高三立体几何大题专题(用空间向量解决立体几何类问题)
用空间向量法求解立体几何问题典例及解析
用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
专题5:向量法做立体几何的线面角问题(解析版)
专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。
专题1 空间向量与立体几何练习(三)
专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。
高三立体几何大题专题(用空间向量解决立体几何类问题)
1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。
称为基向量。
2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则轴。
则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。
)称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
建立即可。
3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。
121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
2024届新高考数学大题精选30题--立体几何(解析版)
大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1 设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM =0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m =sin α,-cos α,-sin α 设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM =0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n =sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解. (2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD =(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n =(x 1,y 1,z 1),则n ⋅AE =-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB >|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD -AA 1 ∴D 1P =D 1A +AP =1-λ AB +12λ-12 AD +λ-1 AA 1 ∴D 1P ⋅AC =1-λ AB +12λ-12 AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD 2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1 =81-λ +812λ-12 +4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0 AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P =0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n =0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m =0AC 1 ⋅m =0 ,即-2x +22y =0-322x +322y +hz =0 ,令x =22h ,则m =22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43 .将h =2代入,可得平面AMC 1的法向量m =42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m =x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1 =2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m =1,3,-2 ,又因为平面ABE 的法向量为n =0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22 ,A (-2,2,0),CM =-2,22,22 ,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD =2x =0n ⋅DP =-2y +2z =0,令y =1,得n =(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n ||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQ QC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG =12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MK CQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD =12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG =12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF =2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC =415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 12 2= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,则O 20,0,0 ,A 2,0,0 ,A 11,0,3 ,B 0,2,0 ,C -2,0,0 ,C 1-1,0,3 ,所以BC 1 =(-1,-2,3),BC =(-2,-2,0),AB =(-2,2,0),A 1B =(-1,2,-3).设平面A 1AB 的法向量为m =x ,y ,z ,则-2x +2y =0,-x +2y -3z =0,令y =1,得m =1,1,33 .设平面C 1CB 的法向量为n =a ,b ,c ,则-a -2b +3c =0,-2a -2b =0,令a =3,得n =(3,-3,-1).设平面A 1AB 与平面C 1CB 的夹角为θ,则cos θ=cos m ,n =m ⋅n m n =-3373×7=17.16(2024·广东深圳·二模)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C ⊥底面ABC ,且AB =AC ,A 1B =A 1C .(1)证明:AA 1⊥平面ABC ;(2)若AA 1=BC =2,∠BAC =90°,求平面A 1BC 与平面A 1BC 1夹角的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)取BC 的中点M ,连结MA 、MA 1,根据等腰三角形性质和线面垂直判定定理得BC ⊥平面A 1MA,进而由A 1A ∥B 1B 得B 1B ⊥BC ,再证明B 1B ⊥平面ABC 即可得证.(2)建立空间直角坐标系,用向量法求解即可;也可用垂面法作出垂直于A 1B 的垂面,从而得出二面角的平面角再进行求解即可.【详解】(1)取BC 的中点M ,连结MA 、MA 1.因为AB =AC ,A 1B =A 1C ,所以BC ⊥AM ,BC ⊥A 1M ,由于AM ,A 1M ⊂平面A 1MA ,且AM ∩A 1M =M ,因此BC ⊥平面A 1MA ,因为A 1A ⊂平面A 1MA ,所以BC ⊥A 1A ,又因为A 1A ∥B 1B ,所以B 1B ⊥BC ,因为平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,且B 1B ⊂平面BB 1C 1C ,所以B 1B ⊥平面ABC ,因为A 1A ∥B 1B ,所以AA 1⊥平面ABC .(2)法一:因为∠BAC =90°,且BC =2,所以AB =AC =2.以AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz ,则A 10,0,2 ,B 2,0,0 ,C 0,2,0 ,C 10,2,2 .所以A 1B =2,0,-2 ,A 1C =0,2,-2 ,A 1C 1 =0,2,0 .设平面A 1BC 的法向量为m =x 1,y 1,z 1 ,则m ·A 1B =0m ·A 1C =0 ,可得2x 1-2z 1=02y 1-2z 1=0 ,令z 1=1,则m =2,2,1 ,设平面A 1BC 1的法向量为n =x 2,y 2,z 2 ,则n ⋅A 1B =0n ⋅A 1C 1 =0 ,可得2x 2-2z 2=02y 2=0 ,令z 2=1,则n =2,0,1 ,设平面A 1BC 与平面A 1BC 1夹角为θ,则cos θ=m ⋅n m n =35×3=155,所以平面A 1BC 与平面A 1BC 1夹角的余弦值为155.法二:将直三棱柱ABC -A 1B 1C 1补成长方体ABDC -A 1B 1D 1C 1.连接C 1D ,过点C 作CP ⊥C 1D ,垂足为P ,再过P 作PQ ⊥A 1B ,垂足为Q ,连接CQ ,因为BD ⊥平面CDD 1C 1,且CP ⊂平面CDD 1C 1,所以BD ⊥CP ,又因为CP ⊥C 1D ,由于BD ,C 1D ⊂平面A 1BDC 1,且BD ∩C 1D =D ,所以CP ⊥平面A 1BDC 1,则△CPQ 为直角三角形,由于A 1B ⊂平面A 1BDC 1,所以A 1B ⊥CP ,因为CP ,PQ ⊂平面CPQ ,且CP ∩PQ =P ,所以A 1B ⊥平面CPQ ,因为CQ ⊂平面CPQ ,所以CQ ⊥A 1B ,则∠CQP 为平面A 1BC 与平面A 1BC 1的夹角或补角,在△A 1BC 中,由等面积法可得CQ =303,因为PQ =A 1C 1=2,所以cos ∠CQP =PQ CQ=155,因此平面A 1BC 与平面A 1BC 1夹角的余弦值为155.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED,求二面角P -EF -B 的正弦值.【答案】(1)证明见解析;(2)31010【分析】(1)根据条件,利用线面平行的判定定理,得到AB ⎳平面PCD ,再线面平行的性质定理,得到AB ⎳CD ,再利用条件得到AC =4,结合AB =2,BC =23,即可证明结果;(2)建立空间直角坐标系,求出平面PCD 和平面ABE 的法向量,利用面面角的向量法,即可解决问题.【详解】(1)因为AB ⎳EF ,EF ⊂平面PCD ,AB ⊄平面PCD ,所以AB ⎳平面PCD ,因为AB ⊂平面ABCD ,平面ABCD ∩平面PCD =CD ,所以AB ⎳CD ,连接AC ,因为PA ⊥平面ABCD ,所以∠PCA 是PC 与平面ABCD 的夹角,则tan ∠PCA =PA AC =23AC=32,解得AC =4.因为AB =2,BC =23,所以AB 2+BC 2=AC 2,所以AB ⊥BC .