液晶高分子材料PPT课件
液晶高分子ppt课件
结论与展望
03
总结研究成果,指出研究局限性和未来研究方向,展望液晶高
分子领域的发展前景。
05
液晶高分子材料性能及应 用研究
材料性能评价
01
液晶性
液晶高分子具有独特的液晶性,即在一定温度范围内呈现出液晶态。这
种液晶态具有光学各向异性、高粘度、低流动性等特点,使得液晶高分
子在显示、光学、电子等领域具有广泛应用。
光学性质
具有优异的光学性能,如 高透明度、低双折射等。
液晶态特性
取向有序性
液晶分子在某一特定方向排列有序, 形成各向异性。
流动性
连续性与流动性
液晶分子的排列并不像晶体那样完美 ,而是存在一定的缺陷和位错,这些 缺陷和位错使得液晶具有流动性和连 续性。
与晶体不同,液晶具有流动性,其分 子排列不像晶体那样牢固。
01
02
03
主链型液晶高分子
分子主链具有刚性,能形 成液晶态的聚合物。
侧链型液晶高分子
液晶基元作为侧基连接在 柔性主链上,侧基具有足 够大或刚性。
组合型液晶高分子
主链和侧链上同时含有液 晶基元的聚合物。
物理性质
热学性质
具有较宽的液晶相温度范 围,较高的热稳定性和热 氧化稳定性。
力学性质
具有高强度、高模量、低 收缩等优异的力学性能。
电子领域
液晶高分子在电子领域的应用主要包括电子封装材料、电子绝缘材料等。利用液晶高分子 的耐高温、耐化学腐蚀等特性,可以提高电子产品的可靠性和稳定性。
挑战与机遇并存
挑战
液晶高分子的研究和发展面临着一些挑战,如合成难度大、成本高、应用领域受限等。此外,随着科技的不断发 展,新型显示技术不断涌现,对液晶高分子的需求也在不断变化,这对液晶高分子的研究和发展提出了更高的要 求。
液晶高分子材料 PPT课件
(2)接枝共聚
这类合成方法的通式如下:
AAA
+B
AAA BBB
例如将含致晶单元的乙烯基单体与主链硅原子 上含氢的有机硅聚合物进行接枝反应,可得到主链 为有机硅聚合物的侧链型高分子液晶。
34
(3)缩聚反应
这类合成方法的通式如下:
AB n
[ A BA B ]n + (n-1) ab
例如,将含有致晶单元的氨基酸通过自缩合 即可得到侧链型高分子液晶。
含有双键、三键的二苯乙烯、二苯乙炔类的液 晶的化学稳定性较差,会在紫外光作用下因聚合或 裂解失去液晶的特性。
23
外部因素对高分子液晶形态与性能的影响
除了内部因素外,液晶相的形成也赖于外部条 件的作用。外在因素主要包括环境温度和溶剂等。
对热致型高分子液晶来说,最重要的影响因 素是温度。足够高的温度能够给高分子提供足够的 热动能,是使相转变过程发生的必要条件。因此, 控制温度是形成高分子液晶和确定晶相结构的主要 手段。
清亮点Tcl:当化合物在升高温度时突然变为各向同性的 透明液体时,相应的转变温度称为清亮点
共聚酯液晶的清亮点Tcl随其相对分子质量的增加 而上升。当相对分子质量增大至一定数值后,清亮
点趋于恒定。布鲁斯坦(Blurmstein)据此总结出一经
验公式为:其中,C1和C2为常数。
1 TLC
C1
C2 Mn
高分子液晶材料
液晶态相关概念 高分子液晶分类 高分子液晶结构及性能 高分子液晶材料表征方法 高分子液晶的应用
1
什么是液晶(LC)?
