纳米载药材料ppt课件
合集下载
纳米药物载体ppt课件
pH/温度双重敏感型纳米凝胶的制备及性质 研究
纳米凝胶的制备 (一)马来酰化葡聚糖(Dex-MA)的合成
16
(二)P(Dex—MA/NIPA)纳米凝胶的制备
17
18
19
20
性。
14
纳米凝胶
15
凝胶是一种包含液体、能够自我维持稳定的分散体 系,大分子聚集体构成了其中的连续的网络结构。
智能纳米凝胶是高分子微凝胶的一种,一般情况下 它的粒径不大于100nm,这种凝胶能够感应外界环境的 变化并因此而产生相应的物理化学性质的变化。这些外 界因素包括温度、离子强度、pH、溶剂以及光、电、 磁、压强等。
(1)温度敏感性纳米载体
(2)pH敏感性纳米载体
(3)光敏感性纳米载体
纳米脂质体
脂质体(liposomes)1,又0 称为磷脂膜,它最早是 指天然的脂类化合物在水中自发形成的具有双层封 闭结构的囊状结构,目前主要是用人工合成的磷脂 化合物来制备。
脂质体可以作为抗肿瘤药物的载体、靶向网状 内皮系统的药物载体、蛋白质及核酸类药物的载体、 抗菌药物的载体、抗炎激素药物载体、金属螯合物 的载体等。
二、可延长药物在病灶中的存留时间。
高分子纳米抗肿瘤药物延长了药物在肿瘤的停滞 时间,减慢了肿瘤的生长,而且纳米药物载体可以 在肿瘤血管内给药,减少给药剂量以及对其它器官 的毒副作用。
利用药物载体的pH敏、热敏、磁敏等特点在 外部环境的作用下实现物9 理化学导向,对靶位实行 靶向给药。根据附载药物释放的控制条件不同,纳 米高分子载体主要包括:
脂质体的稳定性包括物理、化学和生物等方面, 通过对粒径大小、pH、离子强度、抗氧剂和络合 剂等制备条件的控制,可使脂质体稳定一年以Байду номын сангаас。
纳米载药材料
17
小结
纳米生物技术是一门新的交叉学科, 为研究、改造生物分子结构和进行医学治 疗提供了新的手段和思维方式,而纳米药物 载体技术在医药领域的发展前景更为广阔, 相信纳米药物载体将在人类重大疾病的诊 断、治疗、预防等方面发挥重大的作用。
18
19
9
纳米载药微粒应用例举
1、运载多肽和蛋白类药物用于内分泌系统及 其它疾病治疗
2、输送免疫调节剂、抗肿瘤药用于抗肿瘤治 疗
3、输送抗菌药用于细胞内化疗 4、输送抗病毒药物、辅助疫苗活性用于艾滋
病防治
10
5、延长物效时间用于心血管疾病治疗 6、输送药物通过血脑屏障用于中枢神经系统
疾病治疗 7、定向输送抗寄生虫药用于寄生虫病治疗 8、增加药物吸收用于眼科疾病治疗 9、中药纳米微粒
3
种类
按作用方法分: 1、普通载药微粒 2、控释载药微粒 3、靶向定位载药微粒 4、载药磁性微粒
4
按材料性质分: 1、非生物降解型聚合物(主要有聚丙烯酰胺
类和聚甲基丙烯酸烷酯类等。) 2、生物降解型聚合物(常用材料有聚氰基丙
烯酸烷酯和聚酯类等化合物。) 3、亲水性聚合物(hydrophilic polymers)
4、使中药的研究、开发实现剂型和标准化革 命,从而走向国际化
13
宾州大学的研究人员开发出一种"洋葱新型载药 系统",有望长效输送药物。
14
中科院理化技术研究所研制的新型载药系统恶性 肿瘤治疗及其生物安全性评价方面取得的新突破。
15
氧化石墨烯用于序贯递送siRNA和DOX
16
四川大学华西药学开发院基于阳离子牛血清白蛋白的 新型siRNA传递系统,用于肺部转移性肿瘤的靶向治疗。
11
小结
纳米生物技术是一门新的交叉学科, 为研究、改造生物分子结构和进行医学治 疗提供了新的手段和思维方式,而纳米药物 载体技术在医药领域的发展前景更为广阔, 相信纳米药物载体将在人类重大疾病的诊 断、治疗、预防等方面发挥重大的作用。
18
19
9
纳米载药微粒应用例举
1、运载多肽和蛋白类药物用于内分泌系统及 其它疾病治疗
2、输送免疫调节剂、抗肿瘤药用于抗肿瘤治 疗
3、输送抗菌药用于细胞内化疗 4、输送抗病毒药物、辅助疫苗活性用于艾滋
病防治
10
5、延长物效时间用于心血管疾病治疗 6、输送药物通过血脑屏障用于中枢神经系统
疾病治疗 7、定向输送抗寄生虫药用于寄生虫病治疗 8、增加药物吸收用于眼科疾病治疗 9、中药纳米微粒
3
种类
按作用方法分: 1、普通载药微粒 2、控释载药微粒 3、靶向定位载药微粒 4、载药磁性微粒
4
按材料性质分: 1、非生物降解型聚合物(主要有聚丙烯酰胺
类和聚甲基丙烯酸烷酯类等。) 2、生物降解型聚合物(常用材料有聚氰基丙
烯酸烷酯和聚酯类等化合物。) 3、亲水性聚合物(hydrophilic polymers)
4、使中药的研究、开发实现剂型和标准化革 命,从而走向国际化
13
宾州大学的研究人员开发出一种"洋葱新型载药 系统",有望长效输送药物。
14
中科院理化技术研究所研制的新型载药系统恶性 肿瘤治疗及其生物安全性评价方面取得的新突破。
15
氧化石墨烯用于序贯递送siRNA和DOX
16
四川大学华西药学开发院基于阳离子牛血清白蛋白的 新型siRNA传递系统,用于肺部转移性肿瘤的靶向治疗。
11
纳米药物载体课件
包括聚丙胶脂、聚己胶脂、聚己内脂、聚甲 基丙烯酸甲酯、聚苯乙烯、纤维素、纤维素-聚乙 烯、聚羟基丙酸酯、明胶以及它们之间的共聚物。
