水电站课程设计报告-引水式径流水电站厂房设计Word

合集下载

水电站课程设计任务书及指导书--引水系统

水电站课程设计任务书及指导书--引水系统

水电站课程设计任务书及指导书引水式水电站引水系统设计(供水工专业用)水利工程系2019.05.01设计任务书一目的和作用课程设计是工科院校学生在校期间一个较为全面性、总结性、实践性的教学环节。

它是学生运用所学知识和技能,解决某一工程问题的一项尝试。

通过本次课程设计使学生巩固、联系、充实、加深、扩大所学基本理论和专业知识,并使之系统化;培养学生综合运用所学知识解决实际问题的能力和创新精神;培养学生初步掌握工程设计工作的流程和方法,在设计、计算、绘图、编写设计文件等方面得到一定的锻炼和提高。

二基本资料梯级开发的红旗引水式水电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。

电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。

该电站水库库容较小,不担任下游防洪任务,工程按二等Ⅱ级标准设计。

经比较分析,该电站坝型采用混凝土重力坝,厂房型式为引水式,安装4台水轮发电机组。

引水系统的布置应考虑地形、地址、水力及施工条件,考虑到常规施工技术条件,引水隧洞洞泾不宜超过12m。

因此,引水系统采用两条引水隧洞,在隧洞末端各设置一个调压室,从每个调压室又各伸出两条压力管道,分别给4台机组供水。

供水方式为单元供水,管道轴线与厂房轴线相垂直,水流平顺,水头损失小。

经水能分析,该电站有关动能指标为:水库调节性能年调节装机容量 16万kw (4台×4万kw)水轮机型号HL240 额定转速107.1r/min校核洪水位(0.1%)194.7m 设计洪水位(1%)191.7m正常蓄水位191.5m 死水位190m最大工作水头38.1 m 加权平均水头36.2 m设计水头36.2 m 最小工作水头34.6 m平均尾水位152.0 m 设计尾水位150.0 m发电机效率 96%-98%单机最大引用流量 Q max=124.91m3/s引水系统长度约800m三试根据上述资料,对该电站进行引水系统的设计,具体包括进水口、引水隧洞、调压室及压力管道等建筑物的布置设计与水电站的调节保证计算等内容。

水电站厂房课程设计

水电站厂房课程设计

2015年秋水利水电工程专业水电站厂房课程设计1.课程设计的目的课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算,制图和应用技术资料的技能。

2.工程枢纽概况水库库区跨越S、N两河,地处MY县城以北20km,两条河在MY县城以南约10km 处汇合成SN河。

水库是以防洪及工农业供水为主要任务,兼有发电效益的综合利用水利工程。

水库各特征水位如下:死水位:▽126.0m正常高水位:▽157.50m设计洪水位:▽158.20m校核洪水位:▽159.50m坝顶高程:▽160.00m主要建筑物包括:(1)挡水建筑物有N、S主坝两座及副坝五处,为碾压式粘土斜墙土坝,最大坝高为N河主坝,高66.4m,S河主坝高56m,各副坝15.7m~39m不等。

(2)泄水建筑物①溢洪道:有S河左岸第一、第二溢洪道。

第一溢洪道为正常溢洪道,底部高程▽140m,宣泄超过100年一遇的洪水,为5孔带胸墙式河岸溢洪道。

第二溢洪道为非常溢洪道,与第一溢洪道配合,宣泄1000年洪水,底部高程▽148.5m,为5孔开敞式河岸溢洪道。

②隧洞:a. N河左岸发电隧洞,用作发电供水和下游工农业供水,并在调压井上游设泄水支洞,用以宣泄10000年一遇特大洪水。

进水塔进口底部高程为▽116.0m,洞径6m,洞长416m,底坡i=1/400,调压室为园筒式,内径17.14m,调压室后接2根埋藏式压力钢管,管径5.5m,管长125m。

b. S河发电泄水隧洞,任务是施工导流,发电、灌溉、供水和泄水。

见图1所示。

③坝下廊道:为施工期的临时建筑物,施工导流采取S、N两河分别导流的方式,故设N河导流廊道、210180150图一:枢纽布置图(1:3000)S河导流廊道,可宣泄20年一遇洪水,另有南石骆驼输水廊道,用以泄放3个流量的灌带、灌溉用水。