又AB ≠CD ,所以四边形ABCD 是直角梯形.(2)取CD 的中点M ,连接AM ,以A 为坐标原点建立如图所示的空间直角坐标系,则P 0,0,23 ,D 23,-2,0 ,C 23,2,0 ,B 0,2,0 ,AB =0,2,0 ,PC =23,2,-23 ,PD=23,-2,-23 ,由PE =2ED ,得E 433,-43,233 ,则BE =433,-103,233,设平面PCD 的法向量为n=x ,y ,z ,则n ⋅PC=23x +2y -23z =0n ⋅PD=23x -2y -23z =0,取x =1,得到y =0,z =1,即n=1,0,1 ,设平面ABE 的一个法向量为m=x ,y ,z ,则由m ⋅AB =0m ⋅BE =0 ,得到2y =0433x -103y +233z =0,到x =1,得到y =0,z =-2,所以平面ABE 的一个法向量为m=1,0,-2 设二面角P -EF -B 的平面角为θ,则cos θ =cos n ,m =n ⋅m n m=1010,所以sin θ=1-10102=31010,故二面角P -EF -B 的正弦值为31010.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.【答案】(1)证明见解析(2)31010【分析】(1)借助圆锥的性质及面面垂直的判定定理计算即可得;(2)建立适当空间直角坐标系,借助空间向量计算即可得.【详解】(1)如图,设AC 交BD 于点F ,连接EF ,在圆锥PO 中,PO ⊥底面圆O ,所以PO ⊥BD ,又等边三角形ABD 是圆锥底面圆O 的内接三角形,AC 为直径,所以BD ⊥AC ,所以AB =AC sin π3=23,所以AF =AB sin π3=3,可知OF =12OC =1,即F 是OC 的中点,又E 是母线PC 的中点,所以EF ⎳PO ,所以EF ⊥平面ABD ,又EF ⊂平面BED ,所以平面BED ⊥平面ABD ;(2)由(1)EF ⊥平面ABD ,BD ⊥AC ,以点F 为坐标原点,FA ,FB ,FE 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,在等腰三角形PAC 中AC =4,PO =2EF =6,OM =2,又AF =3,所以BF =DF =AF tan π6=3,所以A 3,0,0 ,B 0,3,0 ,D 0,-3,0 ,E 0,0,3 ,M 1,0,2 ,∴AB =-3,3,0 ,AE =-3,0,3 ,DM=1,3,2 ,设平面ABE 的法向量为n=x ,y ,z ,则AB ⋅n =0AE ⋅n =0,即-3x +3y =0-3x +3z =0 ,令x =1,则y =3,z =1,即n=1,3,1 ,设直线DM 与平面ABE 所成的角为θ,则sin θ=cos n ,DM =n ⋅DM n ⋅DM=1+3×3+21+3+1×1+3+4=31010.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC.(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.【答案】(1)证明见解析;(2)π6.【分析】(1)连结AC ,BD 交于点O ,由条件证明PO ⊥AC ,PO ⊥BD ,建立空间直角坐标系,利用向量方法证明PC ⊥DM ,PC ⊥BM ,结合线面垂直判定定理证明结论;(2)根据线面角的向量求法求出BE 与平面ABCD 所成角的正弦值,再求其最大值,由此可求线面角的最大值.【详解】(1)连结AC ,BD 交于点O ,连PO ,由PA =PC ,PB =PD =210知PO ⊥AC ,PO ⊥BD ,又AC ∩BD =O ,∴PO ⊥平面ABCD又底面ABCD 为菱形,所以AC ⊥BD以O 为坐标原点,OB ,OC ,OP分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示∠DAB =60°,边长为4,则OD =OB =2,OA =OC =23在直角三角形BOP 中,PB =210所以OP =6所以点O (0,0,0),P (0,0,6),B (2,0,0),D (-2,0,0),C (0,23,0)PC =4MC ,则M 0,332,32所以PC =(0,23,-6),DM =2,332,32 ,BM =-2,332,32,所以PC ⋅DM =0×2+23×332+(-6)×32=0,PC ⋅BM =0×-2 +23×332+-6 ×32=0,所以PC ⊥DM ,PC ⊥BM ,所以PC ⊥DM ,PC ⊥BM ,又DM ∩BM =M ,DM ,BM ⊂平面BDM ,所以PC ⊥平面BDM ,(2)设DE =λDM ,所以DE =λDM =2λ,332λ,32λ ,故E 2λ-2,332λ,32λ ,所以BE =2λ-4,332λ,32λ 平面ABCD 的一个法向量是n=(0,0,1),设BE 与平面ABCD 所成角为θ,则sin θ=cos BE ,n =BE ⋅n BE ⋅n =32λ(2λ-4)2+332λ 2+32λ 2=32λ13λ2-16λ+16当λ=0时,BE ⊂平面ABCD ,θ=0;当λ≠0时,sin θ=32λ13λ2-16λ+16=3213-16λ+16λ2=3216×1λ-12 2+9≤12,当且仅当λ=12时取等号,又θ∈0,π2 所以θ≤π6,故BE 与平面ABCD 所成角的最大值为π620(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.【答案】(1)62;(2)π4.【分析】(1)连B 1D 1∩A 1C 1=O ,以O 为坐标原点,建立空间直角坐标系,借助向量垂直的坐标表示求出四棱柱的高,进而求出体积.(2)利用对称求出点E 的坐标,进而求出平面A 1C 1D 与平面α的法向量,再借助面面角的向量求法求得结果.【详解】(1)在直四棱柱ABCD -A 1B 1C 1D 1中,连B 1D 1∩A 1C 1=O ,由菱形A 1B 1C 1D 1,得OC 1⊥OD 1,令AA 1=a ,以O 为坐标原点,直线OC 1,OD 1分别为x ,y 轴,过O 平行于AA 1的直线为z 轴,建立空间直角坐标系,则点C 1(1,0,0),D 1(0,3,0),B (0,-3,a ),D (0,3,a ),BD 1 =(0,23,-a ),C 1D=(-1,3,a ),由BD 1⊥平面A 1C 1D ,C 1D ⊂平面A 1C 1D ,得BD 1⊥C 1D ,则BD 1 ⋅C 1D=6-a 2=0,解得a =6,所以四棱柱的体积V =S A 1B 1C 1D 1⋅AA 1=2S △A 1B 1C 1⋅a =2×34×22×6=6 2.(2)由(1)知,B (0,-3,6),BD 1=(0,23,-6),由BD 1⊥平面A 1C 1D ,点D 1关于平面A 1C 1D 的对称点为E ,则点E 在线段BD 1上,且C 1E =C 1D 1=2,设E x ,y ,z ,BE =λBD 1(0<λ<1),则x ,y +3,z -a =λ0,23,-a ,所以E 0,2λ-1 3,1-λ 6 ,C 1E=-1,32λ-1 ,61-λ ,于是C 1E 2=12+3(2λ-1)2+6(1-λ)2=4,解得λ=13,则E 0,-33,263,由点E 和点C 1关于平面α对称,得C 1E =-1,-33,263 是平面α的一个法向量,又BD 1=(0,23,-6)是平面A 1C 1D 的一个法向量,因此|cos ‹BD 1 ,C 1E ›|=|BD 1 ⋅C 1E ||BD 1 ||C 1E |=-33×23-6×263 32×2=22,所以平面A 1C 1D 和平面α所成锐二面角的大小为π4.21(2024·山东济南·二模)如图,在四棱锥P -ABCD 中,四边形ABCD 为直角梯形,AB ∥CD ,∠DAB =∠PCB =60°,CD =1,AB =3,PC =23,平面PCB ⊥平面ABCD ,F 为线段BC 的中点,E 为线段PF 上一点.(1)证明:PF ⊥AD ;(2)当EF 为何值时,直线BE 与平面PAD 夹角的正弦值为74.【答案】(1)证明见解析(2)2【分析】(1)过D 作DM ⊥AB ,垂足为M ,分析可知△PBC 为等边三角形,可得PF ⊥BC ,结合面面垂直的性质可得PF ⊥平面ABCD ,即可得结果;(2)取线段AD 的中点N ,连接NF ,建系,设E 0,0,a ,a ∈0,3 ,求平面PAD 的法向量,利用空间向量处理线面夹角的问题.【详解】(1)过D 作DM ⊥AB ,垂足为M ,由题意知:BCDM 为矩形,可得AM =2,BC =DM =AMtan60°=23,由PC =23,∠PCB =60°,则△PBC 为等边三角形,且F 为线段BC 的中点,则PF ⊥BC ,又因为平面PCB ⊥平面ABCD ,平面PCB ∩平面ABCD =BC ,PF ⊂平面PCB ,可得PF ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PF ⊥AD .(2)由(1)可知:PF ⊥平面ABCD ,取线段AD 的中点N ,连接NF ,则FN ∥AB ,FN =2,又因为AB ⊥BC ,可知NF ⊥BC ,以F 为坐标原点,NF ,FB ,FP 分别为x ,y ,z 轴,建立空间直角坐标系,则A 3,3,0 ,D 1,-3,0 ,P 0,0,3 ,B 0,3,0 ,因为E 为线段PF 上一点,设E 0,0,a ,a ∈0,3 ,可得DA =2,23,0 ,DP =-1,3,3 ,BE=0,-3,a ,设平面PAD 的法向量n=x ,y ,z ,则n ⋅DA=2x +23y =0n ⋅DP=-x +3y +3z =0,令x =-3,则y =3,z =-2,可得n=-3,3,-2 ,由题意可得:cos n ,BE =n ⋅BE n ⋅BE =2a +3 4×3+a2=74,整理得a 2-4a +4=0,解得a =2,所以当EF =2,直线BE 与平面PAD 夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD 中,AB =2BC =4,∠ABC =60°,E 为CD 的中点,将△ADE 沿AE 折起,连结BD ,CD ,且BD =4,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE 所成的角的正弦值为3010,求点F 到平面DEC 的距离.【答案】(1)证明见解析(2)21515。
高考数学中利用空间向量解决立体几何的向量方法(三)——空间向量求距离
G
x D F A
C
E
y
B
例1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是 :
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点 z B 到平面 EFG 的距离. G 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2). E F ( 2 , 2 , 0 ), E G ( 2 , 4 , 2 ), D C
G
x D
F A
C
E
y
B
练习3: 正方体AC1棱长为1,求BD与平面GB1D1的 距离
D1 A1 Z B1
DD
C1 d
1
n
n
G A X
D
B
C Y
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
D1 A1 Z B1
AD
n
C1 d
n
D
A X B
C Y
| PA n | = |n |
.
这个结论说明,平面外一点到平面的距离等于连结此点与平面 上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的 绝对值.
