,随机邀请学生回答恒压供水系统是如何实现恒压供水的?【学生】聆听、思考、回答【教师】总结学生回答,讲解新知1.恒压供水系统的工作原理恒压供水是指在供水网中用水量发生变化时,出水口压力保持不变的供水方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器恒压供水接线第一篇一、接线:按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。
关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。
压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。
压力表有红、黄、蓝三根引出线。
压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红)二、开环调试:检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。
按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如3.1V)。
按停车键STOP,变频器减速停车。
三、闭环变频恒压运行:合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。
增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。
第二篇一、前言目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。
这种控制系统电控部分较简单,国内外采用广泛。
缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。
所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。
采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水头。
ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。
二、ACS510中的变压力控制部分参数设置在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。
如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压力的影响,并且提高了节能比例。
ABB公司的ACS510系列变频器就提供了上述功能。
在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多开启一台辅机泵,就在原来的给定值上叠加一个增量。
示例:ACS 510 控制7台并联的水泵为管道供水,保持管道压力恒定。
由参数4011(内部设定值)设定恒定压力给定,控制管网压力。
用水量比较小时,只有调速泵运转。
随着用水量增加,起动辅助泵恒速运行,先起动第一台,如果用水量仍在增加,起动第二台。
随着水流量的增加,管道的首端(测量点)和末端的压力差也在增加。
随着辅泵依次起动,给定增量需要按照下面方法设定,来弥补增加的压力差,补偿了管道末端压力的下降。
当第一台辅泵运行,给定增量为参数8103(给定增量1)。
当两台辅泵运行,给定增量为参数8103(给定增量1)加上参数8104(给定增量2)。
当三台辅泵运行,给定增量为参数8103(给定增量1)加上参数8104(给定增量2)加上8105(给定增量3)。
当四台辅泵运行,给定增量为参数8103(给定增量1)加上参数8104(给定增量2)加上 2 * 参数8105(给定增量3)。
当五台辅泵运行,给定增量为参数8103(给定增量1)加上参数8104(给定增量2)加上3 * 参数8105 (给定增量3)。
当六台辅泵运行,给定增量为参数8103(给定增量1)加上参数8104(给定增量2)加上4 * 参数8105(给定增量3)。
三、结束语本文介绍的水泵出口变压力控制系统,改进了现在广泛应用的恒压供水系统的一些缺点,减小了管道末端出口压力的波动,且提高了节能比例。
在实际工程中有一定的应用价值。
第三篇一、引言交流变频调调速技术以其卓越的调速性能、显著的节电效果以及在国民经济领域的广泛适用性,已被公认为是一种最有前途的调速方式。
在能源日益紧张的今天,变频器作为交流调速的一种主要手段,在工业生产中取得越来越广泛的应用。
本文介绍的闭环恒压供水系统采用三垦SAMCO-vm05型变频器实现,详细叙述了其实现闭环控制的内藏PID功能主要参数设置及闭环调试方法。
二、闭环供水系统的原理该闭环系统应用于工厂的生产用水,其目的是向车间提供连续的水压稳定的水。
图1是供水系统框图。
它主要由变频控制箱、超压排流阀、液位传感控制器、压力传感器等组成。