3.厂房枢纽建筑物位置的选择(1)作为挡水建筑物的主坝分设于S河和N河,经比较,S河地面高程高于白河坝址地面高程,故建N河电站比建S河电站多出10m水头,每年可多发电400万度,所以,电站设在N河,装机容量为4台单机15MW,共60MW,N河电站发电泄水可灌溉MY县以下耕地。

(完整word版)水利水电工程施工课程设计(word文档良心出品)

(完整word版)水利水电工程施工课程设计(word文档良心出品)

松涛水利工程施工总进度网络计划编制0 绪论0.1课程设计目的:在巩固所学基础知识和专业知识的前提下, 运用现代组织管理工具——网络计划技术, 对松涛水利枢纽的施工进度进行安排, 从而进一步了解水利水电工程各项目之间的项目关系, 综合掌握水利水电工程施工的全貌, 培养统筹全局的观念, 为今后的施工组织设计工作打下良好的基础。

0.2课程设计的任务:编制松涛水利枢纽工程施工总进度网络计划1.基本资料1.1工程概况:松涛水利枢纽位于柳河干流上的松涛峡, 系一级建筑物, 由河床混凝土重力坝、溢洪道、右岸土坝和坝后厂房等部分组成。

枢纽主要任务是发电, 装机容量3╳15=45万Kw, 单机容量15万Kw。

发电最低水位500m, 相应库容19.5亿m3。

枢纽右岸适当位置布置防空洞, 可满足封孔蓄水期对下游洪水100 m3/s流量的要求。

枢纽各组成建筑物的工程量见表1。

表1 主要水工建筑物的组成和工程量表1.2枢纽地形坝址距下游的松州市河道长约100 km, 直线距离约50 km, 坝址附近皆为高山峡谷地区。

松涛峡长约12 km, 上下游均有比较平坦的山间盆地, 可作为施工场地。

坝址位于峡谷尾部, 距峡谷出口约1.7 km, 坝区河床两岸山坡陡峻, 成V字型。

左岸坡度450~800, 陡缓相见;右岸坡度600~850, 两岸山体均为黄土覆盖。

坝址河床高程一般为410m, 河面宽50~60m, 深化区偏右岸, 最深约10m。

坝址左岸山峰起伏, 高出河面约150m以上。

右岸坝头附近为一狭小丘陵阶地, 高出河面约110m左右。

与坝区阶地相连的就是地形平坦、面积宽阔的李家台四级阶地, 高程约560~580m。

自峡谷出口起, 两岸地势逐渐开阔, 呈狭长二级阶地, 高程约430~440m, 沿柳河右岸距坝址约8km的旧镇, 附近有宽阔平坦二级阶地。

坝内河谷两岸有很多冲沟, 左岸主要有坝址下游200m处的滑沟;右岸主要有坝址上游150m处的红柳沟, 下游的刘家沟、金沟和银沟等。

水电站课程设计完整版

水电站课程设计完整版

水电站课程设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录前言本课程设计主要是水利水电枢纽工程中水电站厂房设计的部分工作。

设计目的在于培养学生正确的设计思想,理论联系实际工作的工作作风,严肃认真、实事求是的科学态度和勇于探索的创新精神。

培养学生综合运用所学水电站知识,分析和解决水电工程技术问题的能力;通过课程设计实践训练并提高学生解决水利水电工程实际问题的能力。

进一步巩固和加深厂房部分的理论知识,培养学生独立思考、分析问题及运用理论知识解决实际问题的能力,提高学生制图、使用现行规范、查阅技术资料、使用技术资料的能力以及编写设计说明书的能力。

根据已有的原始资料和设计要求进行设计,主要内容有:水电站总体布置、水轮机型号的选择以及水轮机特性曲线的绘制、蜗壳尺寸的确定、绘制蜗壳平面和断面单线图、尾水管尺寸的确定及草图、水电站厂房尺寸的确定以及吊车梁内力计算和吊车梁配筋计算等,并根据要求绘制相应的平面布置图和剖面图。