整理ppt
纳米高分子载体特点:
一、生物降解性和生物相容性。 通过成分控制和结构设计,生物降解的速度可
以控制,部分聚丙胶脂、聚己胶脂、聚己内脂、明 胶及它们之间的共聚物可降解成正常代谢物质—— 水和二氧化碳。 二、可延长药物在病灶中的存留时间。
整理ppt
pH/温度双重敏感型纳米凝胶的制备及性质 研究
纳米凝胶的制备 (一)马来酰化葡聚糖(Dex-MA)的合成
整理ppt
(二)P(Dex—MA/NIPA)纳米凝胶的制备
时,CMCT因荷电分子链链间静电相互作用加强
,加上链内氢键作用与疏水基团的疏水相互作用
,CMCT分子链构象产生转变,分子链卷曲程度
逐步增加,形成线团。随pH 升高,CMCT分子内
羧基被中和形成羧酸根负离子,负电荷间的相互
排斥使CMCT采取松散线团构象。若将CMCT结
合于脂质体表面,由于环境pH变化引起CMCT构
整理ppt
纳米脂质体
脂质体(liposomes),又称为磷脂膜,它最早是 指天然的脂类化合物在水中自发形成的具有双层封 闭结构的囊状结构,目前主要是用人工合成的磷脂 化合物来制备。
脂质体可以作为抗肿瘤药物的载体、靶向网 状内皮系统的药物载体、蛋白质及核酸类药物的载 体、抗菌药物的载体、抗炎激素药物载体、金属螯 合物的载体等。
纳米药物载体
药物载体主要是天然或合成的高分子材料, 以不同的形式与药物分子通过化学键合、物理 吸附或包裹,构成药物控制系统。在不降低原 有药效并抑制其副作用的情况下,以合适的浓 度和时间将药物控释系统导向至病患的部位, 然后通过一系列的物理、化学及生物控制,将 药物等以最佳剂量和时间释放出来,达到定时、 定位、定量发挥药物的疗效。
整理ppt
纳米高分子载体特点:
一、生物降解性和生物相容性。 通过成分控制和结构设计,生物降解的速度可
以控制,部分聚丙胶脂、聚己胶脂、聚己内脂、明 胶及它们之间的共聚物可降解成正常代谢物质—— 水和二氧化碳。 二、可延长药物在病灶中的存留时间。
整理ppt
pH/温度双重敏感型纳米凝胶的制备及性质 研究
纳米凝胶的制备 (一)马来酰化葡聚糖(Dex-MA)的合成
整理ppt
(二)P(Dex—MA/NIPA)纳米凝胶的制备
时,CMCT因荷电分子链链间静电相互作用加强
,加上链内氢键作用与疏水基团的疏水相互作用
,CMCT分子链构象产生转变,分子链卷曲程度
逐步增加,形成线团。随pH 升高,CMCT分子内
羧基被中和形成羧酸根负离子,负电荷间的相互
排斥使CMCT采取松散线团构象。若将CMCT结
合于脂质体表面,由于环境pH变化引起CMCT构
整理ppt
纳米脂质体
脂质体(liposomes),又称为磷脂膜,它最早是 指天然的脂类化合物在水中自发形成的具有双层封 闭结构的囊状结构,目前主要是用人工合成的磷脂 化合物来制备。
脂质体可以作为抗肿瘤药物的载体、靶向网 状内皮系统的药物载体、蛋白质及核酸类药物的载 体、抗菌药物的载体、抗炎激素药物载体、金属螯 合物的载体等。
纳米药物载体
药物载体主要是天然或合成的高分子材料, 以不同的形式与药物分子通过化学键合、物理 吸附或包裹,构成药物控制系统。在不降低原 有药效并抑制其副作用的情况下,以合适的浓 度和时间将药物控释系统导向至病患的部位, 然后通过一系列的物理、化学及生物控制,将 药物等以最佳剂量和时间释放出来,达到定时、 定位、定量发挥药物的疗效。
纳米药物载体课件
能够精确地将药物传递 至靶部位,提高药物的
疗效并降低副作用。
多功能性
可加载多种药物,实现联 合治疗;可携带诊断试剂
,实现诊疗一体化。
纳米药物载体的应用领域
癌症治疗
通过靶向肿瘤细胞或肿瘤血管 ,实现药物的精确输送和肿瘤
的高效治疗。
感染性疾病治疗
用于抗生素、抗病毒药物的靶 向输送,提高治疗效果并降低 耐药性的产生。
Байду номын сангаас
生产成本问题
高技术要求
纳米药物载体的制备需要先进的 生产设备和专业技术,导致生产 成本高昂。
质量控制
确保纳米药物载体的质量和一致 性需要严格的质量控制体系,增 加了生产成本。
规模效应
随着生产规模的扩大,有望降低 生产成本,提高纳米药物载体的 可及性。
法规与伦理问题
法规缺失
目前针对纳米药物载体的监管法规尚不完善,可能存在安全风险 和伦理争议。
伦理考量
纳米药物载体涉及改变人体细胞和组织的基本结构,引发关于人 类尊严和伦理的考量。
知情同意
使用纳米药物载体前,应确保患者或受试者充分了解潜在风险并 签署知情同意书。
纳米药物载体的未来发展方向与前景
01
02
03
04
创新材料研发
探索新型纳米药物载体材料, 以提高安全性和有效性。
精准靶向技术
开发具有精准靶向能力的纳米 药物载体,提高疗效并降低副
03
纳米药物载体的性能评价
药物负载能力
负载量
药物释放动力学
衡量纳米药物载体能够负载药物的量, 通常以重量或体积表示。
研究纳米药物载体在不同条件下的药 物释放速度和释放量,以评估其在实 际应用中的效果。
《纳米载药材料》课件
总结词
纳米载药材料在心血管、神经、免疫等其他疾病治疗中也有广泛应用。
详细描述
除了肿瘤治疗,纳米载药材料在心血管疾病、神经退行性疾病、自身免疫性疾病等领域也展现出良好的应用前景 。这些领域的疾病治疗往往需要药物的精准输送和缓释,而纳米载药材料正好满足了这一需求。