例1、已知正方形ABCD的边长为4, CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
∴n M C 2 2 ax ay 0
a , 0, 0) N (
2 2
a,
1 2
a,
1 2
a)
利用 空间向量解立体几何(含综合题
利用空间向量解立体几何问题一、基础知识(一)刻画直线与平面方向的向量1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =--2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线(2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组:1112220x y z x y x y z x y z z ++=⎧⎨++=⎩ 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量解:设(),,n x y z =,则有20230x y x y z +=⎧⎨++=⎩ ,解得:2x yz y =-⎧⎨=⎩::2:1:1x y z ∴=- ()2,1,1n ∴=-(二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面,αβ的法向量)1、判定类(1)线面平行:a b a b ⇔∥∥ (2)线面垂直:a b a b ⊥⇔⊥ (3)面面平行:m n αβ⇔∥∥ (4)面面垂直:m n αβ⊥⇔⊥ 2、计算类:(1)两直线所成角:cos cos ,a b a b a bθ⋅==(2)线面角:cos ,sin a m a m a m θ⋅==(3)二面角:cos cos ,m n m n m nθ⋅==或cos cos ,m n m n m nθ⋅=-=-(视平面角与法向量夹角关系而定)(4)点到平面距离:设A 为平面α外一点,P 为平面α上任意一点,则A 到平面α的距离为A AP n d nα-⋅=,即AP 在法向量n 上投影的绝对值。
专题复习:用空间向量解立体几何问题
专题复习:用空间向量解立体几何问题空间角1.异面直线所成的角点A ,B ∈直线a,C ,D ∈直线b 。
构成向量CD AB ,。
><⋅>=<CD AB CDAB CD AB CD AB ,,,cos 所对应的锐角或直角即为直线a(AB)与b(CD)所成的角。
2.线面所成的角AP 与平面α的法向量n 所成的角所对应的锐角的余角或直角即为直线AP 与平面α所成的角θ,所以AP 与n 的角的余弦值的绝对值为直线AP 与平面α所成的角的正弦值。
><=∴n AP ,cos arcsin θ3.二面角的求法二面角βα--l ,平面α的法向量m ,平面β的法向量n 。
θ>=<n m ,,则二面角βα--l 的平面角为θ或πθ-。
OAαPnl lαβnm所以,nm n m n m ⋅>=<,cos ,若将法向量的起点放在两个半平面上(不要选择起点在棱上),当两个法向量的方向都向二面角内或外时,则><n m ,为二面角的平面角的补角;当两个法向量的方向一个向二面角内,另一个向外时,则><n m ,为二面角的平面角。
空间距离1.点到面的距离点P 到面α的距离d 可以看成AP 在平面α的法向量n 的方向上的射影的长度。
2. 异面直线间的距离异面直线a,b 之间的距离可以看成),(b F a E EF ∈∈在a,b 的公垂向量n 的方向上的射影的长度。
3.线面距离 直线a 与平面α平行时,直线上任意一点A 到平面α的距离就是直线a 与平面α之间的距离。
其求法与点到面的距离求法相同。
4. 平面与平面间的距离平面α与平面β平行时,其中一个平面α上任意一点到平面β的距离就是平面α与平面β间的距离。
其求法与点到面的距离求法相同。
例题:例1.(07,重庆理19)如题(19)图,在直三棱柱111ABC A B C -中,12AA =,1AB =,90ABC = ∠;点D E ,分别在1BB ,1A D 上,且11B E A D ⊥,四棱锥1C ABDA -与直三棱柱的体积之比为3:5(Ⅰ)求异面直线DE 与11B C 的距离;(Ⅱ)若2BC =,求二面角111A DC B --的平面角的正切值答案:(Ⅰ)22929 (Ⅱ)3322.(07,天津理19)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点EPABC DE 1B1C1Allαβmnn nEF d ⋅=EbaF nnn AP d ⋅=OAαPn(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C --的大小答案:(Ⅲ)14arcsin43.(07,四川理19)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60° (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积答案:(Ⅱ) 21arccos7(Ⅲ)3124.(07,陕西理19)如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90︒=∠ABC平面⊥PA ABCD,32,2,4===AB AD PA ,BC =6(Ⅰ)求证:BD ;PAC BD 平面⊥(Ⅱ)求二面角D BD P --的大小 答案:(Ⅱ) 393arccos315.(07,山东理19)如图,在直四棱柱1111ABCD A BC D -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ;(Ⅱ)求二面角11A BD C --的余弦值答案:(Ⅱ)二面角11A BD C --的余弦为336.(07,全国Ⅱ理19)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点 (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小答案:(2)3arccos 37.(07,全国Ⅰ理19)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 已知45ABC =∠,2AB =,22BC =,3SA SB ==BCSABCDEFSBCDA1A1D 1C1BEA B CD EP(Ⅱ)求直线SD 与平面SAB 所成角的大小答案:(Ⅱ)22arcsin118.(07,辽宁理18)如图,在直三棱柱111ABC A B C -中,90ACB ∠= ,AC BC a ==,D E ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30(I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离答案:(Ⅱ)4a 作业:1.(07,江西理20)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC 已知11111A B BC ==,11190A B C ∠=,14AA =,12BB =,13CC =(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小;(3)求此几何体的体积 答案:(2)30(3)322. (07,湖南理18)如图1,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD < 连结2BG ,如图2A BCD EF GFE G 2G 1D CBA图1图2(I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角ABCA 1B 1C 1OABC DA 1B 1C 1E M答案:(Ⅱ) 122arcsin253.(07,湖北理18)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围答案:(Ⅱ) π04⎛⎫ ⎪⎝⎭,(07,福建理18)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小;(Ⅲ)求点C 到平面1A BD 的距离 答案:(Ⅱ) 10arcsin4 (Ⅲ)22ABCDA 1B 1C 1ABCDV。
空间向量立体几何(绝对经典)
例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。
(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。
n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。
高考大题规范解答立体几何大题(空间向量)
高考大题规范解答——立体几何(理)考点1 线面的位置关系与空间角例1 (2018·课标Ⅲ,19)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【分析】 ①在题目所给的两个平面中选择一条直线,证明该直线垂直于另一个平面; ②建立空间直角坐标系,求得几何体体积最大时点M 的位置,利用两个平面的法向量的夹角求解即可.【标准答案】——规范答题 步步得分(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD , 所以BC ⊥平面CMD ,故BC ⊥DM .2分得分点①因为M 为CD ︵上异于C ,D 的两点, 且DC 为直径,所以DM ⊥CM .3分得分点② 又BC ∩CM =C ,所以DM ⊥平面BMC .4分得分点③ 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .5分得分点④(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz .当三棱锥M -ABC 体积最大时,M 为CD ︵的中点. 由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1), AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).7分得分点⑤设n =(x ,y ,z )是平面MAB 的法向量, 则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).9分得分点⑥DA →是平面MCD 的法向量, 因此cosn ,DA →=n ·DA →|n |·|DA →|=55,11分得分点⑦sinn ,DA →=255.所以面MAB 与面MCD 所成二面角的正弦值是255.12分得分点⑧【评分细则】①由面面垂直得到线面垂直,进一步得到线线垂直,给2分,直接得出不给分. ②由直径所对角为直角得到DM ⊥CD ,给1分. ③写出结论DM ⊥平面BMC ,给1分. ④得到平面AMD ⊥平面BMC ,给1分.