某些物质受热熔融或被溶剂溶解后,虽然它有液体的流 动性,但却保持着晶态物质分子的有序性,体现出晶体的各 向异性,形成一类兼有晶体和液体部分性质的过渡态, 这种 中间状态状称为液晶态。
液晶高分子LCP简介演示
光学器件
其他领域
LCP独特的光学性能使其在光学器件如光栅 、偏振片、光学薄膜等方面具有广泛应用 。
LCP还可应用于汽车、医疗器械、体育器材 等领域,满足各种特殊性能需求。
0法
将LCP溶于适当的溶剂中,通过纺丝、涂膜等方法制造成型。溶液法具有制造 工艺简单的优点,但需要大量溶剂,且溶剂回收成本高。
应用前景
由于LCP的优异性能,它在工程塑料、电子电器、汽车零部件、航空航天等领域具有广泛的应用前景。未来随着 科技的进步和LCP改性技术的不断发展,LCP的应用领域将进一步拓展。
04
LCP的环保与可持续发展
LCP的环保性能
生物可降解性
01
LCP具有生物可降解性,可以在自然环境中被微生物分解为无害
熔融法
将LCP加热至熔点以上,通过挤出、注射等成型方法制造。熔融法具有制造成本 低、生产效率高的优点,但需要较高的加工温度,对设备要求较高。
LCP的制造原理
LCP的分子结构中包含刚性的液晶基元和柔性的高分子链,通过控制分子结构和 加工条件,可以实现LCP的液晶态和高分子态之间的转化,从而具有优异的物理 性能和加工性能。
感谢观看
熔融法生产技术与设备
熔融法生产LCP的主要设备包括加热炉、挤出机、注射机等 。其中,挤出机和注射机是实现LCP成型的核心设备,其加 热系统、传动系统、控制系统等都需要高精度、高稳定性的 设计和制造。
03
LCP的性能测试与分析
LCP的物理性能测试
1 2 3
热性能
LCP具有优异的热稳定性,可承受高温环境,同 时其热变形温度也较高,表现出良好的耐热性。
在制造过程中,通过控制温度、压力、剪切力等参数,可以使LCP分子在有序排 列的同时进行高分子链的运动和交联,从而形成具有优异性能的LCP材料。
液晶高分子PPT讲稿-2024鲜版
•液晶高分子概述•液晶高分子结构与性质•液晶高分子合成与制备•液晶高分子材料性能评价•液晶高分子在显示技术中应用•液晶高分子在其他领域应用拓展•总结与展望contents目录定义光学性质分子排列可调控性定义与特点20世纪初20世纪60年代现状液晶高分子已成为显示技术、光电子器件等领域的重要材料。
随着科技的不断发展,液晶高分子的性能和应用领域仍在不断拓展。
显示技术光电子器件•生物医学:用于制造生物芯片、生物传感器等医疗器械。
前景随着科技的不断发展,液晶高分子的性能和应用领域仍在不断拓展。
未来,液晶高分子有望在柔性显示、可穿戴设备、智能家居等领域发挥更大作用。
分子结构特点有序排列刚性分子链液晶高分子的分子链在空间中呈现有序排列,形成特定的晶体结构,这是液晶性质的基础。
各向异性液晶相变行为温度诱导相变随着温度的变化,液晶高分子可以发生从晶态到液晶态,再到各向同性液态的相变过程。
压力诱导相变在某些情况下,压力也可以诱导液晶高分子发生相变。
电场和磁场诱导相变液晶高分子在电场和磁场作用下也可以发生相变,这种相变行为在显示器件等领域有重要应用。
物理化学性质光学性质液晶高分子具有独特的光学性质,如双折射、旋光性等,这些性质使得液晶高分子在显示器件、光学器件等领域有广泛应用。
力学性质由于分子链的刚性和有序排列,液晶高分子通常具有较高的力学强度和模量。
热学性质液晶高分子的热学性质也表现出各向异性,如热膨胀系数、热导率等在不同方向上有所不同。
电学性质液晶高分子在电场作用下可以发生取向变化,表现出一定的电学性质,如介电常数、电导率等。
活性聚合缩聚反应开环聚合030201合成方法与路线设计原料选择与反应条件优化选用高纯度、低杂质含量的单体和引发剂,确保产物质量和性能。
根据单体和引发剂的活性,选择合适的反应温度,提高聚合速率和产物分子量。
控制反应时间,确保聚合反应充分进行,同时避免过度聚合导致产物性能下降。
选用合适的溶剂,提高单体和引发剂的溶解度,促进聚合反应的进行。
高分子材料晶态结构课件.ppt
2.基本结构单元的不同
小分子:原子、分子和离子 高分子:分子链段
高分子材料晶态结构课件
3.6.1 高分子链在晶体中的构象
影响因素:分子链本身和分子链间相互 作用两种因素。
1.分子间力会影响链的相互堆砌,即影 响分子间的构象和链和链之间的堆砌密 度。如:氢键,范得华力等。
高分子材料晶态结构课件
高分子结晶的特点