纳米载药材料的发展趋势与挑战
要点一
总结词
化学法
化学法包括溶胶-凝胶法、沉淀法、微乳液法等。
沉淀法制备的纳米载药材料成本较低、操作简单,但粒 度分布不均匀。
溶胶-凝胶法制备的纳米载药材料结晶度高、粒度均匀 ,但制备过程中需要高温处理。
微乳液法制备的纳米载药材料粒度小、分散性好,但制 备过程中需要使用大量有机溶剂。
生物法
生物法包括微生物法和植物提取法等 。
纳米载药材料在肿瘤治疗中的应用研究
总结词
纳米载药材料在肿瘤治疗中具有显著的优势和潜力。
详细描述
通过精准靶向肿瘤细胞,纳米载药材料能够实现药物的定向输送,提高肿瘤治疗的疗效并降低副作用 。此外,纳米载药材料还能有效解决肿瘤细胞的多药耐药性问题,为肿瘤治疗提供新的策略。
纳米载药材料在其他疾病治疗中的应用研究
05 案例分析:某纳米载药材 料在肿瘤治疗中的应用
材料与方法
材料
详细介绍实验所用的纳米载药材料, 包括其成分、制备方法、物理和化学 性质等。
方法
描述实验过程,包括纳米载药材料的 制备、表征、药物负载、动物模型建 立、给药方式等。
结果与分析
结果
展示实验结果,包括药物释放曲线、生 物分布、治疗效果等。
VS
分析
对实验结果进行深入分析,探讨纳米载药 材料的性能与治疗效果之间的关系。
结论与展望
纳米载药材料在心血管、神经、免疫等其他疾病治疗中也有广泛应用。
详细描述
除了肿瘤治疗,纳米载药材料在心血管疾病、神经退行性疾病、自身免疫性疾病等领域也展现出良好的应用前景 。这些领域的疾病治疗往往需要药物的精准输送和缓释,而纳米载药材料正好满足了这一需求。
纳米载药材料的发展趋势与挑战
要点一
总结词
化学法
化学法包括溶胶-凝胶法、沉淀法、微乳液法等。
沉淀法制备的纳米载药材料成本较低、操作简单,但粒 度分布不均匀。
溶胶-凝胶法制备的纳米载药材料结晶度高、粒度均匀 ,但制备过程中需要高温处理。
微乳液法制备的纳米载药材料粒度小、分散性好,但制 备过程中需要使用大量有机溶剂。
生物法
生物法包括微生物法和植物提取法等 。
纳米载药材料在肿瘤治疗中的应用研究
总结词
纳米载药材料在肿瘤治疗中具有显著的优势和潜力。
详细描述
通过精准靶向肿瘤细胞,纳米载药材料能够实现药物的定向输送,提高肿瘤治疗的疗效并降低副作用 。此外,纳米载药材料还能有效解决肿瘤细胞的多药耐药性问题,为肿瘤治疗提供新的策略。
纳米载药材料在其他疾病治疗中的应用研究
05 案例分析:某纳米载药材 料在肿瘤治疗中的应用
材料与方法
材料
详细介绍实验所用的纳米载药材料, 包括其成分、制备方法、物理和化学 性质等。
方法
描述实验过程,包括纳米载药材料的 制备、表征、药物负载、动物模型建 立、给药方式等。
结果与分析
结果
展示实验结果,包括药物释放曲线、生 物分布、治疗效果等。
VS
分析
对实验结果进行深入分析,探讨纳米载药 材料的性能与治疗效果之间的关系。
结论与展望
纳米材料在生物医药领域的应用PPT课件
胞和肿瘤细胞。
新型纳米载药系统应用于恶性肿瘤治疗
• 实现恶性肿瘤安全 有效治疗是目前生 物医学界的重大挑 战之一。 • 化疗药物在杀伤肿 瘤细胞的同时,也 将正常细胞一同杀 灭,纳米药物载体 可以增强药物的抗 肿瘤效果,并且降 低药物引起的毒副 作用
• 中国科学院理化技术研究所唐芳琼研究员利 用纳米金壳偶联转铁蛋白分子携带药物靶向 至肿瘤,光热疗与化疗结合杀死肿瘤细胞。 • 该材料内层以结构独特的中空介孔夹心二氧 化硅为核,其表面包覆金壳,纳米金壳以其 物理化学性质——等离子体共振性质为基础, 经近红外激光照射,可将近红外激光光能转 化为热能,并配以夹心二氧化硅对多种化疗 药物的装载控制缓释技术,高效低毒杀死肿 瘤细胞,该成果于2011年初发表在国际化学 界顶级刊物《德国应用化学》
纳米尺度调整杀死变异的癌 变细胞,通过外部激光器指 引,精确计算找到出辐射超 标的癌变细胞,利用先进的 生物细胞溶解技术讲可能病 变的细胞溶解成化学分子元 素,并通过特定传感器系统 精确的核查后,将细胞组分 成功进入健康细胞中,完成 坏死细胞与成功健康细胞的 转换。由于纳米机器人可以 小到在人的血管中自由的游 动,对于像脑血栓、动脉硬 化等病灶,它们可以非常容 易的予以清理,而不用再进 行危险的开颅、开胸手术。
?羟基衍生物柠檬酸酒石酸盐硫辛酸等阴离子修饰纳米粒子时纳米粒子通过静电反应吸附在阳极蛋白质上?纳米粒子抗与体结合体也常用来亲和的连接与它们匹配的抗原?链酶亲和素sav功能化的金纳米粒子已经用来连接蛋白质免疫球蛋白和血清蛋白或低聚核昔酸?现在蛋白质a连接银纳米粒子已普遍作为不同免疫球蛋白功能片断的通用连接剂纳米药物载体?纳米药物载体是以纳米颗粒作为载体将药物包裹在纳米颗粒中或吸附在其表面同时结合特异性配体等通过靶向分子与细胞表面特异性受体结合实现安全有效的靶向治疗
新型纳米载药系统应用于恶性肿瘤治疗
• 实现恶性肿瘤安全 有效治疗是目前生 物医学界的重大挑 战之一。 • 化疗药物在杀伤肿 瘤细胞的同时,也 将正常细胞一同杀 灭,纳米药物载体 可以增强药物的抗 肿瘤效果,并且降 低药物引起的毒副 作用