⑤建立适当坐标系,写出相应的坐标及向量,给2分(酌情). ⑥正确求出平面的法向量,给2分. ⑦写出公式cosn 1,n 2=n 1·n 2|n 1||n 2|,并正确求出余弦值,给2分. ⑧求出正弦值,并写好结论,给1分. 【名师点评】1.核心素养:本题主要考查面面垂直的证明以及空间二面角的求解,考查考生的逻辑推理能力与空间想象力,考查的核心素养是数学抽象、逻辑推理、直观想象、数学运算. 2.解题技巧:(1)得步骤分:对于解题过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写,如第(1)问中写出平面AMD ⊥平面BMC 成立的条件,写不全则不能得全分.(2)得关键分:第(1)问中,面面垂直性质定理的转化是关键,在一个平面内作交线的垂线,转化为线面垂直,再转化为线线垂直.第(2)问一定要正确算出cos n 1,n 2=n 1·n 2|n 1||n 2|的结果才能得2分.〔变式训练1〕(2019·湖北八校,18)如图,四边形ABCD与BDEF均为菱形,F A=FC,且∠DAB=∠DBF =60°.(1)求证:AC⊥平面BDEF;(2)求直线AD与平面ABF所成角的正弦值.[解析](1)证明:设AC与BD相交于点O,连接FO,∵四边形ABCD为菱形,∴AC⊥BD,且O为AC中点,∵F A=FC,∴AC⊥FO,又FO∩BD=O,∴AC⊥平面BDEF.(2)连接DF,∵四边形BDEF为菱形,且∠DBF=60°,∴△BDF为等边三角形,∵O为BD中点,∴FO⊥BD,又AC⊥FO,AC∩BD=O,∴FO⊥平面ABCD.∵OA,OB,OF两两垂直,∴可建立空间直角坐标系O-xyz,如图所示,设AB=2,∵四边形ABCD为菱形,∠DAB=60°,∴BD =2,AC =2 3.∵△DBF 为等边三角形,∴OF = 3.∴A (3,0,0),B (0,1,0),D (0,-1,0),F (0,0,3),∴AD →=(-3,-1,0),AF →=(-3,0,3),AB →=(-3,1,0). 设平面ABF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AF →·n =-3x +3z =0,AB →·n =-3x +y =0,取x =1,得n =(1,3,1). 设直线AD 与平面ABF 所成角为θ, 则sin θ=|cosAD →,n|=|AD →·n ||AD →|·|n |=155.考点2 立体几何中的折叠问题例2 (2019·启东模拟)如图,已知在等腰梯形ABCD 中,AE ⊥CD ,BF ⊥CD ,AB =1,AD =2,∠ADE =60°,沿AE ,BF 折成三棱柱AED -BFC . (1)若M ,N 分别为AE ,BC 的中点,求证:MN ∥平面CDEF ; (2)若BD =5,求二面角E -AC -F 的余弦值.【分析】 ①利用面面平行的判定和性质即可证明;②建立空间直角坐标系,分别求出二面角两个面的法向量,利用空间向量法求解. 【标准答案】——规范答题 步步得分 (1)取AD 的中点G ,连接GM ,GN ,在三角形ADE 中,∵M ,G 分别为AE ,AD 的中点,∴MG ∥DE , ∵DE ⊂平面CDEF ,MG ⊄平面CDEF , ∴MG ∥平面CDEF .2分得分点①由于G ,N 分别为AD ,BC 的中点, 由棱柱的性质可得GN ∥DC , ∵CD ⊂平面CDEF ,GN ⊄平面CDEF ,∴GN ∥平面CDEF . 3分得分点③又GM ⊂平面GMN ,GN ⊂平面GMN ,MG ∩NG =G , ∴平面GMN ∥平面CDEF ,4分得分点④ ∵MN ⊂平面GMN ,∴MN ∥平面CDEF .5分得分点⑤(2)连接EB ,在Rt △ABE 中,AB =1,AE =3, ∴BE =2,又ED =1,DB =5, ∴EB 2+ED 2=DB 2,∴DE ⊥EB ,又DE ⊥AE 且AE ∩EB =E , ∴DE ⊥平面ABFE .∴EA 、EF 、ED 两两垂直. 建立如图所示的空间直角坐标系,可得E (0,0,0),A (3,0,0),F (0,1,0),C (0,1,1), AC →=(-3,1,1),AE →=(-3,0,0),FC →=(0,0,1). 8分得分点⑥设平面AFC 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AC →=-3x +y +z =0,m ·FC →=z =0,则z =0,令x =1,得y =3,则m =(1,3,0)为平面AFC 的一个法向量, 设平面ACE 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·AE →=-3x 1=0,n ·AC →=-3x 1+y 1+z 1=0,则x 1=0,令y 1=1,得z 1=-1,∴n =(0,1,-1)为平面ACE 的一个法向量.10分得分点⑦设m ,n 所成的角为θ,则cos θ=m ·n |m |·|n |=322=64,由图可知二面角E -AC -F 的余弦值是64. 12分得分点⑧【评分细则】①由线线平行得到线面平行,给2分.②同理再推出一个线面平行,给1分.③由线面平行推出面面平行,给1分.④由面面平行得到线面平行,给1分.⑤由线线垂直证出线面垂直,为建系作好准备,给2分.⑥建立适当坐标系,写出相应点的坐标及向量坐标,给2分.⑦正确求出平面的法向量,给2分.⑧利用公式求出两个向量夹角的余弦值,并正确写出二面角的余弦值,给2分.【名师点评】1.核心素养:本题考查线面平行的判定与性质定理,考查二面角的求解,考查的数学核心素养是空间想象力、推理论证能力及数学运算能力.2.解题技巧:(1)得分步骤:第(1)问中的DE⊂平面CDEF,MG⊄平面CDEF,要写全.(2)得分关键:第(2)中,证明线面垂直从而得到线线垂直,才能建系,解题时折叠前后变量与不变量要弄清晰.〔变式训练2〕如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB⊥平面ADC;(2)若AD=1,二面角C-AB-D的平面角的正切值为6,求二面角B-AD-E的余弦值.[解析](1)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,又BD⊥DC,所以DC⊥平面ABD.因为AB⊂平面ABD,所以DC⊥AB.又折叠前后均有AD⊥AB,DC∩AD=D,所以AB ⊥平面ADC . (2)由(1)知AB ⊥平面ADC , 所以AB ⊥AC ,又AB ⊥AD ,所以二面角C -AB -D 的平面角为∠CAD .又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC ⊥AD . 依题意tan ∠CAD =CDAD = 6.因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1.依题意△ABD ∽△DCB , 所以AB AD =CD BD ,即x 1=6x 2+1. 又x >0,解得x =2, 故AB =2,BD =3,BC =BD 2+CD 2=3. 解法一:如图a 所示,建立空间直角坐标系D -xyz , 则D (0,0,0),B (3,0,0),C (0,6,0),E (32,62,0),A (33,0,63),所以DE →=(32,62,0),DA →=(33,0,63).由(1)知平面BAD 的一个法向量为n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·DE →=0m ·DA →=0,得⎩⎨⎧32x +62y =033x +63z =0,令x =6,得y =-3,z =-3,所以m =(6,-3,-3). 所以cosn ,m=n ·m |n |·|m |=-12. 由图可知二面角B -AD -E 的平面角为锐角, 所以二面角B -AD -E 的余弦值为12.考点3 立体几何中的探索性问题例3 (2016·北京高考)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【分析】 ①由线面垂直的判定定理证明PD ⊥平面P AB ; ②构造线面垂直,建立适当的直角坐标系求解; ③假设棱P A 上存在点M ,再根据条件分析论证. 【标准答案】——规范答题 步步得分 (1)因为平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD . 又AB ⊥AD ,AB ⊂平面ABCD . 所以AB ⊥平面P AD .2分得分点①因为PD ⊂平面P AD .所以AB ⊥PD 。
2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)
A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
高考必刷大题 空间向量与立体几何
故 2λ=-2,2λ+2μ-μt=0, 3μt= 3,
解得
t=23,从而D→F=0,43,2
3
3.
123456
所以直线AE与DF所成角的余弦值为
|cos〈A→E,D→F〉|=|AA→→EE|·|DD→→FF|=
2 7×2
7=37. 3
123456
4.(2023·成都模拟)如图所示,直角梯形ABDE和三角形ABC所在平面互相 垂直,DB⊥AB,ED∥AB,AB=2DE=2BD=2,AC=BC,异面直线DE 与AC所成角为45°,点F,G分别为CE,BC的中点,点H是线段EG上靠近 点G的三等分点.
则有nn··B—C→CC→=1 =x+-x+3y=30z,=0,
可取 n=( 3,-1,1),又—BA→1 =(1,0, 3),
—→
所以点
A1 到平面
BCC1B1 的距离为| BA|n1|·n|=2
3=2 5
515,
所以所求距离为2 515.
123456
3.(2024·丹东模拟)如图,平行六面体ABCD-A1B1C1D1的所有棱长都相等, 平面CDD1C1⊥平面ABCD,AD⊥DC,二面角D1-AD-C的大小为120°, E为棱C1D1的中点.
(1)求证:A,B,F,H四点共面;
123456
如图,取AB的中点O,连接OC,OE, 因为AC=BC,故∠BAC为锐角, 又ED∥AB, 故∠BAC即为异面直线DE与AC所成角, 则∠BAC=45°, 则∠ACB=90°,即AC⊥CB, 因为直角梯形ABDE和三角形ABC所在平面互相垂直,DB⊥AB, 平面ABDE∩平面ABC=AB,DB⊂平面ABDE,
123456
设平面PBD的法向量为n=(x,y,z), 则nn··PP→→DB==22xy--22zz==00,, 取 x=1,得 n=(1,1,1), ∵A→M=n,∴AM⊥平面 PBD.
