寻迹避障小车原理

合集下载

pwm调速循迹避障小车的总结与体会

pwm调速循迹避障小车的总结与体会

PWM调速循迹避障小车是一种基于单片机控制系统的智能小车,具有很高的实用价值和教学意义。

在实际应用中,PWM调速循迹避障小车可以应用于智能家居、智能物流等领域,为人们的生活和工作带来便利。

在设计和制造PWM调速循迹避障小车的过程中,我们经历了许多挑战和收获了许多成果。

在此,我将共享我对PWM调速循迹避障小车的总结与体会。

一、总结1. PWM调速原理PWM即脉冲宽度调制,是一种用来调节模拟电路的技术。

在PWM 调速循迹避障小车中,我们通过改变电机工作周期内的通电时间来控制电机的转速,从而实现小车的速度调节。

2. 循迹原理循迹是指小车根据预设的路径行驶,通常使用红外线传感器、摄像头等设备来实现。

在PWM调速循迹避障小车中,我们利用红外线传感器来检测小车周围的环境,根据检测结果来调整小车的行驶方向,实现循迹功能。

3. 避障原理避障是指小车在行驶过程中遇到障碍物时,能够及时停车或绕行,避免发生碰撞。

在PWM调速循迹避障小车中,我们通过超声波传感器等设备来检测前方障碍物的距离,根据检测结果来控制小车的行驶,实现避障功能。

4. 控制系统PWM调速循迹避障小车的控制系统由单片机、传感器、驱动电路和执行机构等部分组成。

通过单片机对传感器检测结果的分析和处理,再通过驱动电路和执行机构的协调工作,实现对小车的调速、循迹和避障控制。

二、体会1. 技术挑战在设计和制造PWM调速循迹避障小车的过程中,我们遇到了许多技术挑战,比如传感器的精度和稳定性、控制算法的优化等。

通过不断的尝试和改进,我们最终克服了这些挑战,成功实现了小车的功能。

2. 团队合作制造PWM调速循迹避障小车是一个涉及多个领域知识的复杂任务,需要团队成员之间的合作和协调。

在这个过程中,我们学会了有效的交流和合作,培养了团队精神,提高了解决问题的能力。

3. 实践意义通过制造PWM调速循迹避障小车,我们不仅加深了对相关知识的理解,还锻炼了动手能力和解决实际问题的能力。

智能循迹小车

智能循迹小车

智能循迹小车的引言概述智能循迹小车是近年来兴起的一种智能机器人,它能够通过内置的传感器和程序,自动识别和跟踪预定的路径。

这种小车使用了先进的计算机视觉技术和控制算法,能够在各种环境中准确地进行循迹。

智能循迹小车在许多领域中都得到了广泛的应用,包括工业自动化、物流运输、仓储管理等。

本文将对智能循迹小车的原理、技术和应用进行详细阐述。

智能循迹小车的原理和技术1. 传感器技术a. 摄像头传感器:通过摄像头传感器,智能循迹小车可以捕捉环境中的图像,并进行图像处理和识别。

b. 距离传感器:距离传感器可以帮助智能循迹小车感知周围环境中的障碍物,并避免碰撞。

c. 地盘传感器:地盘传感器用于检测小车在路径上的位置和姿态,以便进行准确的定位和导航。

2. 计算机视觉技术a. 特征提取:通过计算机视觉技术,智能循迹小车可以从摄像头捕捉的图像中提取关键特征,例如路径轮廓、颜色等。

b. 物体识别:利用深度学习算法,智能循迹小车可以识别环境中的物体,例如道路标志和交通信号灯,以便做出相应的反应。

c. 路径规划:根据图像处理和物体识别的结果,智能循迹小车可以计算出最优的路径规划,以达到快速而安全地循迹的目的。

3. 控制算法a. PID控制算法:智能循迹小车使用PID控制算法来实现精确的速度和方向控制,以便按照预定的路径进行循迹。

b. 路径校正算法:当智能循迹小车发现偏离路径时,会通过路径校正算法对速度和方向进行调整,以便重新回到预定的路径上。

智能循迹小车的应用1. 工业自动化a. 生产线物料运输:智能循迹小车可以自动将物料从一个地点运输到另一个地点,减少人力成本和提高生产效率。

b. 仓储管理:智能循迹小车可以在仓库中自动识别货物并进行搬运和分拣,提升仓储管理的效率和精确度。

2. 物流运输a. 快递配送:智能循迹小车可以在城市道路上按照预定的路径进行循迹,实现快递的自动配送和准时派送。

b. 高速公路货物运输:智能循迹小车可以在高速公路上准确无误地进行循迹,减少人为驾驶过程中的车祸风险。

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车智能循迹避障小车是一种基于STM32微控制器的智能车辆,它可以根据预设的路径自动行驶并能够避开障碍物。