1.晶区与非晶区共存。由于高分子为长 链结构,链上的原子通过共价键相连接, 因此结晶时链段是不能充分自由运动的, 必定妨碍其作规整的堆积和排列,使得 在高分子晶体内部往往含有比低分子晶 体更多的晶格缺陷。如果晶格缺陷比较 严重的话,会导致出现所谓准晶结构, 甚至会成为非晶区。
高分子材料晶态结构课件
3.6.2高分子材料晶态结构模型
1、缨状微束模型
高分子材料晶态结构课件
结构特点
晶区和非晶区互相穿插,同时存在;一 根分子链可以同时穿过几个晶区和非晶 区,在晶区中,分子链互相平行排列形 成规整的结构,但晶区的尺寸很小 (10nm左右),晶区在通常情况下是无 规取向的;而在非晶区中,分子链的堆 砌是完全无序的。这个模型又叫两相结 构模型(
高分子材料晶态结构课件
IV. 聚合物结晶过程的影响因素
(1)分子链结构 聚合物的结晶能力与分子链结构密切相关,凡分子结
构对称(如聚乙烯)、规整性好(如有规立构聚丙烯)、 分子链相互作用强(如能产生氢键或带强极性基团,如聚 酰胺等)的聚合物易结晶。
分子链的结构还会影响结晶速度,一般分子链结构越 简单、对称性越高、取代基空间位阻越小、立体规整性越 好,结晶速度越快。
(2)高分子液晶的分类 高分子液晶有三种不同的结构类型:近晶型、向列型和
胆甾型(三种模型的分子链可动)。
第四章液晶高分子详解PPT课件
新型合成技术探讨
活性自由基聚合
01
利用活性自由基控制聚合过程,合成结构规整、分子量分布窄
的液晶高分子。
原子转移自由基聚合
02
通过原子转移反应实现自由基聚合,制备高性能液晶高分子材
料。
可控/活性阴离子聚合
03
利用阴离子聚合反应的可控性,合成具有特定结构和性能的液
晶高分子。
实验室制备实例分享
实例一
通过缩聚反应合成芳香族聚酯液 晶高分子,探讨反应条件对产物
DSC测试结果显示,该液晶高分子的熔 点为220℃,清亮点为280℃,热稳定性 良好。
XRD分析结果表明,该液晶高分子在液 晶态下具有层状结构,分子排列有序度 高。
05
液晶高分子在显示器件中 应用研究
显示器件原理简介
显示器件基本构造
包括背光模块、显示面板、驱动 电路等部分,其中显示面板是实 现图像显示的核心部分。
温度、压力、浓度等外部条件的变 化可以影响液晶高分子的液晶态行 为,如升温可导致液晶态向液态的 转变。
03
液晶高分子合成方法与技 术
传统合成方法回顾
缩聚反应
通过官能团之间的缩合反 应,逐步聚合生成高分子 液晶。
加聚反应
利用烯烃等单体的加成反 应,合成具有液晶性的高 分子链。
开环聚合
环状单体在引发剂作用下 开环并聚合成高分子液晶 。
第四章液晶高分子详解PPT 课件
contents
目录
• 液晶高分子概述 • 液晶高分子结构与性质 • 液晶高分子合成方法与技术 • 液晶高分子表征手段及评价标准 • 液晶高分子在显示器件中应用研究 • 液晶高分子在其他领域拓展应用探讨
01
液晶高分子概述
液晶高分子PPT课件
12
下面以主链型溶致性高分子液晶的合成为例
13
主链型溶致性高分子液晶的合成
主链型溶致性高分子液晶主要有以下几类: (1)芳香族聚酰胺 (2)聚酰胺酰阱 (3)聚苯并噻唑 (4)纤维素类 • 主链型溶致性高分子液晶主要应用在高强度、
高模量纤维和薄膜的制备方面
14
22
2. 高强高模材料
• 高强高模材料包括主链型溶致和热致LCP两大 类。溶致LCP材料制造纤维和薄膜,主要是聚 芳酰胺如 PPTA和杂环高分子如 PBZT和 PBO。 热致 LCP制造模塑制品、纤维、薄膜、涂料、 粘合剂,芳香共聚酯为主,此外还有聚碳酸 酯、聚酰胺、聚酰亚胺、聚酯酰胺等。
23
溶致LCP
20
高分子液晶的应用领域 • 液晶高分子由于其区别于其他高分子材
料的流变性能、各向异性以及良好的热 稳定性、优异的介电、光学和机械性能, 以及它的抗化学试剂能力、低燃烧性和 极好的尺寸稳定性,在诸多领域日益受 到重视,获得了越来越广泛的应用。
21
1.液晶显示器
液晶显示技术,是应用向列型液晶的灵敏的电响应 特性和优秀的光学特性。把透明的向列型液晶薄膜夹在 两块导电的玻璃板之间,在施加适当电压的点上变得不 透明,因此当电压以某种图形的形式加到液晶薄膜上就 产生了图像。液晶显示器件最大的优点在于耗电低,可 以实现微型化和超薄化。与小分子液晶材料相比,液晶 高分子在图形显示方面的应用前景在于利用其优点开发 大面积、平面、超薄型、直接沉积在控制电极表面的显 示器,具有相当大的优势。
31
谢谢
32Байду номын сангаас
个人观点供参考,欢迎讨论!