空间向量解立体几何(含综合题习题)
空间向量解立体几何(含综合题习题)利用空间向量解立体几何问题一、基础知识1.刻画直线与平面方向的向量直线的方向向量可由直线上的两个点来确定。
例如,若有点A(2,4,6)和点B(3,0,2),则直线AB的方向向量为AB=(1,-4,-4)。
平面的法向量来刻画平面的倾斜程度。
法线的方向向量就是平面的法向量。
要求出指定平面的法向量,需要平面上的两条不平行的直线。
设平面的法向量为n=(x,y,z),若平面上所选两条直线的方向向量分别为a=(x1,y1,z1)和b=(x2,y2,z2),则可列出方程组:x1x+y1y+z1z=0和x2x+y2y+z2z=0,解出x,y,z的比值即可。
例如,若a=(1,2,0)和b=(2,1,3),求a,b所在平面的法向量,则设n=(x,y,z),有方程组:x+2y=0,2x+y+3z=0,解得:x:y:z=-2:1:1,故n=(-2,1,1)。
2.空间向量可解决的立体几何问题1)判定类线面平行:a∥b当且仅当a∥b。
线面垂直:a⊥XXX且仅当a⊥b。
面面平行:α∥β当且仅当m∥n。
面面垂直:α⊥β当且仅当m⊥n。
2)计算类两直线所成角:cosθ=cos(a,b)=(a·b)/(|a||b|)。
线面角:sinθ=sin(a,m)=(a·m)/(|a||m|)。
二面角:cosθ=cos(m,n)(法向量夹角关系而定)或cosθ=-cos(m,n)。
点到平面距离:设A为平面α外一点,P为平面α上任意一点,则A到平面α的距离为d=|AP·n|/|n|,即AP在法向量n上投影的绝对值。
3)点的存在性问题在立体几何解答题中,最后一问往往涉及点的存在性问题,即是否在某条线上存在一点,使之满足某个条件。
解决该问题时,可以先设出所求点的坐标(x,y,z),再想办法利用条件求出坐标。
为底面,以AD为高,构造平面ADE,可知平面ADE与平面ABCD- A1垂直,且平面ADE与平面EF所成角为所求角,故EF与平面ADE垂直。
高中数学立体几何---用空间向量求空间角专题训练(解析版)
立体几何---用空间向量求空间角专题训练(解析版)【题组一 线线角】1.如图,在等腰三角形ABC 与ABD 中,90DAB ABC ∠=∠=︒,平面ABD ⊥平面ABC ,E ,F 分别为BD ,AC 的中点,则异面直线AE 与BF 所成的角为( )A .2πB .3πC .4πD .6π 【答案】B【解析】由于在等腰三角形ABC 与ABD 中,90DAB ABC ∠=∠=︒,平面ABD ⊥平面ABC ,根据面面垂直的性质定理可知AD ⊥平面ABC ,BC ⊥平面ABD ,所以AD BC ⊥.依题意设DA AB BC x ===,由于,E F是等腰直角三角形斜边的中点,所以2AE BF x ==.设异面直线AE 与BF 所成的角为θ,则cos cos ,AE BF θ=AE BF AE BF ⋅=⋅()()12AB AD AF AB AE BF +⋅-=⋅()()1122AB AD AB BC AB AE BF ⎡⎤+⋅+-⎢⎥⎣⎦=⋅()111222AB AD BC AB AE BF ⎛⎫+⋅- ⎪⎝⎭=⋅()214AB BC AD BC AB AB AD AE BF ⋅+⋅--⋅=⋅22111422AB x AE BF -⋅===⋅,由于π0,2θ⎛⎤∈ ⎥⎝⎦,所以π3θ=.故选:B 2.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,E 为BB ′的中点,异面直线CE 与C A '所成角的余弦值是( )A B .C .D 【答案】D【解析】直三棱柱ABC A B C -'''中,AC BC AA ==',90ACB ∠=︒,E 为BB '的中点.以C 为原点,CA 为x 轴,CB 为y 轴,CC '为z 轴,建立空间直角坐标系,设2AC BC AA =='=,则(0C ,0,0),(0E ,2,1),(0C ',0,2),(2A ,0,0),(0CE =,2,1),(2C A '=,0,2)-,设异面直线CE 与C A '所成角为θ, 则||210cos 10||||58CE C A CE C A θ'==='∴异面直线CE 与C A '所成角的余弦值为10. 故选:D .3.已知直三棱柱111ABC A B C -,90ABC ∠=︒,12AB BC AA ===,1BB 和11B C 的中点分别为E 、F ,则AE 与CF 夹角的余弦值为( )A B .25 C .45 D 【答案】B【解析】如图所示:分别以1,,BA BC BB 为,,x y z 轴建立空间直角坐标系.故()0,2,0A ,()2,0,0C ,()0,0,1E ,()1,0,2F ,故()0,2,1AE =-,()1,0,2CF =-. 2cos ,5AE CFAE CF AE CF ⋅==⋅,即AE 与CF 夹角的余弦值为25. 故选:B .4.如图所示,四棱锥P ABCD -中,PB PD AD AB ===,60BAD ∠=︒,1CD CB ==,120BCD ∠=︒,点M N 、分别为PA AB 、的中点.(1)证明:平面DMN ∥平面PBC ;(2)若2PA =PA 与BC 所成角的余弦值.【答案】(1)证明见解析;(2)4 【解析】(1)如图,因为M N 、分别为PA AB 、的中点,所以//MN PB ,MN ⊄平面PBC ,∴//MN 平面PBC ;又AB AD =,60BAD ∠=︒,所以ABD △为正三角形,又CD BC =,120BCD ∠=︒,所以30CBD ∠=︒,BC AB ⊥,又DN AB ⊥,所以BC DN ,∴DN 平面PBC因为MN DN N ⋂=,所以平面DMN 平面PBC . (2)如图,取BD 中点O ,连结,,AO CO PO ,因为AD AB =,60DAB ∠=︒,所以ABD △为正三角形,所以AO BD ⊥,又因为BCD 为等腰三角形,所以CO BD ⊥,所以A O C 、、三点共线,所以AC BD ⊥,因为PB PD =,所以PO BD ⊥,1CD BC ==,120BCD ∠=︒,所以BD =,所以PB PD AD AB ====,32AO PO ==,又2PA =,所以222AO PO PA +=, 所以AO PO ⊥,又AOPO O =,所以PO ⊥平面ABCD . 以O 为坐标原点,,,OA OB OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,3,0,02A ⎛⎫ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,B ⎛⎫ ⎪ ⎪⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭, 33,0,22PA ⎛⎫=- ⎪⎝⎭,1,2BC ⎛⎫=- ⎪ ⎪⎝⎭, 设异面直线PA 与BC 所成角为α,所以cos ,||||3PA BC PA BC PA BC⋅〈〉===⋅ 所以异面直线PA 与BC【题组二 线面角】1.如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,如下图.(Ⅰ)求证:A 1O ⊥BD ;(Ⅱ)求直线A 1C 和平面A 1BD 所成角的正弦值;【解析】(Ⅰ)因为AB AC =,,D E 分别为,AB AC 中点,故可得AD AE =,故1A DE 为等腰三角形,又O 为DE 中点,故可得1AO DE ⊥,又因为平面A 1DE ⊥平面BCED ,且交线为DE , 又1AO ⊂平面1A DE ,故1AO ⊥平面BCED ,又BD ⊂平面BCDED , 故1AO BD ⊥.即证. (Ⅱ)过O 作OH BC ⊥,由(Ⅰ)可知1AO ⊥平面BCED , 又,OH OE ⊂平面BCED ,故可得11,AO OH AO OE ⊥⊥, 又因为,OH BC BC ⊥//DE ,故可得OH OE ⊥.综上所述:1,,OH OE OA 两两垂直,故以O 为坐标原点,1,,OH OE OA 分别为,,x y z 轴建立空间直角坐标系, 如下图所示:故可得()()()()10,0,2,2,2,0,0,1,0,2,2,0A C D B --, 则()()10,1,2,2,1,0A D BD =--=-设平面1A BD 的法向量为(),,n x y z =,故可得100n A D n BD ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y --=⎧⎨-+=⎩, 取1x =,可得2,1y z ==-.故()1,2,1n =-.又()12,2,2AC =-, 故可得11122,?3n AC cos n AC n AC ⋅==. 设直线A 1C 和平面A 1BD 所成角为θ,故可得12,3sin cos n AC θ==.则直线A 1C 和平面A 1BD 所成角的正弦值为3.2.如图1,在ABC 中, D , E 分别为AB , AC 的中点,O 为DE 的中点,AB AC ==4BC =.将ABC 沿DE 折起到1A DE △的位置,使得平面1A DE ⊥平面BCED ,如图2.(1)求证:1AO BD ⊥; (2)求直线1AC 和平面1ABD 所成角的正弦值.【答案】(1)证明见解析;(2)3. 【解析】(1)连接1AO .图1中,AB AC =,D , E 分别为AB , AC 的中点,AD AE ∴=, 即11A D A E =,又O 为DE 的中点,1AO DE ∴⊥. 又平面1A DE ⊥平面BCED ,且平面1A DE 平面BCED DE =,1AO ⊂平面1ADE , 1AO ∴⊥平面BCED ,又BD ⊂平面BCED , 1AO BD ∴⊥. (2)取BC 中点G ,连接OG ,则OG DE ⊥.由(1)可知1AO ⊥平面BCED ,OG ⊂平面BCED 11,AO DE AO OG ∴⊥⊥. 以O 为原点,分别以1,,OG OE OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示AB AC ==4BC =,112,1,2A D DE OD A O ∴==∴=∴==.()()()()10,0,2,2,2,0,2,2,0,0,1,0A B C D ∴--, ()()()11112,2,2,0,1,2,2,2,223A B A D AC AC ∴=--=--=-=,. 设平面1A BD 的法向量为(),,n x y z =,则11·0·0n A B n A D ⎧=⎪⎨=⎪⎩,即222020x y z y z --=⎧⎨--=⎩,令1z =,则2,1y x =-=-,()1,2,16n n ∴=--=,. 设直线1AC和平面1A BD 所成的角为θ,则 111sin cos ,323AC n ACn AC n θ-=〈〉===, 所以直线1AC 和平面1A BD 所成角的正弦值为3. 