这种小车具有很高的自主性和智能性,非常适合用于教学、科研和娱乐等领域。

本文将介绍基于STM32的智能循迹避障小车的设计原理、硬件结构、软件开发以及应用场景。

一、设计原理智能循迹避障小车的设计原理主要包括传感器感知、决策控制和执行动作三个部分。

通过传感器感知车辆周围环境的变化,小车可以及时做出决策并执行相应的动作,从而实现自动行驶和避障功能。

在基于STM32的智能小车中,常用的传感器包括红外避障传感器、光电传感器和编码器等。

红外避障传感器可以检测到障碍物的距离和方向,从而帮助小车避开障碍物。

光电传感器可以用于循迹,帮助小车按照预定的路径行驶。

编码器可以用于测量小车的速度和位置,实现精确的定位和控制。

通过这些传感器的数据采集和处理,小车可以实现智能化的行驶和避障功能。

二、硬件结构基于STM32的智能循迹避障小车的硬件结构包括主控制板、传感器模块、执行器模块和电源模块。

主控制板采用STM32微控制器,负责控制整个车辆的运行和决策。

传感器模块包括红外避障传感器、光电传感器和编码器等,用于感知周围环境的变化。

执行器模块包括电机和舵机,用于控制车辆的速度和方向。

电源模块提供电能,为整个车辆的运行提供动力支持。

三、软件开发基于STM32的智能循迹避障小车的软件开发主要包括嵌入式系统的编程和算法的设计。

嵌入式系统的编程主要使用C语言进行开发,通过STM32的开发环境进行编译和调试。

算法的设计主要包括避障算法和循迹算法。

避障算法通过传感器的数据处理,判断障碍物的位置和距离,并做出相应的避开动作。

循迹算法通过光电传感器的数据处理,使小车能够按照预设的路径行驶。

四、应用场景基于STM32的智能循迹避障小车可以广泛应用于教学、科研和娱乐等领域。

在教学领域,可以用于智能机器人课程的教学实验,帮助学生掌握嵌入式系统的开发和智能控制的原理。

循迹小车的原理

循迹小车的原理

循迹小车的原理循迹小车是一种基于传感器的智能机器人,它能够自动地在预设的路径上行驶,并根据环境的变化进行自我调整。

循迹小车的原理主要涉及到传感器、控制电路和电机三个方面。

首先,循迹小车依靠传感器来感知环境的变化,其中最常用的传感器是红外线传感器。

红外线传感器主要由发射器和接收器组成,其中发射器发射红外线信号,接收器接收反射回来的红外线信号。

当循迹小车在行驶过程中,传感器能够感知到路径上的黑线或者其他颜色差异,然后将这些信号转化为电信号,传递给控制电路。

其次,控制电路是循迹小车的核心部分,它根据传感器接收到的信号,进行相应的逻辑判断和处理,来控制电机的运动。

控制电路一般由集成电路组成,可以通过编程或者硬连线的方式来实现逻辑控制。

当传感器感知到黑线时,控制电路会判断是否需要转弯,根据不同的判断结果,向电机提供不同的控制信号,控制电机的转向和速度。

这样循迹小车就可以根据黑线的走向,做出适当的转弯和速度调整,从而沿着预设的路径行驶。

第三,电机是循迹小车的动力源,它负责驱动车轮的转动。

一般来说,循迹小车采用两个驱动轮,每个驱动轮都有一个电机来驱动。

电机接收控制电路输出的控制信号,根据信号的不同进行相应的运转,从而驱动车轮转动。

当循迹小车需要转弯时,控制电路会向电机提供不同的信号,使得其中一个电机停止或者反向运转,从而实现转弯动作。

通过控制电路对电机的控制,循迹小车可以根据需要改变行进速度和转弯半径,以实现在预设路径上的准确行驶。

综上所述,循迹小车的原理主要包括传感器的感知、控制电路的处理和电机的运转。

通过传感器感知路径上的黑线或其他有色标记,控制电路进行逻辑判断和处理,再通过控制信号控制电机的运动,循迹小车就可以自动地在预设的路径上行驶。

循迹小车的原理简单实用,可以通过调整控制电路和传感器的设置,实现不同场景下的行驶需求,因此在教育、娱乐和实验等领域都有广泛的应用。

循迹小车原理

循迹小车原理

循迹小车原理
循迹小车是一种智能机器人,通过感应地面上的黑线来实现自主导航。

它具有一组红外线传感器,安装在车体底部。

这些传感器能够感知地面上的线路情况,判断车子应该如何行驶。

循迹小车的工作原理是基于光电传感技术。

当小车上的传感器感受到黑线时,光电传感器就会产生信号。

这些信号通过控制系统进行处理,确定小车的行驶方向。

如果传感器感受到较亮的地面,即没有黑线的区域,控制系统会判断小车偏离了轨迹,并做出相应的调整。

为了确保精确的导航,循迹小车的传感器通常安装在车体的前部和底部,使其能够更好地感知地面上的线路。

此外,传感器之间的距离也很重要,它们应该能够覆盖整个车体宽度,以确保车子能够准确地行驶在黑线上。

循迹小车的控制系统通过对传感器信号的分析来判断车子的行驶方向。

当传感器感知到线路时,控制系统会发出信号,控制电机转动,使车子朝着正确的方向行驶。

如果传感器感知不到线路,或者线路出现了间断,控制系统会做出相应的调整,使车子重新找到正确的线路。

循迹小车是一种简单而有效的机器人,它在许多领域都有广泛的应用。

例如,它可以用于仓库自动化,实现货物的自动运输;也可以用于工业生产线,实现物品的自动装配。

总的来说,循迹小车通过光电传感技术,能够自主导航,实现精确的线路行驶。

51单片机小车循迹避障原理

51单片机小车循迹避障原理

51单片机小车循迹避障原理
51单片机小车循迹避障的原理主要包括以下步骤:
1. 传感器检测:小车通过安装的传感器检测路径和障碍物。

寻迹传感器利用黑色对光线的反射率小这个特点,当检测到黑线时,传感器上的开关指示灯会熄灭,输出的是高电平。

如果没有经过黑线,一直保持低电平。

红外传感器在有障碍物时灯会亮,所以有障碍物代表低电平,没有障碍物高电平。

2. 信息处理:51单片机接收并处理传感器的信号。

根据传感器的信号,单片机判断出小车是否偏离了预定路径,或者前方是否有障碍物。

3. 电机控制:根据信息处理的结果,单片机控制电机转动。

例如,如果检测到小车偏离了预定路径,单片机将发送信号使电机转动,使小车回到正确的路径上。

如果检测到前方有障碍物,单片机将发送信号使电机停止转动,避免小车撞到障碍物。

4. 循环检测:小车在行进过程中不断重复上述步骤,确保能够持续地沿着预定路径行进并避开障碍物。

这就是51单片机小车循迹避障的基本原理。

实际的实现可能会更复杂,可能需要更多的传感器和控制逻辑来确保小车的稳定和安全运行。

循迹小车原理

循迹小车原理

循迹小车原理
循迹小车是一种机器人,它利用视觉,红外,激光等方式来检测它面前的环境,并自动控制它的运动路径。