第一部分水电站厂房一、设计资料资料:某水利枢纽工程,具有防洪、灌溉、发电、养殖、旅游等功能。

水电站厂房为坝后式,通过水能计算该水电站装机容量为25Mw,厂房所在处平均地面高程1.水位经多水位方案比较,最终采用正常蓄水位为: m,死水位为: m,距厂房下游100 m处下游水位流量关系见下表:2.机组供水方式:采用单元供水3. 水头该水电站水头范围:H HHH =, H HHH=,加权平均水头H H=二、水轮机选型水轮机型号选择水轮机型号的选择中起主要作用的是水头,本电站工作水头范围为~,根据水头范围从水轮机系列型谱中查得轴流式ZZ440型适应水头20m ~36m,混流式HL240型适应水头25~45m 两种型座位备选方案。

经方案比较后确定水轮机型号。

水轮机参数计算HL240型水轮机方案主要参数选择(两台机组)HL240水轮机水头范围25~45,HL240水轮机模型参数,见下表2-1 1.转轮直径H H 的计算根据水轮机型号HL240查上表得HL240型水轮机在限制工况下的单位流量H 1H ′=s ,效率H H =%,由此可以初步假定原水轮机的单位流量H 1′=H 1H ′=s,效率H H =92%.水轮机额定水头H 1=√H H9.81×H ×H 1′H H32式中:H 1——水轮机标称直径H 1′——水轮机单位流量 查得H 1′=1240L/s=s m /3 H H ——设计水头,对于坝后式水电站H H =(~)H H ,取H H =H H =0.95×H H —水轮机额定出力,由发电机的额定处理求得,对于中小型水电站H H =~,H H =H H /H H =25000/2/=13158kW 代入式中得H 1=√H H9.81×H ×H 1′×H H32=√131589.81×0.92×1.24×31.3532=,根据上式计算出的转轮直径259cm ,查表3—12水轮机转轮标称直径系列,选用相近而偏大的标准直径: H 1=275cm2.转速计算n=H 1′√H H 1=72×√332.75=min式中H 1′——单位转速采用最优单位转速H 1′=72r/minH ——采用设计水头D 1——采用选用的标准直径D 1=由额定转速系列表3-13查的相近而偏大的转速n=150r/min 3.效率及单位参数修正(1)效率修正。

水电站厂房设计引水隧洞和厂房设计说明word版

水电站厂房设计引水隧洞和厂房设计说明word版

水电站厂房设计(引水隧洞和厂房)毕业设计说明书目录摘要 (1)前言 (3)1 基本资料 (4)1.1 工程概况 (4)1.2 工程地质 (4)1.3 枢纽布置情况 (7)1.4 工程特性表 (8)2 枢纽布置 (11)2.1厂房类型确定 (11)3 主要设备的选择 (12)3.1 水轮机型号及主要参数选择 (12)3.1.1 水轮机机组台数和单机容量选择 (12)3.1.2 水轮机型号选择 (13)3.1.3 水轮机主要参数选择 (13)3 .2 水轮机重量估算 (16)3.3 转轮重量估算 (16)3.4 发电机型号的选择 (16)3.5 起重设备的选择 (17)3.5.1 起重机的型号确定 (17)4 引水系统的设计 (19)4.1 进水口设计 (19)4.1.1 进水口的类型 (19)4.1.2 供水方式的选择 (19)4.1.3 引水道直径计算 (19)4.1.4 进水口尺寸计算 (20)4.1.5 进水口高程计算 (23)4.2 引水道设计 (24)4.2.1 线路比较 (24)4.3 调压室设计 (25)4.3.1 调压室作用 (25)4.3.2 调压室的设置判断 (25)4.4 调节保证计算 (26)4.4.1 调节保证计算的任务 (26)4.4.2 调节保证计算的目的 (27)4.4.3 调节保证计算的标准 (27)4.4.4 调节保证计算的内容 (27)4.4.5 调节保证计算过程 (27)4.5 水头损失计算 (32)4.5.1 沿程水头损失计算 (32)4.5.2 局部水头损失计算 (32)4.6 压坡线的绘制 (34)5 厂房布置设计 (35)5.1 蜗壳尺寸的确定 (35)5.2 尾水管单线图的绘制 (38)5.2.1 进口直锥段计算 (38)5.2.2 肘管计算 (38)5.2.3 出口扩散段计算 (39)5.2.4 尾水管高度 (39)5.2.5 尾水管单线图 (39)5.3 厂房平面尺寸计算 (39)5.3.1 主厂房长度计算 (40)5.3.2 主厂房宽度计算 (42)5.3.3 主厂房的剖面设计 (44)5.4 厂房枢纽布置 (47)5.4.1 安装间的位置选择及计算 (47)5.4.2 尾水平台的布置 (47)5.4.3 厂房电气设备布置 (48)6 结构设计 (49)6.1 工作闸门结构设计 (49)6.1.1 闸门基本资料 (49)6.1.2 闸门的结构形式及布置 (49)6.1.3 面板设计 (50)6.1.4 水平次梁、顶梁和底梁设计 (51)6.1.5 主梁设计 (56)6.1.6 横隔板设计 (62)6.1.7 纵向连接系设计 (63)6.1.8 边梁设计 (65)6.2 闸门附属结构设计 (68)6.2.1 行走支承设计 (68)6.2.2 轨道设计 (69)结论 (71)总结与体会 (72)谢辞 (73)参考文献 (74)摘要本次毕业设计的题目是湖北黄龙滩水电站厂房设计。