3.在矩形ABCD 中,3AB =,2AD =,点E 是线段CD 上靠近点D 的一个三等分点,点F 是线段AD 上的一个动点,且()01DF DA λλ=≤≤.如图,将BCE ∆沿BE 折起至BEG ∆,使得平面BEG ⊥平面ABED .(1)当12λ=时,求证:EF BG ⊥; (2)是否存在λ,使得FG 与平面DEG 所成的角的正弦值为13?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)见解析(2) 12λ= 【解析】(1)当12λ=时,点F 是AD 的中点. ∴112DF AD ==,113DE CD ==. ∵90ADC ∠=︒,∴45DEF ∠=︒. ∵223CE CD ==,2BC =,90BCD ∠=︒, ∴45BEC ∠=︒.∴BE EF ⊥.又平面GBE ⊥平面ABED ,平面GBE ⋂平面ABED BE =,EF ⊂平面ABED ,∴EF ⊥平面BEG .∵BG ⊂平面BEG ,∴EF BG ⊥.(2)以C 为原点,,CD CB 的方向为x 轴,y 轴的正方向建立如图所示空间直角坐标系Cxyz .则()2,0,0E ,()3,0,0D ,()3,2,0F λ.取BE 的中点O ,∵2GE BG ==,∴GO BE ⊥,∴ 易证得OG ⊥平面BCE ,∵BE =OG(G .∴(2,12FG λ=--,(EG =-,(DG =-.设平面DEG 的一个法向量为(),,n x y z =,则20,0,n DG x y n EG x y ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩令z =(0,n =-. 设FG 与平面DEG 所成的角为θ, 则sin cos ,FG n θ=13==, 解得12λ=或710λ=-(舍去)∴存在实数λ,使得DG 与平面DEG 所成的角的正弦值为13,此时12λ=. 4.如图,在直三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为6的等边三角形,D ,E 分别为AA 1,BC 的中点.(1)证明:AE //平面BDC 1;(2)若异面直线BC 1与AC DE 与平面BDC 1所成角的正弦值.【答案】(1)详见解析;(2 【解析】(1)证明:取BC 1的中点F ,连接DF ,EF ,∵E 为BC 中点,∴EF ∥1CC ,112EF CC = 又∵D 为AA 1的中点,DA ∥1CC ,112DA CC =, ∴EF ∥DA ,EF DA =∴四边形ADFE 为平行四边形,∴AE ∥DF ,∵AE ⊄平面BDC 1,DF ⊂平面BDC 1,∴AE ∥平面BDC 1;(2)由(1)及题设可知,BC ,EA ,EF 两两互相垂直,则以点E 为坐标原点,EC ,EA ,EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AA 1=2t (t >0),则1(3,0,0),(3,0,2),(3,0,0),)B C t A C D t -,所以1(3,33,),(6,0,2),(3,BD t BC t AC ===-,故111|cos ,|4||||6BC AC BC AC BC AC ⋅<>===⋅解得t =,设平面BDC 1的法向量为(,,)m x y z =由100m BD m BC ⎧⋅=⎪⎨⋅=⎪⎩,得3060x x⎧+=⎪⎨+=⎪⎩, 令1x =,则(1,0,m =,又D ED ∴=, 所以cos ,||||(3ED m ED m ED m ⋅<>===, 设DE 与平面BDC 1所成角为θ,则sin θ=30|cos ,|20ED m <>=, ∴DE 与平面BDC 15.如图,四棱锥P ABCD -中,AP ⊥平面PCD ,AD BC ∥,2DAB π∠=,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求直线AB 与平面PBD 所成角的正弦值.. 【解析】Ⅰ)由已知AP ⊥平面PCD ,可得AP PC ⊥,AP CD ⊥,由题意得,ABCD 为直角梯形,如图所示,BC DE ,所以BCDE 为平行四边形,所以BE CD ∥,所以AP BE ⊥.又因为BEAC ⊥,且AC AP A =, 所以BE ⊥面APC ,故BE PO ⊥.在直角梯形中,AC ==,因为AP ⊥面PCD ,所以AP PC ⊥,所以PAC 为等腰直角三角形,O 为斜边AC 上的中点,所以PO AC ⊥.且ACBE O =,所以PO ⊥平面ABCD(Ⅱ)法一:以O 为原点,分别以,,OB OC OP 为x 轴,y 轴,z 轴的建立直角坐标系.不妨设1BO = 0(0)1A -,,,()100B ,,,()001P ,,,0()21D -,,,设(,,)n x y z =是平面PBD 的法向量.满足00n PB n BD ⎧⋅=⎨⋅=⎩, 所以030x z x y -+=⎧⎨-+=⎩, 则令1x = ,解得(1,3,1)n =sin cos ,AB n θ=22211AB nAB n ⋅==⋅ 法二:(等体积法求A 到平面PBD 的距离)A PBD P ABD V V--=设AB=1,计算可得1PF =,PD= ,BD ,4PBD S =△ 1133PBD ABD S hS PO ⨯⨯=⨯⨯△△,解得h = sin h AB θ==【题组三 二面角】1.如图,平行四边形ABCD 所在平面与直角梯形ABEF 所在平面互相垂直,且11,//2AB BE AF BE AF ===,,,2,3AB AF CBA BC P π⊥∠==为DF 中点.(1)求异面直线DA 与PE 所成的角;(2)求平面DEF 与平面ABCD 所成的二面角(锐角)的余弦值.【答案】(1)6π(2【解析】在ABC ∆中,1,,23AB CBA BC π=∠==,所以2222cos 3AC BA BC BA BC CBA =+-⨯∠=所以222AC BA BC +=,所以AB AC ⊥又因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,AC ⊂平面ABCD ,所以AC ⊥平面ABEF如图,建立空间直角坐标系{},,AB AF AC ,则1(0,0,0),(1,0,0),((1,1,0),(0,2,0),(22A B C D E F P--(1)3(1,0,3),(,0,2DA PE=-=设异面直线DA与PE所成的角为α,则3cos2DA PEDA PEα⋅===⨯⨯所以异面直线DA与PE所成的角为6π;(2)(0,2,0)AF=是平面ABCD的一个法向量,设平面DEF的一个法向量(,,)n x y z=,(2,1,3),(1,2,DE DF=-=则(,,)(2,1,20{(,,)(1,2,20n DE x y z x yn DF x y z x y⋅=⋅=+-=⋅=⋅=+-=,得z==,取1x=,则1,y z==故(1,1,3)n=是平面DEF的一个法向量,设平面DEF与平面ABCD 所成的二面角(锐角)为β,则2cos525AF nAF nβ⋅===⨯⨯.2.如图,梯形ABCS中,//AS BC,AB BC⊥,122AB BC AS===,D、E分别是SA,SC的中点,现将SCD∆沿CD翻折到PCD∆位置,使PB=(1)证明:PD ⊥面ABCD ;(2)求二面角E BD C --的平面角的正切值;(3)求AB 与平面BDE 所成的角的正弦值.【答案】(1)证明见解析;(23)3【解析】(1)梯形ABCS 中,//AS BC ,AB BC ⊥,122AB BC AS ===,D 、E 分别是SA ,SC 的中点,2DA =,四边形ABCD 为平行四边形,AB BC ⊥,2AB DA ==,BD =所以四边形ABCD 为正方形,CD DS ⊥,折叠后,CD DP ⊥,2PD =,PB =PBD 中,2224812PD BD PB +=+==,所以BD DP ⊥,,CD DB 是平面ABCD 内两条相交直线,所以PD ⊥面ABCD ;(2),,DA DC DP 两两互相垂直,以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系,如图所示:则(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(0,1,1)D A B C P E (2,2,0),(0,1,1)DB DE ==,设平面BDE 的法向量为(,,)n x y z = 则2200DB n x y DE n y z ⎧⋅=+=⎨⋅=+=⎩,解得y z x z =-⎧⎨=⎩,令1z =,取(1,1,1)n =- 由(1)可知,PD ⊥面ABCD ,取平面ABCD 的法向量(0,0,2)DP =cos ,3DP n ==,根据图形,二面角E BD C --所以二面角E BD C --(3)(0,2,0)AB =,由(2)可得平面BDE 的法向量(1,1,1)n =- 设直线AB 与平面BDE 所成的角为θ,sin cos ,AB n θ-===.所以AB 与平面BDE3.如图四棱柱1111ABCD A BC D -中,//AD BC ,AB AD ⊥,2AD AB BC ==,M 为1A D 的中点.(1)证明://CM 平面11AA B B ;(2)若四边形11AA B B 是菱形,且面11AA B B ⊥面ABCD ,13B BA π∠=,求二面角1A CM A --的余弦值. 【答案】(1)证明见解析;(2)25. 【解析】(1)取1AA 的中点N ,连接MN ,BN ,∵M 为1A D 的中点,∴//MN AD 且12MN AD = 又//BC AD ,12BC AD = ,所以//BC MN 且MN BC =, 所以四边形MNBC 是平行四边形,从而//CM BN ,又BN ⊂平面11AA B B ,CM ⊄平面11AA B B ,所以//CM 平面11AA B B .(2)取11A B 的中点P ,连接AP ,1AB ,∵四边形11AA B B 为菱形,又13B BA π∠=,易知AP AB ⊥.又面11AA B B ⊥面ABCD ,面11AA B B 面ABCD AB =,AD AB ⊥∴AD ⊥平面11AA B B ,AD AP ⊥故AB ,AD ,AP 两两垂直以A 为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立空间直角坐标系A xyz -(如图所示),不妨设4AB =.