循迹小车一般由电动推进装置、车底传感器、电源驱动以及控制器等部分组成。

循迹小车的原理非常简单,具体如下:首先,控制器会根据车底的传感器检测出小车的位置及其与路线的距离。

其次,控制器根据路线中的黑白两色瓷砖之间的强度差,经过比较确定出当前的小车的方向,然后通过PWM把电机的速度控制在某一水平,最终使小车前往指定的方向。

综上,循迹小车的原理基于红外传感器,它可以根据环境中路线黑白瓷砖之间的强度差控制小车的速度和方向,从而实现自动控制小车的行走路线。

有了循迹小车,我们可以探索出更多有趣的机器人应用,使机器人以及自动控制更加智能。

循迹小车的主要优势在于它的简单性和可靠性,也就是说它可以准确的检测出路线的黑白瓷砖,可以适应各种环境,而且可以避免路线走形,能够不断地调整自身的运动轨迹。

另外,循迹小车的结构也相当的简单,其主要包括电机、传感器、控制器以及电源等,而且可以根据需要添加其他元件,增强系统的功能、增强机器人的智能化程度。

因此,循迹小车是目前受到越来越多人关注的机器人技术之一,它不仅可以解决自动控制的问题,也能够为多种机器人应用提供基础技术。

它的简单性、可靠性以及可扩展性使它在机器人行业获得了普
及,而且还在不断进行改进和发展。

智能循迹避障小车简版

智能循迹避障小车简版

智能循迹避障小车智能循迹避障小车---1. 引言智能循迹避障小车是一种能够根据环境中的信息自主移动的车辆,通过具备循迹和避障的能力,能够在不需要人工干预的情况下自主导航。

这种小车通常使用各种传感器来感知周围环境,使用算法来处理感知数据,并根据处理结果做出移动决策。

本文将介绍智能循迹避障小车的原理、设计和应用。

2. 原理智能循迹避障小车的原理主要包括感知、决策和执行三个部分。

2.1 感知感知是指小车通过各种传感器感知周围环境的过程。

常用的传感器包括红外线传感器、超声波传感器和摄像头等。

红外线传感器可以用来检测前方是否有障碍物,超声波传感器可以用来测量障碍物的距离,摄像头可以用来获取场景图像。

通过这些传感器,小车可以获得关于障碍物位置、距离和形状等信息。

2.2 决策决策是指小车根据感知到的环境信息做出移动决策的过程。

在决策过程中,通常会使用机器学习算法进行数据分析和模式识别,以便更准确地判断障碍物的位置和形状,并制定相应的移动策略。

例如,如果感知到前方有障碍物,小车可以选择绕过障碍物或者停下来等待。

2.3 执行执行是指小车根据决策结果执行相应的移动动作的过程。

根据决策结果,小车可以通过调整轮速或者改变行驶方向的方式来避开障碍物。

利用电机和轮子的组合,小车可以实现前进、后退、转向等多种运动。

3. 设计智能循迹避障小车的设计包括硬件设计和软件设计两个方面。

3.1 硬件设计硬件设计主要包括选取合适的传感器和执行器,并搭建相应的电子电路。

可以选择使用Arduino等单片机作为控制中心,连接红外线传感器、超声波传感器、摄像头以及电机和轮子等组件。

通过编程控制各个组件之间的通信和协作,实现小车的感知、决策和执行功能。

3.2 软件设计软件设计主要包括对传感器数据的处理和决策算法的实现。

可以使用C/C++等编程语言编写程序,通过读取传感器数据、分析数据并做出相应的决策。

常用的算法包括机器学习、图像处理和路径规划等。

基于K60的电磁循迹避障小车的设计

基于K60的电磁循迹避障小车的设计

基于K60的电磁循迹避障小车的设计随着智能机器人技术的不断发展,无人驾驶小车成为了当前热门的研究领域之一。

而电磁循迹避障小车作为无人驾驶技术的一个重要应用,可以应用于智能家居、仓储物流等领域。

本文将介绍一种基于K60的电磁循迹避障小车的设计方案。

一、设计原理1.电磁循迹原理电磁循迹是小车跟踪磁场的路径进行移动的技术,其原理是通过传感器感知磁场,再根据感知到的磁场信号来控制小车的移动。

在设计中通常会使用多个电磁传感器,通过这些传感器来感知磁场的强度和方向,从而确定小车当前位置,实现循迹运动。

2.避障原理避障原理是通过激光雷达、超声波传感器或红外传感器等设备,实时感知附近障碍物的位置和距离,然后根据感知到的信息来调整小车的运动轨迹,以避开障碍物,确保在行驶过程中不发生碰撞。

二、硬件设计1.主控芯片本设计选用NXP公司的K60系列芯片作为主控芯片,K60系列具有低功耗、高性能和丰富的外设接口,非常适合用于控制小车的移动和感知系统。

2.传感器模块为了实现电磁循迹和避障功能,我们需要选择合适的传感器模块。

对于电磁循迹,可以使用磁场传感器模块;对于避障,可以选择红外传感器或超声波传感器。

3.驱动模块驱动模块用于控制小车的电机,一般会选择直流电机驱动模块。

通过调节电机的转速和转向来控制小车的移动。

4.电源模块电源模块用于为主控芯片、传感器和电机提供稳定的电源。

在设计中需要考虑到各个模块的工作电压和电流,选择合适的电源模块。

5.机械结构机械结构是小车设计的关键部分,需要根据传感器和电机的布局来设计车身和轮子的结构,确保传感器可以正常感知磁场和障碍物,电机可以顺利驱动小车。

1.传感器数据处理主控芯片需要通过接口读取传感器模块采集到的数据,并进行数据处理。

对于电磁循迹,需要根据传感器信号的强度和方向来确定小车的移动方向;对于避障,需要实时监测障碍物距离并及时调整小车的轨迹。

2.运动控制算法根据传感器采集到的数据,主控芯片需要实现相应的运动控制算法,在保证电磁循迹的情况下,及时调整小车的轨迹以避开障碍物。

智能循迹避障小车报告

智能循迹避障小车报告

摘要:本智能识别小车以STC89C52单片机为控制芯片,以直流电机,光电传感器,超声波传感器,电源电路以及其他电路构成。

系统由STC89C52通过IO口,通过红外传感器检测黑线,利用单片机输出PWM脉冲控制直流电机的转速和转向,循迹由TCRT5000型光电对管完成。

一、系统设计1、小车循迹,避障原理这里的循进是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。

红外探测法,即利用红外a在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地板时,发生漫反射反射光被装在小车上的按收管按收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光,单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。