CO ]n + (n-1) H2O
《高分子液晶》课件
3
形成条件
高分子长链的规整排列和有序堆砌。
高分子液晶的特性
流动性
液晶态的高分子材料具有流动性,可以流动和变形。
光学各向异性
高分子液晶具有光学各向异性,表现为双折射现象。
电学和磁学响应性
部分高分子液晶具有电学和磁学响应性,能够在外加 电场或磁场的作用下改变其性质。
高分子液晶的应用领域
显示技术
利用高分子液晶的电学响应性 和光学各向异性,用于制造平 板显示器、电子书等显示设备
柔性链状高分子液
晶
由柔性链状分子组成,具有较低 的粘度和弹性,主要应用于纤维 、塑料等领域。
侧链型高分子液晶
由侧链含有刚性基团的高分子组 成,具有较好的机械性能和热稳 定性,主要应用于工程材料等领 域。
高分子液晶的结构
层状结构
高分子液晶分子在平面内排列成层状结构,层内分 子相互平行且取向一致,层间分子取向不同。
。
生物医学
高分子液晶材料可应用于药物 载体、组织工程和生物医学成 像等领域。
传感器和驱动器
利用高分子液晶的电学和磁学 响应性,开发传感器和驱动器 等器件。
先进材料
高分子液晶作为新型功能材料 ,在能源、环保等领域具有广
泛的应用前景。
02 高分子液晶的分类与结构
高分子液晶的分类
刚性棒状高分子液
晶
由刚性棒状分子组成,具有较高 的热稳定性,主要应用于光电子 器件等领域。
等,发掘更多潜在应用价值。
电场取向效应
在外加电场的作用下,高分子液晶的 分子能够沿着电场方向取向排列,产 生明显的电场取向效应。
机械性能
韧性
高分子液晶具有较好的韧性,不易脆断。
硬度与耐磨性
第三章液晶高分子材料
O O C O O C OH O CH3 C O C OH
ABA (p-acetoxybenzoic acid) Thin film polymerization method
ANA (2,6-acetoxynaphthoic acid)
Reaction system Glass slides Steel ring
第一节 液晶的结构分类
1.1 按分子排列形式,液晶可分为三类:
近晶型
向列型
胆甾型
图6-1 液晶结构示意图
1.2 按呈现液晶态的形成条件分类: 热致性液晶是依靠温度的变化,在某一温度范 围形成的液晶态物质。
溶致性液晶则是依靠溶剂的溶解分散,在一 定浓度范围形成的液晶态物质。 此外还有感应液晶、流致液晶。
Heating stage
3.X射线衍射法(XRD)
晶体衍射基础的著名公式──布拉格方程: 2d sinθ=nλ 式中λ为X射线的波长,n为任何正整数。 利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型
4. SAXD -微观相结构
b
O C O C
(the mesogen unit)
O
o o
对于溶致性液晶,溶剂与高分子液晶分 子之间的作用起非常重要的作用。溶剂的 结构和极性决定了与液晶分子间的亲和力 的大小,进而影响液晶分子在溶液中的构 象,能直接影响液晶的形态和稳定性。控 制高分子液晶溶液的浓度是控制溶液性高 分子液晶相结构的主要手段。
第三节 高分子液晶的合成及表征方法
3.1 合成实施方法
• 外部因素对高分子液晶形态与性能的影响 除了内部因素外,液晶相的形成有赖于外部条件 的作用。外在因素主要包括环境温度和溶剂等。 对热致性高分子液晶来说,最重要的影响因素是 温度。足够高的温度能够给高分子提供足够的热动 能,是使相转变过程发生的必要条件。因此,控制 温度是形成高分子液晶和确定晶相结构的主要手段。 除此之外,施加一定电场或磁场力有时对液晶的形 成也是必要的。
新型高分子材料第二章——高性能高分子PPT课件
2. 热性能
PPS分子的刚性高及规整排列,使其成为结晶性聚合物, 最高结晶度达65%,结晶温度为127℃,Tm为280~290℃, 在空气中的开始分解温度为430~460℃,热稳定性远远优于 PA、PBT、POM及PTFE等工程塑料。经与GF复合增强后, HDT可达260℃,长期使用温度为220~240℃,在热塑性塑 料中是最高的。
全同立构PS(IPS),结晶, 熔点240 ℃
间同立构PS(SPS) ,熔 点270 ℃,