水电站厂房课程设计精选全文完整版

水电站厂房课程设计精选全文完整版

可编辑修改精选全文完整版水电站厂房课程设计一、水电站厂房主要设备和辅助设备 主要设备:1、水轮机和发电机:电站最大水头m H 3.64max =,加权平均水头m H cp 63.59=,最小水头m H 02.38min =。

按水头范围及装机容量,套用3台现有机组。

水轮机型号为140220--LJ HL ,单机额定出力为KW 8333,该机组适用m H 65max =,m H 38min =m H p 58=,额定流量35.16m /s ,和电站水头范围比较匹配。

发电机型号为3300/168000-SF ,单机额定出力KW 8000(悬式),采用密封式通风,可控硅励磁。

水轮机导叶0b 为0.35m 。

水轮机带轴长3.74m ,发电机转子带轴长4.785m.。

一台机组在设计水头、额定出力下运行的尾水位为100.1 m 。

2、调速器:选用3500-YDT 型电气液压式3、主阀:采用卧式液压型摇摆式接力器双平板偏心蝴蝶阀4、桥式起重机:本电站的最重部件为发电机转子带轴重37.5t ,结合厂房布置要求。

选用起重机跨度m L k 12=,主副钩最大起升高度分别为20m 和22m ,主钩最高位置至轨顶距离为0.911m ,小车高度2.723m 。

厂房屋顶结构厚度为2.456 m 。

辅助设备:1、供水:本电站水头范围为38.02~64.3m ,且水质、水温均满足要求,所以采用自流供水方式。

取水口设在每台机组蝴蝶阀前的压力钢管上,并与全场技术供水总管连通,互为备用。

每台机组供水管上均设电磁液压阀。

以保证自动投入或切除。

2、排水:分为机组检修排水、厂房渗漏排水和厂区排水。

①检修排水,采用廊道间接排水方式,即检修机组时,蜗壳和尾水管重的积水通过盘形阀的控制,先经廊道排往集水井,然后再由水泵抽排到尾水渠。

集水井上设2台检修排水深井泵。

2台深井泵同时运行,待积水抽空后,再由另一台抽排闸门的漏水。

②、渗漏排水,与检修排水共用一集水井,设一台深井泵。

水电站厂房课程设计(2013秋)

水电站厂房课程设计(2013秋)

2013年秋季学期水电站厂房课程设计(X水电站厂房设计)1.课程设计的目的课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算,制图和应用技术资料的技能。