红外探测器探测距离有限一殷最大不应超过3cm。

而避障则是通过超声波模块不断向前方发射超声波信号,通过接收反射回来的超声波信号,从而实现的避障。

当前方有障碍物时,超声波会向单片机串口发送一串数字,这些数字就是当前小车距离障碍物得距离。

当串口接收到信号时,会引发串口中断,单片机通过读取距离值,并且对此数值进行分析是不是距离小车很近,是的话就进行转向;否则继续循迹。

当小车遇到第一个障碍后,就计数一次,这样当遇到第二个障碍物时,小车就可以以不同的形式躲避障碍物了。

2、选用方案(1):采用成品的小车地盘,通过改装来完成任务;(2):采用STC89C52单片机作为主控制器;(3):采用7V电源经7805稳压芯片降压后为其他芯片及器件供电。

(4):采用TCRT5000型红外传感器进行循迹;(5):L298N作为直流电机的驱动芯片;(6):通过对L298N使能端输入PWM来控制电机转速和转向;3、系统机构框图如下所示:二、硬件实现及单元电路设计与分析1、微控制模块设计与分析微控制器模块我们采用STC89C52。

该芯片采用双列直插是封装,便于焊接,性能比较稳定,而且在市场上也是比较廉价的单片机。

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车智能循迹避障小车是一种基于STM32单片机的智能小车,它能够自主地在地面上行走,同时能够避开障碍物和跟随预设路线前进。

本文将主要介绍智能循迹避障小车的原理、设计以及实现过程等方面的内容。

一、原理介绍智能循迹避障小车的原理主要由三个模块组成:传感器模块、控制模块和执行模块。

1.传感器模块传感器模块是接收外界信息的模块,它包括超声波测距传感器、红外传感器和光敏传感器等多种类型。

其中超声波测距传感器用于实时测量小车与障碍物之间的距离,红外传感器则用于检测小车的状况,光敏传感器可以检测小车环境的明暗程度等。

2.控制模块控制模块是小车的大脑,它主要负责决策和控制小车的行动。

在控制模块中,采用了STM32单片机,通过程序控制小车进行行动,比如设定小车的速度、方向、循迹方式等。

此外,控制模块还可以根据传感器信号来判断小车是否需要进行避障或纠正行动方向等操作。

3.执行模块执行模块是用于执行下达指令的模块,包括马达控制模块、电机模块、舵机模块等,它们的作用是实际控制小车进行前行、后退、拐弯等操作。

二、设计过程智能循迹避障小车的设计过程可以分为以下几个主要环节。

1.硬件设计在硬件设计环节中,需要为小车选取合适的元器件,包括单片机、传感器、执行模块等。

在选择这些元器件时,需要充分考虑它们的功能和性能,保证其能够根据预设要求准确、快速地进行反应和执行操作。

2.程序设计程序设计环节则是在硬件选型确定后,对控制程序进行设计和编程,包括小车中的各个子模块的控制程序。

根据实际需要,可以使用不同的编程语言进行开发,如C语言、Python语言等。

在程序设计中需要考虑程序的稳定性、弹性度和可靠性等因素。

3.系统测试系统测试阶段是为了验证小车的性能和程序逻辑是否满足设计要求,需要进行详细的测试和集成。

在进行测试时,需要考虑小车稳定性、精度和运行效率,同时需要不断优化系统并修复不足之处。

三、实现过程小车运行过程的实现主要在程序设计阶段中完成,下面介绍小车的几个主要运行模式和其实现过程。

循迹小车原理

循迹小车原理

循迹小车原理
循迹小车原理
循迹小车是指一种可以按照设定路径自动行走的机器人小车,它的原理是利用传感器检测已设定的路径上的信息,根据这些信息控制电机的转动方向和速度,达到自动行走的目的。

循迹小车的核心元件是传感器,它可以检测到路径上的信息,并将这些信息传递给控制器。

传感器有多种,有光电传感器、超声波传感器、磁感应传感器等。

光电传感器是指将特定波长的光照射到路径上,由传感器检测特定传感器捕捉到的信号,从而控制电机的转动方向。

超声波传感器是指将超声波辐射到路径上,通过检测超声波反射的信号,控制电机的转动方向和速度。

磁感应传感器是指将磁感应体置于路径上,检测磁感应体反应的信号,控制电机的转动方向和速度。

控制器是循迹小车中最重要的部件,它接收传感器捕获的信号,根据信号的大小,控制电机的转动方向和速度,从而完成循迹小车的自动行走。

循迹小车就是这样,利用传感器检测路径上的信息,根据信号的大小控制电机的转动方向和速度,从而完成自动行走的任务。

它既可以用于科学研究,也可以作为一种新型的机器人玩具来模拟人类行走,让孩子得到更多的乐趣。

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车智能循迹避障小车是一种集现代化感知、识别、控制技术于一体的智能移动装备,具有智能感知环境、辨别地形、自主规避、遥控操作等功能。