则()0,0,0A ,()0,4,0D ,()4,2,0C,,(1A -,(1,M -,(11,2,A M =,(CM =-,()4,2,0AC =设平面1ACM 的法向量为(),,m x y z =, 由100m A M m CM ⎧⋅=⎨⋅=⎩,得2050x y x ⎧+=⎪⎨-=⎪⎩,可得平面1ACM的一个法向量1,m ⎛= ⎝⎭, 设平面ACM 的法向量为()111,,n x y z =,由00n AC n CM ⎧⋅=⎨⋅=⎩,得111142050x y x +=⎧⎪⎨-+=⎪⎩, 可得平面ACM的一个法向量1,n ⎛=- ⎝⎭. ∴25142cos ,51m nm n m n -+⋅===⋅+ 所以二面角1A CM A --的余弦值为25. 4.已知平行四边形ABCD 中60A ∠=︒,22AB AD ==,平面AED ⊥平面ABCD ,三角形AED 为等边三角形,EF AB ∥.(Ⅰ)求证:平面⊥BDF平面AED ;(Ⅱ)若BC ⊥平面BDF①求异面直线BF 与ED所成角的余弦值;②求二面角B DF C --的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)①45.【解析】(Ⅰ)平行四边形ABCD 中∵60A ∠=︒,22AB AD ==,由余弦定理可得BD ,由勾股定理可得BD AD ⊥,如图,以D 为原点建立空间直角坐标系O xyz -∴()0,0,0D ,()1,0,0A ,()B ,12E ⎛ ⎝⎭,()C -∴()=DB ,()1,0,0DA =,1,0,22DE ⎛= ⎝⎭∴0DB DA ⋅=,0DB DE ⋅=,∴DB DA ⊥,DB DE ⊥.又DA DE D ⋂=,∴DB ⊥平面AED .又∵DB ⊂平面BDF ,∴平面⊥BDF 平面AED .(Ⅱ)∵EF AB ∥,∴设()(),0EF AB λλλ==-=-∴12F λ⎛- ⎝⎭,()1,0,0BC =-. ∵BC ⊥平面BDF ,∴BC DF ⊥,∴102BC DF λ⋅=-=,∴12λ=.∴F ⎛⎝⎭.①0,BF ⎛= ⎝⎭,1,0,2ED ⎛=- ⎝⎭∴34cos cos ,BF ED θ=== ∴异面直线BF 与ED ②设(),,n x y z =为平面BDF 的法向量,则303022n DB y n DF y z ⎧⋅==⎪⎨⋅=+=⎪⎩可得()1,0,0n=,设(),,m x y z =为平面CDF 的法向量,则0302m DC x m DF y z ⎧⋅=-=⎪⎨⋅=+=⎪⎩可得()3,1,1m =-,∴3cos ,5m n ==sin θ= ∴二面角B DF C --. 5.如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==.(1)求平面PAB 与平面PCD 所成锐二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.【答案】 【解析】以为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为()()()()1,0,0,1,1,0,0,2,0,0,0,2B C D P .(1) 因为AD ⊥平面PAB ,所以是平面PAB 的一个法向量,.因为(1,1,2),(0,2,2)PC PD =-=-.设平面PCD 的法向量为(),,m x y z =,则0,0m PC m PD ⋅=⋅=,即20{220x y z y z +-=-=,令1y =,解得1,1z x ==. 所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,3||||AD m AD m AD m ⋅〈〉==,所以平面PAB 与平面PCD所成二面角的余弦值为3. (2) 因为(1,0,2)BP =-,设(,0,2)(01)BQ BP λλλλ==-≤≤,又(0,1,0)CB =-,则(,1,2)CQ CB BQ λλ=+=--,又(0,2,2)DP =-, 从而1cos ,||||10CQ DP CQ DP CQ DP ⋅〈〉==, 设[]12,1,3t t λ+=∈,则2222229cos ,5109101520999t CQ DP t t t 〈〉==≤-+⎛⎫-+ ⎪⎝⎭,当且仅当95t =,即25λ=时,|cos ,|CQ DP 〈〉因为cos y x=在0,2π⎛⎫ ⎪⎝⎭上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP ==25BQ BP ==.6.如图,在三棱锥S 一ABC 中,SA =AB =AC =BC ,O为BC 的中点(1)求证:SO ⊥平面ABC(2)在线段AB 上是否存在一点E ,使二面角B —SC -E ?若存在,求B E BA 的值,若不存在,试说明理由【答案】(1)见解析(2)23【解析】(1)∵SB SC =,O 为BC 的中点,∴SO BC ⊥,设SB a =,则SO =,AO a =,SA =, ∴222SO OA SA +=,∴SO OA ⊥,又∵BC OA O ⋂=,∴SO ⊥平面ABC .(2)以O 为原点,以OA 所在射线为x 轴正半轴,以OB 所在射线为y 轴正半轴,以OS 所在射线为z 轴正半轴建立空间直角坐标系.则有()0,0,0O ,0,0,2S ⎛⎫ ⎪ ⎪⎝⎭,0,,02C a ⎛⎫- ⎪ ⎪⎝⎭,,0,02A a ⎛⎫ ⎪ ⎪⎝⎭,0,,02B a ⎛⎫ ⎪ ⎪⎝⎭. 假设存在点E 满足条件,设()01BE BA λλ=≤≤,则(),1,02E a a λ⎫-⎪⎪⎝⎭,则()62,02CE a λ⎛⎫=- ⎪ ⎪⎝⎭. 设平面SCE 的法向量为(),,n x y z =,由00n CE n SC ⎧⋅=⎨⋅=⎩,得()200x y y z λ+-=+=⎪⎩,故可取()2,n λ=-.易得平面SBC 的一个法向量为()1,0,0m =.所以,cos 5m nm n θ⋅===⋅,解得23λ=或2λ=-(舍). 所以,当23BE BA =时,二面角B SC E --. 7.在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥QA ,2PDA π∠=,平面ADPQ ⊥平面ABCD ,且22AD PD QA ===.(Ⅰ)求证:QB ∥平面PDC ;(Ⅱ)求二面角C PB Q --的大小;(Ⅲ)已知点H 在棱PD 上,且异面直线AH 与PB所成角的余弦值为15,求线段DH 的长. 【答案】(1)证明见解析;(2)56π;(3)32. 【解析】(1)平面ADPQ ⊥平面ABCD ,平面ADPQ ⋂平面ABCD AD =,PD ADPQ ⊂平面,PD AD ⊥,∴直线PD ⊥平面ABCD .由题意,以点D 为原点,分别以,,DA DC DP 的方向为x 轴,y 轴,z 轴的正向建立如图空间直角坐标系,则可得:()()()0,0,0,2,2,0,0,2,0D B C ,()()()2,0,0,2,0,1,0,0,2A Q P .依题意,易证:()2,0,0AD =-是平面PDC 的一个法向量, 又()0,2,1QB =-,∴ 0QB AD ⋅=, 又直线QB ⊄平面PDC ,∴ //QB PDC 平面.(2) ()()2,2,2,=0,22PB PC =--,. 设()1111,,n x y z =为平面PBC 的法向量,则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111112220220x y z y z +-=⎧⎨-=⎩. 不妨设11z =,可得()10,1,1n =.设()2222,,n x y z =为平面PBQ 的法向量,又()()2,2,2,2,0,1PB PQ =-=-, 则2200n PB n PQ ⎧⋅=⎪⎨⋅=⎪⎩,即22222202220x z x y z -=⎧⎨+-=⎩. 不妨设22z =,可得()21,1,2n =,∴ 1212123cos<,2n n n n n n ⋅>==⋅, 又二面角C PB Q --为钝二面角,∴二面角C PB Q --的大小为56π. (3)设()()0,0,02H h h ≤≤,则()2,0,AH h =-,又()2,2,2PB =-, 又7cos<,15PB AH >=15=, ∴ 2625240h h -+=,解得32h =或83h =(舍去). 故所求线段DH 的长为32.8.已知在四棱锥C ABDE -中,DB ⊥平面ABC ,//AE DB ,ABC 是边长为2的等边三角形,1AE =,M 为AB 的中点.(1)求证:CM EM ⊥;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.【答案】(1)证明见解析;(2)90.【解析】(1)证明:ABC为等边三角形,M为AB的中点,∴CM AB⊥,又DB⊥平面ABC,CM⊂平面ABC,∴DB CM⊥,DB AB B=,DB,AB平面ABDE,∴CM⊥平面ABDE,又EM⊂平面ABDE,∴CM EM⊥.(2)过点M作//Mz BD,易知Mz、MB、MC两两垂直;以M为原点,分别以MC、MB、Mz作为x轴、y轴、z轴建立空间直角坐标系,如图;DB⊥平面ABC,∴DMB∠直线DM与平面ABC所成角,∴tan2BDDMBBM∠==,∴22BD BM==,∴()0,1,0B,)C,()0,1,2D,()0,1,1E-,∴()3,1,0BC=-,()CD=-,()1,1CE=--,设平面BCD的一个法向量为()111,,m x y z=,则m BCm CD⎧⋅=⎨⋅=⎩即1111120yy z-=++=⎪⎩,令11x=,则()1,3,0m=,设平面CDE的一个法向量为()222,,n x y z=,则n CEn CD⎧⋅=⎨⋅=⎩即22222220y zy z⎧-+=⎪⎨++=⎪⎩,令2x=,则()3,1,2n=-,∴cos,0m nm nm n⋅==⋅,∴二面角B CD E--的大小为90.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三立体几何大题专题(用空间向量解决立体几何类问题)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【知识梳理】一、空间向量的概念及相关运算 1、空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任一向量p xa yb zc =++,,a b c 称为基向量。
2、空间直角坐标系的建立分别以互相垂直的三个基向量k j i,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则a xi y j zk =++(x,y,z )称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