无规立构PS(aPS),无定 形,透明
提高分子的等规度,提高Tg 和Tm
7
分子间氢键
交联
增加分子间的相互作用,提高Tg
8
纤
聚甲醛
维
增
尼龙6
强
尼龙66
对
酚醛树脂
热
聚碳酸酯
变
芳香聚酯
形
温
聚醚醚酮
度
聚苯硫醚
的
聚砜
14
2.2.1 聚苯硫醚
聚苯硫醚(PPS)为对二氯苯和硫化钠为原料制备的,目 前被认为耐热性最佳的聚合物之一。
nNa2S + n Cl
Cl NMP 加热加压
S
+ 2nNaCl
n
PPS为第六大工程塑料和第一大特种工程塑料,属热塑性 结晶树脂。其Tm高达280~290℃,Td>400℃,与无机填料、 增强纤维以及其它高分子材料复合,可制得各种PPS工程塑 料及合金。
有极好的刚性和强度,其拉伸强度、弯曲强度和弯曲弹 性模量均列在工程塑料前列。PPS树脂通过纤维增强后, 刚性进一步提高。
良好的抗蠕变性,在高温下的强度保持率远远高于PBT、 PES、PC及其它工程塑料,适宜制作螺丝等紧固件,可解 决因塑料松弛而引起的紧固力下降这一缺点。
高分子液晶材料
若在其中添加少量磷等,高分子液晶的阻燃性能更好。
16
(4)电性能和成型加工性优异
高分子液晶的绝缘强度高和介电常数低, 而且两者都很少随温度的变化而变化,并导 热和导电性能低。
由于分子链中柔性部分的存在,其流动 性能好,成型压力低,因此可用普通的塑料加 工设备来注射或挤出成型,所得成品的尺寸 很精确。
而某些物质的晶体受热熔融,或者在溶剂中溶解过程 中,虽然失去了固态的大部分性质,外观呈现液体的流 动性质,但是仍然保留一定分子排列的有序性,具有部 分晶体性质,这种过渡相态被称为液晶态。
3
2、液晶高分子的分类
液晶根据分子量的大小,可以分成小分子液晶和聚合物液 晶。
聚合物液晶是通过柔性聚合物链将小分子液晶连接起来构 成,可以克服小分子液晶稳定性差,机械强度小的缺点。 高分子化的同时还赋予聚合物液晶以其他重要性质。
19
5.2 液晶高分子材料的应用
1. 作为高性能工程材料的应用 (1)电子应用领域(各种插件、开关、集成电路等) (2)军用器械和航空应用领域(防弹衣、飞机外壳) (3)汽车和机械工业应用领域(发动机内各种零部件、密封元件) (4)光纤通讯应用领域(石英玻璃、光导纤维的被覆材料) (5)其他领域(化工设备和装置)
17
四、高分子液晶的表征 高分子液晶的表征是一个较为复杂的问题。结
构上细微的差别常常难以明显地区分,因此,经常 出现对同一物质得出不同研究结论的现象。因此经 常需要几种方法同时使用,互相参照,才能确定最 终的结构。目前常用于研究和表征高分子液晶的有 以下一些手段。
18
➢ X射线衍射法 ➢ 核磁共振光谱法 ➢ 介电松弛谱法 ➢ 热台偏光显微镜法 ➢ 热分析法
液晶高分子材料的应用
自修复能力和自适应性能研究
自修复能力
液晶高分子材料具有自修复能力,即在受到 损伤后能够自动修复并恢复原有性能。这种 特性使得液晶高分子材料在智能材料领域晶高分子材料还具有自适应性能,即能够 根据不同的环境条件自动调整自身性能。例 如,在温度变化时,液晶高分子材料的取向 状态和力学性能会发生变化,从而实现对环 境的自适应响应。
生物活性
部分液晶高分子材料具有生物活性, 可以模拟生物体内的天然高分子,如 胶原蛋白和纤维蛋白等,参与生理过 程。
组织工程和再生医学中应用
组织工程支架
液晶高分子材料可作为组织工程支架, 为细胞提供三维生长空间,模拟细胞 外基质环境,促进细胞增殖和分化。
再生医学
在再生医学领域,液晶高分子材料可 用于制备人工器官、组织修复和替代 等医疗产品,为器官衰竭和组织缺损 患者提供治疗选择。
03
液晶高分子材料在光电器 件中应用
光学薄膜制备及性能优化
液晶高分子材料可用于制备光学 薄膜,如偏振片、相位延迟片等。
通过控制液晶高分子的取向和排 列,可以优化光学薄膜的性能,
如提高透过率、降低色差等。
液晶高分子光学薄膜在液晶显示 器、有机发光二极管等显示器件
中有广泛应用。
光纤通信领域中应用
液晶高分子材料可用于制备光纤通信中的光开关、 光调制器等器件。
现状