该设计基于STM32的智能循迹避障小车是一种小型、可控、智能的模型车辆,可以在智能系统的嵌入式控制下完成识别、规划和移动等功能。

下面,我们来详细了解一下这一小车的设计原理和实现方法。

一、设计原理1.感知与识别智能循迹避障小车依靠红外线接收传感器、超声波传感器和跟随模块等方法实现环境信息感知。

其中,红外线接收传感器主要用于测距、循迹和防碰撞,是智能车的核心部件之一。

超声波传感器则主要用于测距和障碍物检测。

最后,跟随模块则可以实现人机交互和远程控制等功能。

2.规划与运动智能循迹避障小车依靠STM32F103系列控制器实现系统核心控制和数据处理功能。

控制器通过程序设计,可令小车具备自主规划和运动等功能。

例如,小车运动状态由传感器所获取的数据信息时刻检测,智能程序实现自主决策和执行,从而实现智能移动。

3.控制与响应智能循迹避障小车具备多种控制方式,包括自主模式、手动控制模式和远程控制模式。

采用自主模式时,小车可以根据程序预设的路径自主运动。

采用手动控制模式时,用户可以通过遥控器控制小车的方向、速度等参数。

采用远程控制模式时,用户可以通过远程控制设备对小车的状况进行实时监控和调整。

二、实现方法1.硬件设计小车核心板采用STM32F103C8T6控制器,主频为72MHz,容量为64KB。

其它外设包括有超声波传感器、红外线接收传感器、电机驱动模块、步进电机和轮子等。

整个系统电路图如下图所示。

2.软件设计该项目采用Keil5.13开发平台,编程语言为C语言。

系统程序分为三部分,分别是超声波测距和障碍检测、红外线感知和循迹、电机控制和小车移动。

(1)超声波测距和障碍检测超声波测距和障碍检测程序主要实现对前方距离的测量和对障碍物的检测。

程序流程如下:初始化模块和时钟;配置GPIO口;设置定时器并启动;发送触发脉冲;接收回波并计算距离。

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车智能循迹避障小车是一种基于STM32微控制器的智能机器人车,它具有智能避障、循迹导航等功能。

它通过使用红外传感器、超声波传感器等传感器来感知周围环境,并通过STM32微控制器来实现对传感器数据的处理和控制小车的运动。

本文将介绍基于STM32的智能循迹避障小车的原理、设计和制作过程。

一、智能循迹避障小车的原理1.1 系统架构智能循迹避障小车主要由STM32微控制器、电机驱动模块、传感器模块和电源模块组成。

STM32微控制器用于控制小车的运动和感知周围环境;电机驱动模块用于控制小车的电机运动;传感器模块用于感知周围环境,包括红外传感器、超声波传感器等;电源模块用于为整个系统提供电源供应。

1.2 工作原理智能循迹避障小车主要工作原理是通过传感器模块感知周围环境的障碍物和地面情况,然后通过STM32微控制器对传感器数据进行处理,再控制电机驱动模块完成小车的运动。

在循迹导航时,小车可以通过红外传感器感知地面情况,然后根据传感器数据进行反馈控制,使小车能够按照预定路径行驶;在避障时,小车可以通过超声波传感器感知前方障碍物的距离,然后通过控制电机的速度和方向来避开障碍物。

2.1 硬件设计智能循迹避障小车的硬件设计主要包括电路设计和机械结构设计。

电路设计中,需要设计STM32微控制器和传感器、电机驱动模块的连接电路,以及电源模块的电源供应电路;机械结构设计中,需要设计小车的外观和结构,以及安装电机、传感器等模块的位置和方式。

2.2 软件设计智能循迹避障小车的软件设计主要包括STM32程序设计和智能控制算法设计。

STM32程序设计中,需要编写STM32微控制器的程序,包括对传感器数据的采集和处理,以及对电机的控制;智能控制算法设计中,需要设计循迹导航算法和避障算法,以使小车能够智能地进行循迹导航和避障。