3、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==,则:()121212,,a b x x y y z z ±=±±±()111,,a x y z λλλλ= 121212a b x x y y z z ⋅=++12121200a b a bx x y y z z ⊥⇔⋅=⇔++=121212//,,a b a b x x y y z z λλλλ⇔=⇔=== 21a a a x =⋅=+a b ⋅=a cos ,b a b 〈〉.cos ,a b a b a b⋅〈〉=21cos ,x a b a b a bx ⋅〈〉==+(2)设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=--- (3)()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =二、应用:平面的法向量的求法:1、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
应用1:证明空间位置关系(1)线线平行:证明//AB CD ,即证明//AB CD (2)线线垂直:证明AB CD ⊥,即证明0AB CD ⋅=(3)线面平行:证明//AB α(平面)(或在面内),即证明AB 垂直于平面的法向量或证明AB 与平面内的基底共面;(4)线面垂直:证明AB α⊥,即证明AB 平行于平面的法向量或证明AB 垂直于平面内的两条相交的直线所对应的向量;(5)面面平行:证明两平面//αβ(或两面重合),即证明两平面的法向量平行或一个面的法向量垂直于另一个平面;(6)面面垂直:证明两平面αβ⊥,即证明两平面的法向量垂直或一个面的法向量在内一个面内。
应用2:利用空间向量求线线角、线面角、二面角(1)异面直线的夹角:0,2πθ⎛⎤∈ ⎥⎝⎦。
设12,l l 是两条异面直线,,A B 是1l 上的任意两点,,C D 是直线2l 上的任意两点,则cos cos ,AB CD θ=,即12,l l 所成的角为arccosAB CD AB CD••(2)直线与平面的夹角:0,2πθ⎡⎤∈⎢⎥⎣⎦。
设AB 是平面α的斜线,设n 是平面α的法向量,AB 是平面α的一条斜线,则sin cos ,AB n θ=,即AB 与平面α所成的角为arccos2AB n AB n AB nAB nπ••-••,或者arcsin(3)二面角:[]0,θπ∈设12,n n 是二面角l αβ--的面,αβ的法向量,则121212,cos n n n n arc n n •<>=•就是二面角的平面角或补角的大小。
需具体分析是哪一个。
当法向量12n n 与的方向分别指向二面角内侧与外侧时,二面角的大小等于法向量12n n 与的夹角的大小。
当法向量12n n 与的方向同时指向二面角的内侧或外侧时,二面角的大小等于法向量12n n 与的夹角的补角12,n n π-<>。
应用三:求距离(1)两点间距离:()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =(2)点到直线距离:在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=(3)点P 到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.(4)两异面直线距离:设直线21,l l 是两条异面直线,n 是21,l l 公垂线AB 的方向向量,又C 、D 分别是21,l l 上的任意两点,则1l 与2l 之间距离..→→→--→-==nnCD AB d(5)直线AC 平面α (//AC α)的距离:转化为点A 到平面α的距离(6)平面α与平面β(//αβ)的距离(n 为平面的法向量):转化为平面α内的点到平面β的距离。
应用四:解决探究问题对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。
这是一种最常用也是最基本的方法.立体几何中的点的位置的探求经常借助于空间向量,引入参数,综合已知和结论列出等式,解出参数. 这是立体几何中的点的位置的探求的常用方法.方法:点F 是线PC 上的点,一般可设PC PF λ=,求出λ值,P 点是已知的,即可求出F 点 点F 在平面PAD 上一般可设DP t DA t DF 21+=⋅、计算出21,t t 后,D 点是已知的,即可求出F 点。
【经典例题】一、平行垂直的证明(包含存在性问题)例1、如图,在多面体ABCDEF 中,四边形ABCD 是正方形,2EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点。
(1)求证:FH ∥平面EDB ;(2)求证:AC ⊥平面EDB ;例2、 如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC=90o ,PD ⊥平面ABCD ,AD =1,AB=3,BC =4。
(I )求证:BD ⊥PC ;(2)设点E 在棱PC 上,PE PC λ=,若DE ∥平面PAB ,求λ的值.【变式1-1】在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC证明你的结论.【变式1-2】如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足BC AD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值;(Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD 若存在,试求出λ的值;若不存在,请说明理由.【变式1-3】在等腰梯形ABCD 中,//AD BC ,12AD BC =,60ABC ∠=,N 是BC 的中点.将梯形ABCD 绕AB 旋转90,得到梯形ABC D''(如图). (Ⅰ)求证:AC ⊥平面ABC ';(Ⅱ)求证://C N '平面ADD ';【变式1-4】在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又4PA AB ==,120CDA ∠=,点N 在线段PB 上,且PN =(Ⅰ)求证:BD PC ⊥;PDABCFEACD BND 'C '(Ⅱ)求证://MN 平面PDC ;【变式1-5】如图,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ∥MD ,且NB=1,MD=2;(Ⅰ)求证:AM ∥平面BCN;(Ⅱ)求AN 与平面MNC 所成角的正弦值;(Ⅲ)E 为直线MN 上一点,且平面ADE ⊥平面MNC ,求MEMN的值.【变式1-6】如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,12,AB AC AA ===E 是BC 中点.(I )求证:1//A B 平面1AEC ;(II )若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长;【变式1-7】如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.EC 1B 1A 1CBAOFEDCBA(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面PAD ⊥平面ABCD ;【变式1-8】在四棱锥E ABCD 中,底面ABCD 是正方形,,AC BD O 与交于点F ABCD EC ,面⊥为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ⊥; (Ⅲ)若2,AB CE 在线段EO 上是否存在点G ,使BDE CG 面⊥若存在,求出EGEO的值,若不存在,请说明理由.二、利用空间向量求二面角,线面角,线线角例1、在棱长为a 的正方体''''ABCD A B C D -中,EF 分别是'',BC A D 的中点,(1)求直线'ACDE 与所成角; (2)求直线AD 与平面'B EDF 所成的角, (3)求平面'B EDF 与平面ABCD 所成的角例2、如图,四棱锥ABCD P -的底面ABCD 为菱形,60=∠ABC ,侧面PAB 是边长为2的正三角形,侧面PAB ⊥底面ABCD .(Ⅰ)设AB 的中点为Q ,求证:⊥PQ 平面ABCD ; (Ⅱ)求斜线PD 与平面ABCD 所成角的正弦值; (Ⅲ)在侧棱PC 上存在一点M ,使得二面角C BD M --的大小为 60,求CPCM的值.【变式2-1】在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,FPABCD 为直角梯形,BC //AD ,90ADC ∠=︒, 112BC CD AD ===,PA PD =,E F ,为AD PC ,的中点. (1)若PC 与AB 所成角为45︒,求PE 的长; (2)在(Ⅱ)的条件下,求二面角F-BE-A 的余弦值.【变式2-2】在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º,AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点,(ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值; (Ⅱ)若二面角D -AP -C的余弦值为3PF 的长度. PFEDCAB【变式2-3】如图,四边形ABCD 为正方形,ABCD BE 平面⊥,EB ∥FA ,EB AB FA 21==. (I )证明:平面B AF AFD 平面⊥; (II )求异面直线ED 与CF 所成角的余弦值; (III )求直线EC 与平面BCF 所成角的正弦值.【变式2-4】已知四棱锥P ABCD -,底面ABCD 为矩形,侧棱PA ABCD ⊥底面,其中226BC AB PA ===,M N ,为侧棱PC(Ⅰ)求证://AN MBD 平面;(Ⅱ)求异面直线AN 与PD 所成角的余弦值; (Ⅲ)求二面角M BD C --的余弦值.B三、求距离例、如图, 在直三棱柱ABC -A 1B 1C 1中,∠ACB=90°,1为侧棱CC 1上一点, 1AM BA ⊥.(1)求证: AM ⊥平面1A BC ; (2)求二面角B -AM -C 的大小;(3)求点C 到平面ABM 的距离.【变式3-1】如图1,在Rt ABC ∆中,90C ∠=︒,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D CD ⊥,如图2. (Ⅰ)求证: BC ⊥平面1A DC ;(Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1A BA BCABCM图1 图2A 1B CDE【强化训练】&【课后作业】(注:本专题根据学生的程度及上课接受情况适当选择部分进行上课练习,部分做为课后作业。