• 中国科学院理化技术研究所唐芳琼研究员利 用纳米金壳偶联转铁蛋白分子携带药物靶向 至肿瘤,光热疗与化疗结合杀死肿瘤细胞。 • 该材料内层以结构独特的中空介孔夹心二氧 化硅为核,其表面包覆金壳,纳米金壳以其 物理化学性质——等离子体共振性质为基础, 经近红外激光照射,可将近红外激光光能转 化为热能,并配以夹心二氧化硅对多种化疗 药物的装载控制缓释技术,高效低毒杀死肿 瘤细胞,该成果于2011年初发表在国际化学 界顶级刊物《德国应用化学》
纳米尺度调整杀死变异的癌 变细胞,通过外部激光器指 引,精确计算找到出辐射超 标的癌变细胞,利用先进的 生物细胞溶解技术讲可能病 变的细胞溶解成化学分子元 素,并通过特定传感器系统 精确的核查后,将细胞组分 成功进入健康细胞中,完成 坏死细胞与成功健康细胞的 转换。由于纳米机器人可以 小到在人的血管中自由的游 动,对于像脑血栓、动脉硬 化等病灶,它们可以非常容 易的予以清理,而不用再进 行危险的开颅、开胸手术。
?羟基衍生物柠檬酸酒石酸盐硫辛酸等阴离子修饰纳米粒子时纳米粒子通过静电反应吸附在阳极蛋白质上?纳米粒子抗与体结合体也常用来亲和的连接与它们匹配的抗原?链酶亲和素sav功能化的金纳米粒子已经用来连接蛋白质免疫球蛋白和血清蛋白或低聚核昔酸?现在蛋白质a连接银纳米粒子已普遍作为不同免疫球蛋白功能片断的通用连接剂纳米药物载体?纳米药物载体是以纳米颗粒作为载体将药物包裹在纳米颗粒中或吸附在其表面同时结合特异性配体等通过靶向分子与细胞表面特异性受体结合实现安全有效的靶向治疗
纳米载体及纳米药物ppt课件
2.5 纳米药物的应用
纳米靶向药物
门控纳米材料包容机理
纳米尺度的“墙”可以部分溶解,然后在合适的条件重 新建立,从而将荧光标记的药物包容在内部
纳米药物的抗菌性能
银离子 银纳米粒 子
银常用于抗菌纤维及纺织品 中,但一般以银离子系统为主, 容易与生物体中的氯离子产生 氯化银沉淀,进而诱发人体过 敏反应产生。 纳米银粒子没有银离子的缺 点,但其限制在于安定性不佳, 合成后储放易产生凝聚形成微 米级粒子,另则为在高分子基 材不容易分散,而影响其应用。
智能基因载体的研发。
纳米微粒基因载体将会很有应用前景。
2 纳米药物
2.1 纳米药物的定义
药剂学中的纳米粒或称纳米载体与纳米药物,其尺 寸界定于1~1000nm之间。
纳米载体指表面负载或包埋药物的各种纳米粒。
纳米药物则是指直接将原料药物加工成纳米粒。
2.2 纳米药物的分类
纳米乳剂 纳米脂质体 纳米粒药物 固体脂质纳米粒 纳米囊与纳米球
应用普遍;不受物种限制;缩短转 基因时间
强度太大,损伤细胞,影响转染效 率
浸泡法
将培养物浸泡到纳米DNA溶液中, 利用渗透作用进入
操作简单快速
转化效率不高
真空渗入法
真空状态时,载体进入细胞
简便、快速、可靠
转染效率低
口服
口服纳米基因载体
使用简便,可提高生物利用度
体内传递效率不高,易受分解
静脉注射
静脉注射基因载体
磁性纳米药物 温度敏感性、pH敏感性、 光敏感性纳米药物 免疫纳米药物 纳米中药,等
2.3 纳米药物的优势
纳米级药物载体可以进入毛细血管,在血液循环系统自由流动, 还可穿过细胞,被组织与细胞以胞饮的方式吸收,提高生物利用 率。 纳米载体的比表面积高,水溶性差的药物在纳米载体中的溶解 度相对增强,克服无法通过常规方法制剂的难题。 纳米载体经特殊加工后可制成靶向定位系统,如磁性载药纳米 微粒。可降低药物剂量减轻副作用。 延长药物的体内半衰期,藉由控制聚合物在体内的降解速度, 能使半衰期短的药物维持一定水平,可改善疗效及降低副作用, 减少患者服药次数。 可消除特殊生物屏障对药物作用的限制,如血脑屏障、血眼屏 障及细胞生物膜屏障等,纳米载体微粒可穿过这些屏障部位进行 治疗。
《纳米载药材料》课件
个性化治疗的实现
结合纳米技术和基因组学,实现 针对个体的精准处置,建立对泛 癌种的有效的治疗解决方案。
硅纳米粒子
可作为药物载体,特别是针对口 服给药而言,硅纳米粒子有很好 的应用前景。
纳米载药机制
1
装载方式
• 物理吸附 • 化学结合 • 改性
2
释放方式
• pH响应型 • 热响应型 • 光响应型
纳米载药的应用
肿瘤治疗
帮助提高药物在肿瘤细胞内 的负荷量,降低药物的副作 用,并具有靶向性。
神经疾病治疗
2
纳米载药材料的局限性
可能带来的毒性、制备难度、储存稳定性、制备成本等。
纳米载药材料的种类
硬质材料
• 金属磁性纳米粒子 • 金属氧化物纳米粒子 • 硅纳米粒子
金属氧化物纳米粒子
在癌细胞的成像和治疗中有着广 泛应用。
软质材料
• 脂质体 • 聚合物纳米粒子 • 蛋白质纳米颗粒
金属磁性纳米粒子
可用于生物分离、靶向传递、磁 共振成像、磁暴露治疗等方面。
《纳米载药材料》PPT课 件
本次课件将介绍纳米技术在药物载体领域的应用,以及纳米载药材料的优势 和局限性。
纳米载药材料概述
纳米技术在药物载体领域的应用
纳米材料因其小尺寸、大比表面积的特性,成为药物载体领域的研究热点。
1
纳米载药材料的优势
增强药物稳定性、提高生物利用度、增强靶向性、减少不良反应、提高药效、克服耐药性、 实现定量控制等。
研究纳米药物对神经系统的 作用机理,可对中枢神经系 统疾病进行治疗和防治。