2.3 制作过程制作智能循迹避障小车的过程主要包括电路焊接、机械结构装配、程序编写和调试等步骤。

寻迹避障小车原理

寻迹避障小车原理

寻迹避障小车原理
小车避障就是一种无人机,它可以认出汽车前方的不同障碍物,并以
此作出响应。

它具有自主的智能,即在它看到障碍物之后,会根据障碍的
位置和距离选择合适的方法来避开它。

一种典型的小车避障就是超声波避障。

它使用超声波传感器来测量障
碍物的距离,而且能够自动识别障碍物的大小、形状和位置。

检测到障碍
物之后,小车就会根据障碍物的位置来决定向左转还是向右转,还可以前
进避开障碍物,最后回到正常的路径。

此外,超声波避障的检测距离通常
只有几厘米,所以它也可以用于小距离的避障。

另一种小车避障的解决方案是使用红外传感器。

与超声波传感器不同,红外传感器可以检测到更远距离的障碍物,而且它还可以分辨出障碍物的
形状。

因此,使用红外传感器就可以在更远的距离上检测到障碍物,从而
更好地避免碰撞。

有时候,为了更准确地让小车避障,还会使用摄像头。

摄像头可以拍
摄到前方的障碍物,从而让小车根据障碍物的形状和大小来决定避开它们
的方法。

同时,摄像头也可以用来检测前方是否有其他车辆,从而给小车
提供躲避其他车辆的能力。

最后,为了让小车自主寻找传感器能够检测到的障碍物,可以采用激
光定位系统。

红外循迹小车原理

红外循迹小车原理

红外循迹小车原理红外循迹小车是一种基于红外传感技术的智能小车,它能够根据环境中的红外信号进行自主的行驶和避障。

在这篇文档中,我们将详细介绍红外循迹小车的原理及其工作过程。

首先,红外循迹小车的核心部件是红外传感器。

红外传感器能够感知环境中的红外信号,并将其转化为电信号输出。

在红外循迹小车中,通常会使用多个红外传感器,它们分布在小车的前、后、左、右等方向,以便全方位地感知周围环境的红外信号。

当红外循迹小车开始工作时,红外传感器会不断地感知周围环境中的红外信号。

在循迹模式下,小车会根据感知到的红外信号来调整自己的行驶方向,从而实现沿着特定轨迹行驶的目的。

当红外传感器感知到地面上的红外信号时,小车会判断自己偏离了预设的轨迹,然后通过控制电机的转向来纠正行驶方向,使得小车能够沿着预设的轨迹行驶。

除了循迹模式,红外循迹小车还可以在避障模式下工作。

在这种模式下,红外传感器会感知到前方障碍物发出的红外信号,小车会通过控制电机的速度和方向来避开障碍物,从而实现自主避障的功能。

总的来说,红外循迹小车能够通过感知周围环境中的红外信号,实现自主的循迹和避障功能。

这种基于红外传感技术的智能小车,不仅能够在实验室和教学中得到广泛的应用,还可以作为科技创新的教育工具,激发学生对科学和技术的兴趣,培养他们的创新能力和实践能力。

在未来,随着红外传感技术的不断发展和智能化水平的提高,红外循迹小车将会有更广泛的应用场景,例如自动驾驶、智能物流等领域。

相信红外循迹小车将会成为未来智能科技发展的重要组成部分,为人们的生活带来更多的便利和乐趣。

通过本文档的介绍,相信大家对红外循迹小车的原理和工作过程有了更深入的了解。

红外循迹小车作为一种基于红外传感技术的智能小车,具有很高的实用价值和教育意义,希望大家能够进一步深入研究和应用,为智能科技的发展做出更大的贡献。

寻迹避障小车原理

寻迹避障小车原理

循迹避障小车原理一)小车功能实现利用光电传感(红外对射管,红外发射与接收二极管组成)检测黑白线,实现小车能跟着白线(或黑线)行走,同时也可避开障碍物,即小车寻迹过程中,若遇障碍物可自行绕开,绕开后继续寻迹。

二)电路分析1.光电传感循迹光电传感器原理,利用黑白线对红外线不同的反射能力。

然后通过光敏二极管或光敏三极管,接收反射回的不同光强信号,把不同光强转换为电流信号,最后通过电阻,转换为单片机可识别的高低电平。

光电传感器实现循迹的基本电路如下图所示、循迹传感器基本电路电路解释:TC端是传感器工作控制端,为高电平时,发光二极管不工作,传感器休眠,为低电平时,传感器启动。

Signal端为检测信号输出,当遇到黑线,黑线吸收大量的红外线,反射的红外线很弱,光敏三极管不导通,signal输出高电平,当遇到白线,与黑线相反,反射的红外线很强,使光敏三极管导通,sign al输出低电平。

寻迹部分调整左右传感器之间的距离,两探头距离约等于白线宽度最合适,一般白线宽度选择围为3 – 5 厘米比较合适。

注意:该传感器的灵敏度是可调的,偶尔传感器遇到白线却不能送出相应的信号,通过调节传感器上的可调电阻,适当的增大或减小灵敏度。

另外,循迹传感器的安放也算是比较有讲究的,有两种方法,一种是两个都是放置在白线侧但紧贴白线边缘,第二种是都放置在白线的外侧,同样紧贴白线边缘。

我们通常采用第二种方法。

编写程序使小车遇白线时,小车跟着白线走。

当小车先前前进时,如果向左偏离了白线。

那么右边传感器会产生一个低电平,单片机判断这个信号,然后向右拐。

回到白线后。

两传感器输出信号为高电平。

小车前进。

如果小车向右偏离白线,左边传感器产生一个低电平,单片机判断这个信号,然后向左拐。

如此如此,小车必不偏离白线。

若小车的两对光电传感器同时输出的信号为高电平(黑底)或低电平(白底),即单片机判断的都为高电平或低电平,小车向前直走,在此过程中(直走)小车若遇白线,小车又重复上面动作跟着白线走。

循迹小车的工作原理

循迹小车的工作原理

循迹小车的工作原理
循迹小车是一种具有自动导航能力的智能机器人,它可以实现自动避障、路径规划以及自动跟踪。

循迹小车的原理是利用光线强度或颜色变化来识别路径,从而实现路径的跟踪。

循迹小车的组成是由控制器、电机和传感器等部件组成的,而这些部件的复杂性和功能强度使其能够实现各种功能。

循迹小车的控制器是一种芯片,其负责处理小车运行中发生的各种事件,这种控制器可以识别光线的强度及小车前进的方向,从而控制小车遵从某个特定路径前进。

循迹小车的电机是一种转动单元,它可以根据传感器的信号调节小车的速度和方向,以便小车能够遵循正确的路径。

此外,电机还可以调节小车的转向角度,使小车能够沿着特定的路径前进。

循迹小车的传感器是检测外界信号的设备,它可以检测到地面上的特定光线强度或颜色变化,并根据这些信号来决定小车的前进方向。

例如,当小车探测到地面上的特定颜色时,可以给小车发送一个信号,指示小车右转或者左转。

此外,这种循迹小车还可用于自动避障,通过距离传感器的帮助,小车可以识别障碍物的位置,并尽可能地避开它们。

总而言之,循迹小车是一种非常先进而又实用的机器人。

它可以根据光线强度或颜色变化来识别道路,以及通过距离传感器识别障碍物,从而实现自动导航。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循迹避障小车原理一)小车功能实现利用光电传感(红外对射管,红外发射与接收二极管组成)检测黑白线,实现小车能跟着白线(或黑线)行走,同时也可避开障碍物,即小车寻迹过程中,若遇障碍物可自行绕开,绕开后继续寻迹。

二)电路分析1.光电传感循迹光电传感器原理,利用黑白线对红外线不同的反射能力。

然后通过光敏二极管或光敏三极管,接收反射回的不同光强信号,把不同光强转换为电流信号,最后通过电阻,转换为单片机可识别的高低电平。

光电传感器实现循迹的基本电路如下图所示、循迹传感器基本电路电路解释:TC端是传感器工作控制端,为高电平时,发光二极管不工作,传感器休眠,为低电平时,传感器启动。

Signal端为检测信号输出,当遇到黑线,黑线吸收大量的红外线,反射的红外线很弱,光敏三极管不导通,signal输出高电平,当遇到白线,与黑线相反,反射的红外线很强,使光敏三极管导通,signal输出低电平。