目前,液晶高分子材料已广泛应用于显 示技术、光电子器件、生物医学、航空 航天等领域,成为材料科学领域的研究 热点之一。
基本性质与特点
01
02
03
04
05
基本性质
优异的加工性能
优异的光学性能
良好的耐候性和 生物相容性好 耐化学腐…
液晶高分子材料具有独特的 物理和化学性质,如光学各 向异性、高弹性、高粘度、 低挥发性等。
功能高分子第五章高分子液晶材料ppt课件
5.2 高分子液晶的性能分析与合成方法
共聚
采用多环芳烃替代苯以增大单体的横向尺寸;
或者在苯环的侧面引入大取代基
Vectra
Tm < 260 oC
n
m
* OC
CO *
O
n
O * Tm < 340 oC
m
Vectra的合成
• Example: poly(p-oxybenzoate/2,6-oxynaphthoate)
二、高分子液晶的分子结构与特征
影响高分子液晶形态和性能的因素
内在因素:分子结构、分子组成和分子间力。 外部因素:主要包括环境温度、溶剂等。
5.1 高分子液晶概述
(内因)分子结构
刚性的致晶单元
有利于在固相中形成结晶。 在转变成液相时也有利于保持晶体的有序度。 规整性越好,越容易使其排列整齐,使得分子间力增
二、高分子液晶的分子结构与特征
(外因)环境温度
对热致型高分子液晶来说,最重要的影响因素是温度。 足够高的温度能够给高分子提供足够的热动能,是使相 转变过程发生的必要条件。因此,控制温度是形成高分 子液晶和确定晶相结构的主要手段。除此之外,施加一 定电场或磁场力有时对液晶的形成也是必要的。
5.1 高分子液晶概述
构效关系
5.1 高分子液晶概述
二、高分子液晶的分子结构与特征
致晶单元结构
R
X
R1
亚氨基 (-C=N-) 刚性连接单元 反式偶氮基 (-N=N-) (阻止两个苯环旋转)氧化偶氮基 (-NO=N-)
酯基 (-COO-) 反式乙烯基 (-C=C-)
将两个环状刚性体(苯环或脂 肪环、芳香杂环)通过一个刚 性连接单元(X)连接而成的刚 性结构部分,称为致晶单元。
2024版《液晶高分子》ppt课件
目录
• 液晶高分子概述 • 液晶高分子结构与性质 • 液晶高分子合成与制备方法 • 液晶高分子表征与测试技术 • 液晶高分子材料应用实例 • 液晶高分子发展趋势与挑战
01
液晶高分子概述
液晶高分子定义与特点
定义
液晶高分子是一类具有液晶性质的 高分子材料,其分子结构介于晶体 和液体之间,表现出独特的物理和 化学性质。
特点
液晶高分子具有高弹性、高韧性、 高强度、高耐热性、高耐化学腐蚀 性以及优异的电学、光学和磁学性 能。
液晶高分子发展历程
早期研究
20世纪60年代,人们开始研究液晶高分子的合成 和性质。
理论发展
70年代,随着液晶理论的不断完善,液晶高分子 的研究逐渐深入。
应用拓展
80年代以来,液晶高分子在显示技术、光电子器 件、生物医学等领域的应用不断拓展。
功能化液晶高分子
研究具有光、电、磁等特殊功能 的液晶高分子材料,拓展其在光 电显示、传感器等领域的应用。
生物相容性液晶高分子
开发具有良好生物相容性和生物 活性的液晶高分子材料,应用于 生物医学领域,如组织工程、药 物载体等。
现有材料性能提升策略
分子结构设计
通过改变液晶高分子的分子结构,如引入刚性基团、增加 分子链长度等,提高其力学性能和热稳定性。
共混改性
将液晶高分子与其他高分子材料进行共混,实现性能互补 和优化,提高综合性能。
纳米复合
利用纳米技术将液晶高分子与无机纳米粒子进行复合,制 备出具有优异性能的纳米复合材料。
面临挑战及解决思路
加工成型困难
液晶高分子通常具有较高的熔点和粘度,加工 成型困难。可通过改进加工工艺、采用高温高 压成型等方法解决。
第四章液晶高分子详解PPT课件
高分子液晶的合成主要基于小分子液晶的高分子化,即 先合成小分子液晶,或称液晶单体,再通过共聚、均聚 或接枝反应实现小分子液晶的高分子化。
一、溶液型侧链高分子液晶
当溶解在溶液中的液晶分子的浓度达到一定值时,分子在 溶液中能够按一定规律有序排列,呈现部分晶体性质,此 时称这一溶液体系为溶液型液晶。当溶解的是高分子液晶 时称其为溶液型高分子液晶。
聚 合 反 应 C H 2 C H C (H 2 )C 8O O H
.