心血管疾病治疗
可用于治疗冠心病、心力衰 竭、高血压、动脉粥样硬化 等心血管疾病。
纳米载药材料的发展趋势
纳米载体及纳米药物PPT课件
纳米载体还可以通过改变疫苗的释放方 此外,纳米药物制剂还可以用于开发新
式和速率来调节免疫反应,提高疫苗的 型疫苗,如基于mRNA的疫苗和基于病
安全性和有效性。例如,纳米载体可以 毒载体的疫苗等。这些新型疫苗的开发
缓慢释放疫苗成分,延长免疫反应时间, 将有助于应对新发传染病和疫苗短缺等
提高免疫效果。
问题。
微生物法
利用微生物的生长和代谢过程来制备纳米粒子。例如,利用细菌合成金属纳米粒子等。 该方法可实现大规模生产,但制备的纳米粒子纯度较低。
基因工程法
通过基因工程技术来制备具有特定功能的纳米粒子。例如,利用基因工程改造细胞来合 成具有特定性质的纳米材料等。该方法可实现高度定制化的纳米粒子制备,但技术难度
纳米乳剂
总结词
将药物溶解或分散在油相中,形成稳定的乳液状体系。
详细描述
纳米乳剂是一种将药物以液滴形式分散在油相中的载体,具有改善药物的口感和顺应性、提高药物的 稳定性和生物利用度等优点。纳米乳剂的制备方法多样,可根据需要选择合适的配方和工艺条件。
纳米囊泡
总结词
由天然或合成高分子材料形成的封闭的 囊状结构,具有靶向识别能力。
较大。
04
纳米药物制剂的应用与展望
在癌症治疗中的应用
癌症治疗是纳米药物制剂的重要应用领域之一。纳米药物制剂能够提高 药物的靶向性和生物利用度,降低毒副作用,提高治疗效果。
纳米药物制剂在癌症治疗中可以用于化疗、靶向治疗、免疫治疗等多种 治疗方式。例如,纳米药物制剂可以包裹化疗药物,精准地到达肿瘤部
用领域。
THANKS
感谢观看
在基因治疗中的应用
基因治疗是纳米药物制剂的又一重要应用领域。纳米药物制 剂可以用于包裹和传递基因治疗药物,提高基因药物的靶向 性和稳定性,降低毒副作用。
纳米药物载体ppt课件
pH敏感纳米脂质体的制备 精密称取0.30 g磷脂、胆固醇(质量比 5:1)溶于12 mL混合溶液(V氯仿:V 醇=2:1) 中,减压蒸干至形成一层均匀的脂质薄膜 。加20 mL pH 4.0的PBS溶解后间歇超声( 超声5 S后停5 S的循环超声)3 min成均匀乳 液,用pH 7.4的PBS缓冲液调节pH至碱性 ,加入3 mmoL/L阿霉素溶液1 mL后再间 歇超声数次,每次3 rain,水浴条件下水合 3h后过0.20 ttm 微孔滤膜即得阿霉素纳米 脂质体。向制得的阿霉素纳米脂质体中加 入2 mL质量百分数为0.02 的羧甲基壳聚糖 溶液,继续水合0.5 h即得羧甲基壳聚糖修 饰的阿霉素纳米脂质体。
透射电镜下观察可看 到均匀分散的球形小 单室纳米脂质体,脂 质体颗粒间彼此独 立,外观圆整,内层 为阿霉素药物,外层 为羧甲基壳聚糖修饰 的脂质体层。
酸性条件下,阿霉素 纳米脂质体经羧甲基壳 聚糖修饰后,不仅阿霉 素渗漏百分率明显增大 ,而且渗漏速度也加快 。两种脂质体的渗漏百 分率都随pH 降低而增 大,但羧甲基壳聚糖修 饰的阿霉素脂质体增大 幅度更大。由此说明, 经羧甲基壳聚糖修饰的 阿霉素纳米脂质体具有 较好的的pH 敏较高的载药量
载药量=——————————×100% 具有较高的包封率 包封率=——————————×100%
具有适宜的制备及提纯方法 载体材料可生物降解,毒性较低或没有 毒性 具有适当的粒径与粒形 具有较长的体内循环时间
纳米药物载体种类
(1)生物大分子物质 如免疫球蛋白、去唾液糖蛋白、 白蛋白、纤维原、脱氧核糖核酸、葡萄糖以及某些病 毒等; (2)细胞类 如红细胞等各类细胞及类细胞囊泡等; (3)合成非生物降解大分子物质 如纤维素、半透膜 微囊、凝胶、高分子材料类等; (4)合成生物可降解性大分子物质 如脂质体、静脉 乳、复合型乳剂、纳米胶囊、微球剂、磁球类、β-环 糊精分子胶囊以及玉脂聚糖球等; (5)无机材料类 如碳酸钙等。
纳米载药材料ppt
聚合物分散法:
由聚合法制备的NP中可能留有为反 应的有毒单体或寡聚物,而且聚合物有可 能与药物发生反应。为避免产生毒性,已 开发了经纯化的天然高分子物质或合成聚 合材料制备NP的方法。基本原理是先将高 分子材料与药物共同溶于某溶剂中。制成 肢体溶液或乳剂,再通过加热、蒸发溶剂、 盐析等方法使高分子材料固化,形成粒径 较小的纳米球。
纳米载药微粒应用例举
1、运载多肽和蛋白类药物用于内分泌系统及 其它疾病治疗
2、输送免疫调节剂、抗肿瘤药用于抗肿瘤治 疗
3、输送抗菌药用于细胞内化疗 4、输送抗病毒药物、辅助疫苗活性用于艾滋
病防治
5、延长物效时间用于心血管疾病治疗 6、输送药物通过血脑屏障用于中枢神经系统
疾病治疗
7、定向输送抗寄生虫药用于寄生虫病治疗 8、增加药物吸收用于眼科疾病治疗 9、中药纳米微粒
小结
纳米生物技术是一门新的交叉学科, 为研究、改造生物分子结构和进行医学治 疗提供了新的手段和思维方式,而纳米药物 载体技术在医药领域的发展前景更为广阔, 相信纳米药物载体将在人类重大疾病的诊 断、治疗、预防等方面发挥重大的作用。
纳米载药材料
பைடு நூலகம்
敏佳 157239
姓名:李 学号:
主要内容