寻迹部分调整左右传感器之间的距离,两探头距离约等于白线宽度最合适,一般白线宽度选择范围为3 – 5 厘米比较合适。

注意:该传感器的灵敏度是可调的,偶尔传感器遇到白线却不能送出相应的信号,通过调节传感器上的可调电阻,适当的增大或减小灵敏度。

另外,循迹传感器的安放也算是比较有讲究的,有两种方法,一种是两个都是放置在白线内侧但紧贴白线边缘,第二种是都放置在白线的外侧,同样紧贴白线边缘。

我们通常采用第二种方法。

编写程序使小车遇白线时,小车跟着白线走。

当小车先前前进时,如果向左偏离了白线。

那么右边传感器会产生一个低电平,单片机判断这个信号,然后向右拐。

回到白线后。

两传感器输出信号为高电平。

小车前进。

如果小车向右偏离白线,左边传感器产生一个低电平,单片机判断这个信号,然后向左拐。

如此如此,小车必不偏离白线。

若小车的两对光电传感器同时输出的信号为高电平(黑底)或低电平(白底),即单片机判断的都为高电平或低电平,小车向前直走,在此过程中(直走)小车若遇白线,小车又重复上面动作跟着白线走。

避障部分当小车在寻迹(沿着白线走或直走)过程中遇障碍物,小车亦可自行转弯,转弯动作完成后,又继续寻迹。

2.电机驱动电路电机驱动芯片采用L298N,是一款承受高压大电流的全桥型直流/步进电压驱动器,如下图电机控制芯片L298N的引脚排列引脚编号名称功能1电流传感器A在该引脚和地之间接小阻值电阻可用来检测电流2输出引脚1内置驱动器A的输出端1,接至电机A 3输出引脚2内置驱动器A的输出端2,接至电机A4电机电源端电机供电输入端,电压可达46V5输入引脚1内置驱动器A的逻辑控制输入端16使能端A内置驱动器A的使能端7输入引脚2内置驱动器A的逻辑控制输入端28逻辑地逻辑地9逻辑电源端逻辑控制电路的电源输入端为5V10输入引脚3内置驱动器B的逻辑控制输入端111使能端B内置驱动器B的使能端12输入引脚4内置驱动器B的逻辑控制输入端213输出引脚3内置驱动器B的输出端1,接至电机B 14输出引脚4内置驱动器B的输出端2,接至电机B15电流传感器B在该引脚和地之间接小阻值电阻可用来检测电流L298N内部原理图电机驱动A/B的控制逻辑如下表所示输入信号电机运动方式使能端A/B输入引脚1/3输入引脚2/4110前进101后退111紧急停车100紧急停车0X X自由转动电机驱动A/B的工作原理电机控制逻辑如下:以电机A为例,当使能端A为高电平是,如果输入端M1 Direction引脚为高电平,三极管导通,输入引脚1为低电平而输入引脚2为高电平,电机A反转;如果输入端M1 Direction引脚为底电平,三极管截止,输入引脚1为高电平而输入引脚2为低电平,电机A正转。

电机驱动原理图3.中文液晶显示器128x64带中文字库的128X64是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块。

其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集。

利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。

可以显示8×4行16×16点阵的汉字,也可完成图形显示。

具有低电压低功耗特点。

由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。

基本特性: 低电源电压(VDD:++)显示分辨率:128×64点内置汉字字库,提供8192个16×16点阵汉字(简繁体可选)内置 128个16×8点阵字符2MHZ时钟频率显示方式:STN、半透、正显驱动方式:1/32DUTY,1/5BIAS视角方向:6点背光方式:侧部高亮白色LED,功耗仅为普通LED的1/5—1/10通讯方式:串行、并口可选内置DC-DC转换电路,无需外加负压无需片选信号,简化软件设计工作温度: 0℃ - +55℃ ,存储温度: -20℃ - +60℃ 模块接口说明:PIN 15LED+背光正极,接PIN 116LED-背光负极,接0V*注:1:如在实际应用中仅使用并口通讯模式,可将PSB接固定高电平,也可以将模块上的J8和“VCC”用焊锡短接;2:模块内部接有上电复位电路,因此在不需要经常复位的场合可将该端悬空;3:如背光和模块共用一个电源,可以将模块上的JA、JK用焊锡短接。

引脚控制信号应用D/I,R/W的配合选择决定控制界面的4种模式:D/I R/W功能说明L L MPU写指令到指令暂存器(IR)L H读出忙标志(BF)及地址记数器(AC)的状态H L MPU写入数据到数据暂存器(DR)H H MPU从数据暂存器(DR)中读出数据E信号操作:内部寄存器信号● 忙标志:BFBF标志提供内部工作情况,BF=1表示模块在进行内部操作,此时模块不接受外部指令和数据。

BF=0时,模块为准备状态,随时可接受外部指令和数据。

利用STATUS RD 指令,可以将BF读到DB7总线,从而检验模块之工作状态。

●字型产生ROM(CGROM)字型产生ROM(CGROM)提供8192个此触发器是用于模块屏幕显示开和关的控制。

DFF=1为开显示(DISPLAY ON),DDRAM的内容就显示在屏幕上,DFF=0为关显示(DISPLAY OFF)。

DFF 的状态是指令DISPLAY ON/OFF和D/IT信号控制的。

●显示数据RAM(DDRAM)模块内部显示数据RAM提供64×2个位元组的空间,最多可控制4行16字(64个字)的中文字型显示,当写入显示数据RAM时,可分别显示CGROM与CGRAM的字型;此模块可显示三种字型,分别是半角英数字型(16*8)、CGRAM字型及CGROM的中文字型,三种字型的选择,由在DDRAM中写入的编码选择,在此阶段0000H—0006H的编码中(其代码分别是0000、0002、0004、0006共4个)将选择CGRAM的自定义字型,02H—7FH的编码中将选择半角英数字的字型,至于A1以上的编码将自动的结合下一个位元组,组成两个位元组的编码形成中文字型的编码BIG5(A140—D75F),GB(A1A0-F7FFH)。