系统中,1#泵为恒速泵,2#泵为变频调速泵。
正常工作时,由1#泵抽取河水,经净化后直接供生产车间,由于1#水泵供水量总大于车间用水量,因此设置了超压排流阀,当管道水压超过设定水压时,排流阀开始工作,多余的净化水被排到水池中,当水池水位到达水位上限时,系统控制1#泵停机,同时启动2#泵,由变频器控制2#泵向车间供水,当水池水位下降到水位下限时,2#泵停止工作,1#泵启动运行,如此循环。
图1 闭环恒压供水系统框图三、变频器闭环控制变频器用于2#泵的控制,即在抽取水池水时,根据用水管网压力的变化,通过变频器实现自动跟踪来调节水泵电机的转速,保持用水管网压力稳定。
三垦通用变频器SAMCO-vm05为用户实现闭环控制提供了内藏的PID功能,它能将外部变送器输入的模拟信号(4~20mA、0~5V、0~10V)反馈输入到变频器,并取得与变频器设定频率指令之间的偏差,进行P(比例)、I(积分)、D(微分)控制,从而使负载一侧的动作跟随指令值的变化而改变。
1. 硬件原理闭环控制的硬件原理如图2所示。
压力传感变送器将管网水压信号转变成4~20mA电流信号作为反馈输入到变频器的IRF/VRF2端子,外部压力设定器将指定的压力(0~1.0Mpa)转变为0~10V电压信号输入到变频器VRF1端子。
变频器根据给定值与反馈值的偏差量进行PID控制,输出频率控制电机的转速,从而使系统处于稳定的工作状态,管网水压保持恒定。
2. 闭环控制的相关功能代码与参数图2闭环控制的硬件原理图变频器的功能参数很多,这里只介绍与PID闭环控制相关的参数设置,需要说明的是SAMCO-vm05型变频器内部PID控制采样周期Ts为10ms。
Cd071=3 内藏PID控制模式:Cd120=5 反馈信号为4~20mA电流输入;Cd002=3 给定信号为0~10V电压;Cd122=0.00~100.00 PID控制比例增益;Cd123=0.00~100.00 PID控制积分增益;Cd124=0.00~100.00 PID控制微分增益;Cd125=1~500 反馈输入滤波时间常数。
3.设定值和反馈值的频率变换在利用外部模拟信号作为设定值或反馈值时,输入模拟信号最小值(0V或4mA)时频率(偏置频率)和最大值(5V或10V或20 mA时的频率(增益频率)须根据其F-V特性(或F-I特性)来设定。
(1) 设定值的频率变换:外部压力设定器将压力0~1.0MP变换成电压信号0~10V输入到变频器VRF1端子,其F-V特性如图3。
因此:偏置频率 cd054=0.0Hz;增益频率cd055=50.0Hz。
(2) 反馈量的频率变换:压力传感器将管网压力0~1.0MP变换成电流信号4~20mA输入到变频器IRF/VRF2端子,其F-I特性如图4。
因此: 偏置频率cd062=-12.5Hz 增益频率cd063=50.0Hz图3 设定值的频率变换特性图4 反馈的频率变换特性4. 闭环调试步骤与方法(1)将变频器设在开环运行模式,检测压力传感变送器反馈信号是否正常;(2)根据传感变送器的P-I特性和变频器的F-I特性求出反馈量的偏置频率cd062和增益频率cd063;(3)根据外部压力设定器的P-V特性和变频器的F-V特性,求出设定值的偏置频率cd054和增益频率cd055;(4)设置负载电机可驱动的最高频率cd007和最低频率cd008,本系统中设cd007=50Hzcd008=15Hz;(5)设置cd071=3为内置PID控制模式;(6)增加cd122单元的比例增益直至系统开始振荡,然后取振荡时的增益的1/2来设定;(7)增加cd123单元的积分增益直至系统开始振荡,然后取振荡时的增益的1/2来设定;(8)微分增益在以压力、流量为对象的控制系统中,由于滞后不大,一般设置为0;(9)滤波时间常数cd125单元的值根据实际情况来调整,以消除信号传输过程中的干扰。
5.故障处理(1)变频器故障:无论是从冗余设计原则还是从系统实际应用环境考虑,在变频器发生故障时都要求不间断供水。
在本系统中,当变频器突然发生故障,变频自动运行系统自动停水并报警,然后2#泵进入工频运行,当然工频运行时,管网压力不能自动控制,只能作为短时应急工作方式。
(2)水位检测故障:水池的水位信号采用浮子式液位控制器检测,为防止液位控制器失灵,对水池低水位采用双下限两路触点控制,当第一个水位下限触点故障时,变频器系统设有正常停机,待水位达到第二个下限(比第一下限水位略低),系统发出报警信号,同时停止2#变频泵,启动1#工频泵。
6.结束语在供水系统中采用变频调速运行方式,可根据用户实际用水量的变化自动调节水泵电机的转速,保持压力稳定,实现恒压供水,并且能节约能源,延长设备使用寿命,减轻工人劳动强度。
三垦通用变频器SAMCO-vm05型及SAMCO-i型为用户提供的PID控制功能,其硬件输入端子设置灵活,适用于各种传感器。
软件参数设置方便,且提供了反馈量的数字滤波功能,适合于温度、压力或流量为控制对象的闭环系统中。
目前,该系统已投入运行使用,性能稳定可靠,节能效果明显,具有一定的先进性。