纳米载药材料概述 纳米微粒的制备 纳米载药材料的应用 载药纳米材料的研究开发前景
纳米载药材料概述
含义:
纳米级药物载体是一种属于纳米级微 观范畴的亚微粒药物载体输送系统。
载药纳米微粒即是纳米技术与现代医 药学结合的产品。纳米粒子是一种超微小 球型药物载体,是近年来出现的药物控释 和缓释的新剂型,它的突出优点是比细胞 还小(10-1000nm之间),因此可被组织 及细胞吸收,甚至经特殊加工后可对组织 或器官定向给药。
纳米药物载体课件
CHENLI
1
纳米药物载体的性质
作为药物载体的纳米材料,是粒径大小介于 10~1000nm的固态胶体颗粒,包括纳米粒子、纳 米囊、纳米胶束和纳米乳剂等。
其中较常见的是纳米粒子,一般指由天然或 合成的高分子材料制成的、粒度在纳米级的固态 胶体颗粒。
CHENLI
2
纳米粒子表面的亲水性与亲脂性将影 响纳米粒子与调理蛋白吸附结合力的大小, 从而影响吞噬细胞对其吞噬的快慢。一般 而言,纳米粒子的表面亲脂性越大,则其 对调理蛋白的结合力越强,吞噬细胞对其 吞噬的速度越快。所以要延长纳米粒子在 体内的循环时间,需增加其表面的亲水性, 这是对纳米粒子进行表面修饰时选择材料 的一个必要条件。
(1)温度敏感性纳米载体
(2)pH敏感性纳米载体
(3)光敏感性纳米载体
CHENLI
9
纳米脂质体
脂质体(liposomes),又称为磷脂膜,它最早是 指天然的脂类化合物在水中自发形成的具有双层封 闭结构的囊状结构,目前主要是用人工合成的磷脂 化合物来制备。
脂质体可以作为抗肿瘤药物的载体、靶向网
状内皮系统的药物载体、蛋白质及核酸类药物的载 体、抗菌药物的载体、抗炎激素药物载体、金属螯 合物的载体等。
脂质体的稳定性包括物理、化学和生物等方
面,通过对粒径大小、pH、离子强度、抗氧剂和
络合剂等制备条件的控制,可使脂质体稳定一年以
上。
CHENLILeabharlann 10pH敏感阿霉素纳米脂质体的制备及性能
羧甲基壳聚糖(CMCT)既含有阳离子(
)
基团,又含有阴离子(
)基团,是一种两性
聚电解质,具有特殊的pH敏感性,当介质偏酸性
CHENLI
3
纳米药物载体的属性:
纳米材料在医学上应用PPT课件
临床转化研究
加强纳米材料在临床试验和实际应用中的研究, 加速其从实验室走向临床。
ABCD
技术创新与改进
持续改进纳米材料的制备、性质和性能,以满足 医学应用的需求。
政策与伦理框架
制定和完善涉及纳米医学研究的政策和伦理指导 原则,确保研究的合规性和安全性。
THANKS FOR WATCHING
感谢您的观看
纳米生物材料的制备方法
物理法
利用物理手段如蒸发、溅射、激光等制备纳 米颗粒或纳米纤维。
化学法
通过化学反应如水热法、溶胶-凝胶法、沉 淀法等制备纳米材料。
生物法
利用微生物或植物提取物等生物资源制备纳 米材料。
复合法
结合物理、化学和生物方法制备具有特定性 能的纳米材料。
纳米生物材料的应用案例
靶向药物传输
利用纳米药物载体实现肿瘤的靶向治疗,提高药物疗效并降低副作用。
组织工程和再生医学
利用纳米纤维和纳米颗粒等材料构建人工组织器官,用于移植和修复。
疾病诊断
利用纳米诊断试剂实现肿瘤、感染性疾病等的早期快速诊断。
抗菌敷料
将纳米抗菌材料应用于伤口敷料,有效抑制感染并促进伤口愈合。
05 纳米材料在医学上的挑战 与前景
04
纳米材料在医学上的发展前景
个性化医疗
利用纳米技术实现精准诊断和治疗,满足个 体化需求。
新型药物输送系统
利用纳米材料构建高效、低毒的药物输送系 统。
组织工程与再生医学
利用纳米材料促进组织修复和再生。
癌症早期诊断和治疗
利用纳米材料提高癌症诊断的灵敏度和治疗 效果。
未来研究方向与展望
跨学科合作
加强纳米科学、生物学、医学等领域的跨学科合 作,共同推进纳米医学研究。
纳米药物载体课件
.
12
透射电镜下观察可看 到均匀分散的球形小 单室纳米脂质体,脂 质体颗粒间彼此独 立,外观圆整,内层 为阿霉素药物,外层 为羧甲基壳聚糖修饰 的脂质体层。
.
13
酸性条件下,阿霉素 纳米脂质体经羧甲基壳 聚糖修饰后,不仅阿霉 素渗漏百分率明显增大 ,而且渗漏速度也加快 。两种脂质体的渗漏百
分率都随pH 降低而增 大,但羧甲基壳聚糖修 饰的阿霉素脂质体增大 幅度更大。由此说明, 经羧甲基壳聚糖修饰的 阿霉素纳米脂质体具有
.
3
纳米药物载体的属性:
具有较高的载药量
载药量=——————————×100% 具有较高的包封率
包封率=——————————×100%
.
4
具有适宜的制备及提纯方法 载体材料可生物降解,毒性较低或没有
毒性 具有适当的粒径与粒形 具有较长的体内循环时间
.
5
纳米药物载体种类
(1)生物大分子物质 如免疫球蛋白、去唾液糖蛋白、 白蛋白、纤维原、脱氧核糖核酸、葡萄糖以及某些病 毒等;
纳米药物载体
药物载体主要是天然或合成的高分子材料, 以不同的形式与药物分子通过化学键合、物理 吸附或包裹,构成药物控制系统。在不降低原 有药效并抑制其副作用的情况下,以合适的浓 度和时间将药物控释系统导向至病患的部位, 然后通过一系列的物理、化学及生物控制,将 药物等以最佳剂量和时间释放出来,达到定时、 定位、定量发挥药物的疗效。
较好的的pH 敏感
性。
.