C HC H 2 n C H 2 C (H 2 )C 7O O H
16
② 接枝共聚
.
17
③ 缩聚反应
.
18
2.溶液型侧链聚合物液晶的晶相结构与性质
溶液型高分子液晶 在溶液中通常可以 形成三种晶相,即 近晶相的层状液晶 (lamellar)、向列型 六角型紧密排列液 晶(hexagonal)和立 方晶相液晶(cubic)。
单体液晶(monomer liquid crystals,MLCs)
.
3
液晶的发现
1888年,奥地利植物学家菲德烈莱尼泽(Friedrich Reinitzer)在加热安息香酸胆固醇脂(cholesteryl benzoate)时发现这种物质在145℃融解,但却呈现混浊 的糊状,而在179℃时突然变为透明液体。由于其特殊的 性质,莱尼泽拜访李曼并深入研究,证实其为一种具结 晶性的液体,两人便命名这种物质为Liquid Crystal,即 液态结晶的意思。莱尼泽和李曼被誉为液晶之父。
(1)聚合物骨架
在侧链液晶中使用的聚合物骨架一般都具有良好的柔 性,起着将小液晶分子连接在一起,并对其运动范围 进行一定限制的作用。
.
24
最常见的作为骨架的聚合物包括:聚丙烯酸类、聚环 氧类和聚硅氧烷等柔性较好的聚合物。柔性好的聚合 物链对液晶相的形成干扰较小,对液晶的形成有利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对热致型高分子液晶来说,最重要的影响因
素是温度。足够高的温度能够给高分子提供足够的
热动能,是使相转变过程发生的必要条件。因此,
控制温度是形成高分子液晶和确定晶相结构的主要
手段。
CHENLI
24
对于溶致型液晶,溶剂与高分子液晶分子之间 的作用起非常重要的作用。溶剂的结构和极性决定 了与液晶分子间的亲和力的大小,进而影响液晶分 子在溶液中的构象,能直接影响液晶的形态和稳定 性。控制高分子液晶溶液的浓度是控制溶致型高分 子液晶相结构的主要手段。
溶致性高分子液晶不存在上述问题。
CHENLI
21
致晶单元形状
致晶单元呈棒状时,有利于生成向列型或近晶型液晶; 致晶单元呈片状或盘状的,易形成胆甾醇型或盘型液晶。
另外,高分子链上或者致晶单元上带有不同结构和性 质的基团,都会对高分子液晶的偶极矩、电、光、磁等性 质产生影响。
CHENLI
22
刚性连接单元
CHENLI
16
液晶单元与高分子链的连接方式
液晶类型
结构形式
主链型
CHENLI
名称
纵向型 垂直型
星型 盘型 混合型
17
侧链型
CHENLI
梳型 多重梳型
盘梳型 腰接型 结合型
网型
18
影响高分子液晶形态和性能的因素
影响高分子液晶形态与性能的因素包括外在 因素和内在因素两部分。
内在因素为分子结构、分子组成和分子间力。 外部因素则主要包括环境温度、溶剂等。
CHENLI
19
内部因素对高分子液晶形态与性能的影响
刚性部分
高分子液晶分子中必须含有具有刚性的 致晶单元。刚性结构不仅有利于在固相中形 成结晶,而且在转变成液相时也有利于保持 晶体的有序度。
CHENLI
20
分子构型和分子间力
分子构型和分子间力在热致性高分子液晶相 态和性能影响最大的因素。分子间力大和分子规 整度高虽然有利于液晶形成,但是相转变温度也 提高,使液晶形成温度提高,不利于液晶的加工 和使用。
CHENLI
近晶型
通常是一种浑 浊黏稠液体
5
向列型液晶
在向列型液晶中,棒状分子只维持一 维有序。它们互相平行排列,但重心排列 则是无序的。在外力作用下,棒状分子容 易沿流动方向取向,并可在取向方向互相 穿越。因此,向列型液晶的宏观黏度一般 都比较小,是三种结构类型的液晶中流动 性最好的一种,大多液晶属于这种。
作用下形成的液晶称为感应液晶,如压致液晶、流致液晶。
CHENLI
9
高分子液晶与小分子液晶相比特殊性
① 热稳定性大幅度提高 ② 热致性高分子液晶有较大的相区间温度 ③ 粘度大,流动行为与一般小分子溶液显著不同
CHENLI
10
高分子液晶的分子结构特征
液晶是某些物质在从固态向液态转换时形成的 一种具有特殊性质的中间相态或过渡相态。显然过 渡态的形成与分子结构有着内在联系。分子结构在 液晶的形成过程中起着主要作用,决定着液晶的相 结构和物理化学性质。
高分子液晶材料
液晶态相关概念 高分子液晶分类
高分子液晶结构及性能
高分子液晶材料表征方法
高分子液晶的应用
CHENLI
1
什么是液晶(LC)?