●字型产生RAM(CGRAM)字型产生RAM提供图象定义(造字)功能,可以提供四组16×16点的自定义图象空间,使用者可以将内部字型没有提供的图象字型自行定义到CGRAM中,便可和CGROM中的定义一样地通过DDRAM显示在屏幕中。

● 地址计数器AC地址计数器AC地址计数器是用来贮存DDRAM/CGRAM之一的地址,它可由设定指令暂存器来改变,之后只要读取或是写入DDRAM/CGRAM的值时,地址计数器的值就会自动加一,当D/I为“0”时而R/W为“1”时,地址计数器的值会被读取到DB6——DB0中。

●光标/闪烁控制电路此模块提供硬体光标及闪烁控制电路,由地址计数器的值来指定DDRAM中的光标或闪烁位置。

指令操作模块控制芯片提供两套控制命令,基本指令和扩充指令如下:指令表1:(RE=0:基本指令)指令表2:(RE=1:扩充指令)注:当IC1在接受指令前,微处理器必须先确认其内部处于非忙碌状态,即读取BF标志时,BF需为零,方可接受新的指令;如果在送出一个指令前并不检查BF标志,那么在前一个指令和这个指令中间必须延长一段较长的时间,即是等待前一个指令确实执行完成。

三、显示应用1、字符显示带中文字库的128X64-0402B每屏可显示4行8列共32个16×16点阵的汉字,每个显示RAM可显示1个中文字符或2个16×8点阵全高ASCII码字符,即每屏最多可实现32个中文字符或64个ASCII码字符的显示。

带中文字库的128X64-0402B内部提供128×2字节的字符显示RAM缓冲区(DDRAM)。

字符显示是通过将字符显示编码写入该字符显示RAM实现的。

根据写入内容的不同,可分别在液晶屏上显示CGROM(中文字库)、HCGROM(ASCII码字库)及CGRAM(自定义字形)的内容。

三种不同字符/字型的选择编码范围为:0000~0006H(其代码分别是0000、0002、0004、0006共4个)显示自定义字型,02H~7FH显示半宽ASCII码字符,A1A0H~F7FFH显示8192种GB2312中文字库字形。

字符显示RAM在液晶模块中的地址80H~9FH。

字符显示的RAM的地址与32个字符显示区域有着一一对应的关系,其对应关系如下表所示。

80H81H82H83H84H85H86H87H90H91H92H93H94H95H96H97H88H89H8AH8BH8CH8DH8EH8FH98H99H9AH9BH9CH9DH9EH9FH其中,C语言编译器具有直接把中文转换成ASCII码字符功能。

对照下面原理图,编译程序示例,并下载到实验板上,观测现象。

4.寻迹避障程序#include<>#define uchar unsigned char#define uint unsigned intsbit RM1=P0^0;sbit RM2=P0^1; rw=1; do{P1=0x00;en=1; //E信号下降沿锁存DB7~DBOdat=P1; //读入P1的值en=0; //锁存dat=0x80 & dat; //BUSY:1内部在工作,0正常状态}while(!(dat==0x00));rw=0;}void sentcom(uchar com){ checkbusy(); //检查Busyrs=0;en=0;P1=com;delay(5);en=1;delay(5);en=0;}void sentdata(uchar date) //写数据{checkbusy();rs=1;en=0;P1=date;delay(5);en=1;delay(5);en=0;}//初始化 LCMvoid lcd_init(){sentcom(0x38);//功能设置,一次送8位数据,基本指令集sentcom(0x0C);//0000,1100 整体显示,游标off,游标位置offsentcom(0x01);//0000,0001 清DDRAMsentcom(0x02);//0000,0010 DDRAM地址归位sentcom(0x80);//1000,0000 设定DDRAM 7位地址000,0000到地址计数器AC}void lcd_string(char *strpoint)//在当前显示位置显示LCD字符串{ register i=0;while(strpoint[i]!=0){sentdata(strpoint[i]);i++;}}void stop(){lcd_init();sentcom(0x80);lcd_string("现代创新实训室 ");//C编译系统本省也具有转换功能,所以也可以这样写sentcom(0x90);lcd_string("寻迹避障一体小车");sentcom(0x88);lcd_string("--指导:文方老师");sentcom(0x98);lcd_string("--设计:刘志聪 ");}void tracing(){sentcom(0x80);lcd_string("现代创新实训室 ");sentcom(0x90);lcd_string("--指导:文方老师");sentcom(0x88);lcd_string("--设计:刘志聪 ");sentcom(0x98);lcd_string(" 小车寻迹中---"); }void bypass(){sentcom(0x80);lcd_string("现代创新实训室 ");sentcom(0x90);lcd_string("--指导:文方老师");sentcom(0x88);lcd_string("--设计:刘志聪 ");sentcom(0x98);lcd_string(" 小车避障中---"); }void find(){tracing();while(bzh==1){ if(LBD&&RAD==1){RM1=1;LM1=1;RM2=0;LM2=0;}if(RAD==0){RM1=0;LM1=1;RM2=0;LM2=0;if(LBD==0){RM1=1;LM1=1;RM2=0;LM2=0;delay(i);}}if(LBD==0){RM1=1;LM1=0;RM2=0;LM2=0;if(RAD==0){RM1=1;LM1=1;RM2=0;LM2=0;delay(i);}}}}void bizhan(){ bypass();if(bzh==0){RM1=1;LM1=0;RM2=0;LM2=1;delay(100);}}void main(){ stop();delay(2000);while(1){find();bizhan();}}。

相关文档
最新文档