14
纳米凝胶
凝胶是一种包含液体、能够自我维持稳定 的分散体系,大分子聚集体构成了其中的连续 的网络结构。
智能纳米凝胶是高分子微凝胶的一种,一 般情况下它的粒径不大于100nm,这种凝胶能 够感应外界环境的变化并因此而产生相应的物 理化学性质的变化。这些外界因素包括温度、 离子强度、pH、溶剂以及光、电、磁、压强等。
纳米药物 ppt课件
纳米药物的研究
目
录
1
纳米药物的分类
2
纳米药物的优势
纳米药物的制备方法
3
4
纳米药物的应用
一、纳米药物的分类
• 纳米粒子(Nanoparticle):
也叫超微颗粒,1~100 nm 粒子或微小结构,处 于原子簇和宏观物体交界的过渡区域。
原子
分子 0.1-1.0 nm
纳米粒子
宏观物体 >1 mm
1-100 nm
① 纳米载体尺寸小,可进入毛细血管,以胞饮方
式吸收 ②药物增溶:减小粒径、控制粒径分布等可提高 药物的溶解性,使药物易于吸收 ③ 延长药物半衰期 ④ 可以解决口服易水解药物 ⑤可控释放(尺寸大小)
纳米粒在体内具有长循环、隐形和主体稳定等特点,有利于药物的 可控释放
⑤ 制备成靶向定位系统
主动靶向 被动靶向
由氯金酸通过还原法,可以制备各种不同粒径的 纳米金,可以用于免疫标记技术。
层析金试纸 (早早孕、三聚氰胺等)
银饰
银纳米微粒
(胶体银)
银在纳米状态下的杀菌能力产生了质的飞跃。只需用极
少量的纳米银即可产生强力的杀菌作用。
3、纳米中药
“纳米中药”技术已申请专利,中药牛黄加工到纳米
级的水平,其理化性质和疗效发生了惊人的变化,甚至
863计划项目”心血管病与糖尿病多指标微流控芯片检测系 统的研制”,为糖尿病患者研制超小型的、模仿健康人体内
的葡萄糖检测系统,并装上一个“智能化”的传感器,使它
可以适时和适量地释放药物,使病人体内的血糖和胰岛素含 量总是处于正常状态。
美国正在设计一种纳米"智能炸弹",它可以识别出癌细胞的 化学特征。这种"智能炸弹"很小,仅有20纳米左右,能够进 入并摧毁单个的癌细胞。
目
录
1
纳米药物的分类
2
纳米药物的优势
纳米药物的制备方法
3
4
纳米药物的应用
一、纳米药物的分类
• 纳米粒子(Nanoparticle):
也叫超微颗粒,1~100 nm 粒子或微小结构,处 于原子簇和宏观物体交界的过渡区域。
原子
分子 0.1-1.0 nm
纳米粒子
宏观物体 >1 mm
1-100 nm
① 纳米载体尺寸小,可进入毛细血管,以胞饮方
式吸收 ②药物增溶:减小粒径、控制粒径分布等可提高 药物的溶解性,使药物易于吸收 ③ 延长药物半衰期 ④ 可以解决口服易水解药物 ⑤可控释放(尺寸大小)
纳米粒在体内具有长循环、隐形和主体稳定等特点,有利于药物的 可控释放
⑤ 制备成靶向定位系统
主动靶向 被动靶向
由氯金酸通过还原法,可以制备各种不同粒径的 纳米金,可以用于免疫标记技术。
层析金试纸 (早早孕、三聚氰胺等)
银饰
银纳米微粒
(胶体银)
银在纳米状态下的杀菌能力产生了质的飞跃。只需用极
少量的纳米银即可产生强力的杀菌作用。
3、纳米中药
“纳米中药”技术已申请专利,中药牛黄加工到纳米
级的水平,其理化性质和疗效发生了惊人的变化,甚至
863计划项目”心血管病与糖尿病多指标微流控芯片检测系 统的研制”,为糖尿病患者研制超小型的、模仿健康人体内
的葡萄糖检测系统,并装上一个“智能化”的传感器,使它
可以适时和适量地释放药物,使病人体内的血糖和胰岛素含 量总是处于正常状态。
美国正在设计一种纳米"智能炸弹",它可以识别出癌细胞的 化学特征。这种"智能炸弹"很小,仅有20纳米左右,能够进 入并摧毁单个的癌细胞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米载药材料
姓名:李敏佳 学号:157239
1
·
主要内容
纳米载药材料概述 纳米微粒的制备 纳米载药材料的应用 载药纳米材料的研究开发前景
2
·
纳米载药材料概述
含义: 纳米级药物载体是一种属于纳米级微观
范畴亚微粒药物载体输送系统。 载药纳米微粒即是纳米技术与现代医药
学结合的产品。纳米粒子是一种超微小球型 药物载体,是近年来出现的药物控释和缓释 的新剂型,它的突出优点是比细胞还小(101000nm之间),因此可被组织及细胞吸收, 甚至经特殊加工后可对组织或器官定向给药。
11
·
载药纳米材料的研究开发前景
未来的纳米技术,在医药领域的研究和 应用将呈现多元化趋势。
1、生物兼容性物质将逐渐开发,并进入临床 试验阶段;
2、纳米技术将使诊断、检测技术向微型、微 量、快速、功能性和智能化方向发展;
12
·
3、将使药物的生产实现低成本、高效率,而 药物的应用更加方便,药物的作用将实现 器官靶向化;
17
·
小结
纳米生物技术是一门新的交叉学科,为 研究、改造生物分子结构和进行医学治疗 提供了新的手段和思维方式,而纳米药物载 体技术在医药领域的发展前景更为广阔,相 信纳米药物载体将在人类重大疾病的诊断、 治疗、预防等方面发挥重大的作用。
18
·
19
·
3
·
种类
按作用方法分: 1、普通载药微粒 2、控释载药微粒 3、靶向定位载药微粒 4、载药磁性微粒
4
·
按材料性质分:
1、非生物降解型聚合物(主要有聚丙烯酰胺 类和聚甲基丙烯酸烷酯类等。)
2、生物降解型聚合物(常用材料有聚氰基丙 烯酸烷酯和聚酯类等化合物。)
3、亲水性聚合物(hydrophilic polymers) (聚乙烯吡咯烷酮(PVP)、聚丙烯酰淀粉、 壳聚糖、海藻酸钠、明胶等)
8