某些物质受热熔融或被溶剂溶解后,虽然它有液体的流 动性,但却保持着晶态物质分子的有序性,体现出晶体的各 向异性,形成一类兼有晶体和液体部分性质的过渡态, 这种 中间状态状称为液晶态。
致晶单元中的刚性连接单元的结构和性质直接 影响液晶的稳定性。
含有双键、三键的二苯乙烯、二苯乙炔类的液 晶的化学稳定性较差,会在紫外光作用下因聚合或 裂解失去液晶的特性。
CHENLI
23
外部因素对高分子液晶形态与性能的影响
除了内部因素外,液晶相的形成也赖于外部条 件的作用。外在因素主要包括环境温度和溶剂等。
CHENLI
向列型
一种浑浊的可 流动的状态
6
胆甾型液晶
分子是长而扁平的。它们依靠端基 的作用,平行排列成层状结构,长轴与 层片平面平行。层内分子排列与向列型 类似,棒状分子分层平行排列,在每个 单层内分子排列与向列型相似,相邻两 层中分子长轴依次有规则地扭转一定角 度,分子长轴在旋转3600后复原。
12
致晶单元通常由苯环、脂肪环、芳香杂环等 通过柔性连接单元连接组成。
连接单元常见的化学结构包括亚氨基(-C= N-)、氧化偶氮基(-NO=N-)、酯基(- COO-)和乙烯基(-C=C-)等。
CHENLI
13
在致晶单元的端部通常还有一个柔软、易弯曲 的取代基(R),这个端基单元是各种极性的或非极 性的基团,对形成的液晶具有一定稳定作用,因此 也是构成液晶分子不可缺少的结构因素。常见的R 包括—R’、 —OR’、 —COOR’、 CN、 —OOCR’、 —COR’、 —CH=CH—COOR’、 —Cl、 —Br、 —NO2等。
CHENLI
11
液晶的分子结构
研究表明,能够形成液晶的物质通常在分子结
构中具有刚性部分,称为致晶单元。从外形上看,
致晶单元通常呈现近似棒状或片状的形态,这样有
利于分子的有序堆砌。这是液晶分子在液态下维持
某种有序排列所必须的结构因素。在高分子液晶中
这些致晶单元被柔性链以各种方式连接在一起。
CHENLI
胆甾型
由于扭转分子层的作用,照射在其上的光将发生偏
振旋转,使得胆甾型液晶通常CH具ENL有I 彩虹般的漂亮颜色
7
CHENLI
8
按形成条件分
热致性液晶
依靠温度的变化,在某一温度范围形成 的液晶态物质
溶致性液晶
依靠溶剂的溶解分散,在一定浓度范围 形成的液晶态物质
此外,在外场(如压力,流动场,电场,磁场和光场等)
CHENLI
2
液晶的发现
CHENLI
3
分类
按分子排列的形式和有序性的不同,液晶有三种结 构类型:近晶型、向列型和胆甾型。
近晶型
向列型
胆甾型
此外,液晶高分子中还有少数分子的形状呈盘状,
这些液晶相态归属于盘状液晶CHENLI
4
近晶型液晶
近晶型液晶是所有液晶中最接近结晶 结构的一类,棒状分子互相平行排列成 层状结构。分子的长轴垂直于层状结构 平面。层内分子排列具有二维有序性。 但这些层状结构并不是严格刚性的,分 子可在本层内运动,但不能来往于各层 之间。层状结构之间可以相互滑移,而 垂直于层片方向的流动却很困难。
CHENLI
14
刚性体
聚合物 骨架
连接单元
CHENLI
取代基
15
主链型液晶高分子:致晶单元处在高分子主链上 侧链型液晶高分子:致晶单元位于高分子侧链上
主链型高分子液晶和侧链型高分子液晶在液晶形态上和物来自化学性质有大差别:主链型高分子液
晶为高强度、高模量的结构材料,而侧链型高分子
液晶为具有特殊性能的功能高分子材料。