·
聚合物分散法:
由聚合法制备的NP中可能留有为反应 的有毒单体或寡聚物,而且聚合物有可能 与药物发生反应。为避免产生毒性,已开 发了经纯化的天然高分子物质或合成聚合 材料制备NP的方法。基本原理是先将高分 子材料与药物共同溶于某溶剂中。制成肢 体溶液或乳剂,再通过加热、蒸发溶剂、 盐析等方法使高分子材料固化,形成粒径 较小的纳米球。
4、使中药的研究、开发实现剂型和标准化革 命,从而走向国际化
13
·
宾州大学的研究人员开发出一种"洋葱新型载药 系统",有望长效输送药物。
14
·
中科院理化技术研究所研制的新型载药系统在恶性 肿瘤治疗及其生物安全性评价方面取得的新突破。
15
·
氧化石墨烯用于序贯递送siRNA和DOX
16
·
四川大学华西药学开发院基于阳离子牛血清白蛋白的 新型siRNA传递系统,用于肺部转移性肿瘤的靶向治疗。
5
·
特点:
提高药物的靶向性和缓释性 改变药物的给药途径 增加药物的吸收,提高药物的生物利用度,
延长药物作用的时间 增加生物膜的通透性 提高药物的稳定性 降低药物的毒副作用
6
·
制备方法
通常,根据形成的原理的不同可以分为 两种 1、单体聚合法
2、聚合物分散法
7
·
单体聚合法:
诱导单体进入乳液或溶解于聚合物的非 溶剂中,在这些系统中发生的聚合反应分 为两个阶段:成核阶段和成长阶段、单体 聚合法主要有乳化聚合法和界面缩聚法等。
9
·
纳米载药微粒应用例举
1、运载多肽和蛋白类药物用于内分泌系统及 其它疾病治疗
2、输送免疫调节剂、抗肿瘤药用于抗肿瘤治 疗
3、输送抗菌药用于细胞内化疗 4、输送抗病毒药物、辅助疫苗活性用于艾滋
病防治
10
·
5、延长物效时间用于心血管疾病治疗 6、输送药物通过血脑屏障用于中枢神经系统
疾病治疗
7、定向输送抗寄生虫药用于寄生虫病治疗 8、增加药物吸收用于眼科疾病治疗 9、中药纳米微粒
姓名:李敏佳 学号:157239
1
·
主要内容
纳米载药材料概述 纳米微粒的制备 纳米载药材料的应用 载药纳米材料的研究开发前景
2
·
纳米载药材料概述
含义: 纳米级药物载体是一种属于纳米级微观
范畴亚微粒药物载体输送系统。 载药纳米微粒即是纳米技术与现代医药
学结合的产品。纳米粒子是一种超微小球型 药物载体,是近年来出现的药物控释和缓释 的新剂型,它的突出优点是比细胞还小(101000nm之间),因此可被组织及细胞吸收, 甚至经特殊加工后可对组织或器官定向给药。
11
·
载药纳米材料的研究开发前景
未来的纳米技术,在医药领域的研究和 应用将呈现多元化趋势。
1、生物兼容性物质将逐渐开发,并进入临床 试验阶段;
2、纳米技术将使诊断、检测技术向微型、微 量、快速、功能性和智能化方向发展;
12
·
3、将使药物的生产实现低成本、高效率,而 药物的应用更加方便,药物的作用将实现 器官靶向化;
17
·
小结
纳米生物技术是一门新的交叉学科,为 研究、改造生物分子结构和进行医学治疗 提供了新的手段和思维方式,而纳米药物载 体技术在医药领域的发展前景更为广阔,相 信纳米药物载体将在人类重大疾病的诊断、 治疗、预防等方面发挥重大的作用。
18
·
19
·
3
·
种类
按作用方法分: 1、普通载药微粒 2、控释载药微粒 3、靶向定位载药微粒 4、载药磁性微粒
4
·
按材料性质分:
1、非生物降解型聚合物(主要有聚丙烯酰胺 类和聚甲基丙烯酸烷酯类等。)
2、生物降解型聚合物(常用材料有聚氰基丙 烯酸烷酯和聚酯类等化合物。)
3、亲水性聚合物(hydrophilic polymers) (聚乙烯吡咯烷酮(PVP)、聚丙烯酰淀粉、 壳聚糖、海藻酸钠、明胶等)
8
·
聚合物分散法:
由聚合法制备的NP中可能留有为反应 的有毒单体或寡聚物,而且聚合物有可能 与药物发生反应。为避免产生毒性,已开 发了经纯化的天然高分子物质或合成聚合 材料制备NP的方法。基本原理是先将高分 子材料与药物共同溶于某溶剂中。制成肢 体溶液或乳剂,再通过加热、蒸发溶剂、 盐析等方法使高分子材料固化,形成粒径 较小的纳米球。
4、使中药的研究、开发实现剂型和标准化革 命,从而走向国际化
13
·
宾州大学的研究人员开发出一种"洋葱新型载药 系统",有望长效输送药物。
14
·
中科院理化技术研究所研制的新型载药系统在恶性 肿瘤治疗及其生物安全性评价方面取得的新突破。
15
·
氧化石墨烯用于序贯递送siRNA和DOX
16
·
四川大学华西药学开发院基于阳离子牛血清白蛋白的 新型siRNA传递系统,用于肺部转移性肿瘤的靶向治疗。
5
·
特点:
提高药物的靶向性和缓释性 改变药物的给药途径 增加药物的吸收,提高药物的生物利用度,
延长药物作用的时间 增加生物膜的通透性 提高药物的稳定性 降低药物的毒副作用
6
·
制备方法
通常,根据形成的原理的不同可以分为 两种 1、单体聚合法
2、聚合物分散法
7
·
单体聚合法:
诱导单体进入乳液或溶解于聚合物的非 溶剂中,在这些系统中发生的聚合反应分 为两个阶段:成核阶段和成长阶段、单体 聚合法主要有乳化聚合法和界面缩聚法等。
9
·
纳米载药微粒应用例举
1、运载多肽和蛋白类药物用于内分泌系统及 其它疾病治疗
2、输送免疫调节剂、抗肿瘤药用于抗肿瘤治 疗
3、输送抗菌药用于细胞内化疗 4、输送抗病毒药物、辅助疫苗活性用于艾滋
病防治
10
·
5、延长物效时间用于心血管疾病治疗 6、输送药物通过血脑屏障用于中枢神经系统
疾病治疗
7、定向输送抗寄生虫药用于寄生虫病治疗 8、增加药物吸收用于眼科疾病治疗 9、中药纳米微粒