2.X枢纽概况X水利工程由混凝土面板堆石坝、右岸溢洪道、左岸泄洪兼导流隧洞,左岸发电兼倒流、放空隧洞和发电站等五大建筑物组成。

混凝土面板堆石坝坝高95米,水库总库容2.1亿立方米,电站总装机1.89万千瓦。

工程具有灌溉、发电、养殖、防洪、拦沙等效益。

水库各特征水位如下:死水位:▽285.0m 正常高水位:▽322.0m设计洪水位:▽324.45m 校核洪水位:▽325.30m坝顶高程:▽330.5m主要建筑物包括:(1)挡水建筑物大坝为钢筋混凝土面板堆石坝,由钢筋混凝土防渗面板和堆石体两部分组成。

坝高95米,坝顶长222米,坝顶宽8米。

(2)右岸溢洪道右岸溢洪道座落在右岸山体上,由进水口、闸室、明渠陡槽和鼻坎四部分组成。

闸室宽24米,装有两扇12×14m弧形库门,最大泄量4466m3/s。

(3)泄洪兼导流隧洞泄洪洞布置在左岸,为表孔堰流结合施工导流的“龙抬头”型式无压隧洞,洞长502m,城门型断面,洞宽8.8m,洞高13.1m,底部纵坡1/35,进口装有一扇10×12m弧形钢闸门,最大泄量1594 m3/s。

(4)发电兼导流、泄空隧洞洞长490m,圆形断面,洞泾5m,进口为深式进水口,分上、下两层(即“龙抬头”型式)进水,下层为导流泻汇流量360 m3/s。

(5)电站厂房为地面引水式厂房,安装3台单机容量为6300KW立式混流式水轮机组,设计水头62.5m,单机发电流量12 m3/s。

多年平均发电量5510万度。

3.基本资料和设计依据(1)有关X水电站工程概况的简要说明如前述。

(2)坝址地形图1张,比例为1:3000(3)坝型为混凝土面板堆石坝。

水电站课程设计

水电站课程设计

《水电站》课程设计一、设计目的使学生对水电站初步规划阶段的水能利用、水电站开发方式选择、水电站出力估算、水轮发电机组选择设计和厂房布置等工作内容有全面了解、重点掌握水电站装机容量和机组台数确定、水轮机选择设计、参数计算等工作内容和程序。

通过工程设计实例的训练,培养学生独立工作及综合分析、解决问题的能力,以便将来承担水电站工程设计任务。

二、拟设计水电站参数资料及相关要求拟设计某一引水式水电站,已经过水文水能计算,其各种技术参数及设计要求如下: 1.电站最大水头max 35.6H m =,加权平均水头28av H m =,设计水头28r H m =,最小水头min 24.5H m =;2.电站最大可引用流量3max 27.8/Q m s =;3.拟选用水轮发电机组额定出力(单机容量)及台数:1600,31600f y N KW N KW ==⨯;4.水电站站址海拔高程m 0.860=∇; 5.下游水位流量关系曲线(略); 6.要求最大允许吸出高m H s 5.5-≥。

三、设计内容1.确定水电站装机容量(通过估算水电站出力确定f y nN N =)及台数;2.机型号的选择及主要参数计算;3.水轮机调速设备及水轮机发电机的选配; 4.蜗壳、尾水管型式选择及各有关尺寸计算; 5.厂房布置设计(水电站主厂房各层平面及剖面图)。

四、设计报告1.水轮机型号的选择据该水电站的工作水头范围,在反击式水轮机系列型谱表中查得HL240型水轮机和ZZ440水轮机都可使用,这就需要将两种水轮机都列入比较方案,并对其主要参数分别予以计算。

2.水轮机主要参数的计算2.1 HL240型水轮机方案主要参数的计算2.1.1直径1D 的计算ηr r rH H Q N D 1181.9'=式中31160016840.95281240/ 1.24/(1)f r f r N N kW H m Q L s m s η⎧===⎪⎪⎪=⎨⎪'==⎪⎪⎩由附表查得同时在附图1中查得水轮机模型在限制工况下的效率,由此可初步假设水轮机在该工况的效率为91.0%。

某水电站设计课程设计 精品

某水电站设计课程设计 精品

第一章原始资料及设计条件1.1 概述1.1.1 工程概况某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。

坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。

该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。

1.2工程等别和建筑物级别本工程以发电为主,兼有防洪、旅游等综合效益。

水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。

永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。

1.2 水文气象资料1.2.1 洪水各频率洪峰流量详见下表表1-1 坝址洪峰流量表1.2.2 水位~流量关系曲线:表1-2 下坝址水位~流量关系曲线表高程系统:85黄海表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海表1-4 厂址水位~流量关系曲线表 高程系统:85黄海多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10˚;淤沙浮容重:0.93/m t 。

1.2.4 气象多年平均气温:16.6˚C ;极端最高气温:39.1˚C ;极端最低气温:-8.6˚C ;多年平均水温:18.2˚C ;历年最高气温:34.1˚C ;历年最低气温:2.1˚C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。

1.3 工程地质与水文地质1.3.1 工程地质资料(1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。

(2) 基岩物理力学指标上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪断指标:'f=0.8~0.9 ;'c=0.7~0.8MPa。

《水电站课程设计》word版

《水电站课程设计》word版

目录1.工程概况及设计资料 (1)1.1工程概况 (1)1.2设计资料 (1)2.设备尺寸确定 (5)2.1蜗壳尺寸确定 (5)2.2尾水管尺寸确定 (5)2.3水轮机转轮尺寸确定 (6)2.4发电机尺寸确定 (7)2.5吊车尺寸确定 (7)3.主厂房平面尺寸 (7)3.1机组段长度L1 (7)3.2端机组段长度L2 (8)3.3主厂房宽度 (8)3.4安装场长度B (8)4.主厂房平面布置 (9)4.1发电机层 (9)4.2水轮机层 (9)4.3蜗壳层 (9)5.主厂房剖面设计 (9)5.1水轮机安装高程Zs (9)5.2主厂房开挖高程∇挖 (9)5.3水轮机层地面高程 (10)5.4发电机装置层高程 (10)5.5发电机层楼板高程 (10)5.6吊车轨顶高程∇轨 (10)5.7屋顶高程∇屋顶 (10)6.厂房辅助设备布置 (11)6.1油系统的布置 (11)6.2压气系统的布置 (11)6.3供水系统 (11)6.4排水系统 (12)7.厂房电气设备布置 (12)8.主要副厂房的布置 (12)9.厂区枢纽布置 (12)1.工程概况及设计资料1.1工程概况湘贺水利枢纽位于向河上游,河流全长270公里,流域面积6000平方公里属于山区河流。

本枢纽控制流域面积1350平方公里,总库容22.15亿立方米,为多年调节水库。

本枢纽的目标是防洪和发电。

主要建筑物有重力拱坝,坝高77.5米,弧长370米;泄洪建筑物;开敞式溢洪道或泄洪隧洞;发电引水隧洞及岸边地面厂房等工程。

水电站总装机60MW,装机4台,单机15MW。

电站担任工农业负荷,全部建成后担任系统灌溉负荷。

电站厂房位于右岸坝下游几十米处,由引水隧洞供水,主洞内径5.5米,支洞内径3.4米,厂内装置4台混流式立式机组,出线方向为下游,永久公路通至左岸。

1.2设计资料1.2.1水库及水电站特征参数(1)水库水位。

水库校核洪水位140.00m,水库设计洪水位137.00m,水库正常高水位125.00m,水库发电死水位108.00m,设计洪水尾水位77.00m,校核洪水尾水位78.50m。

引水式水电站课程设计

引水式水电站课程设计

课程设计设计名称颜家河水电站水文水能计算分析学年学期2013-2014学年第一学期课程名称水利水能规划课程设计专业年级水工112班姓名陈克瑞学号2011012172提交日期2014年1月3日成绩指导教师康艳水利与建筑工程学院目录第一章基本资料 (3)一、 1.1流域概况 (3)二、 1.2水文资料 (3)三、 1.3电站基本情况 (4)第二章设计年经流分析计算 (4)一、 2.1径流资料“三性”审查 (4)二、 2.2设计年径流频率分析计算 (6)三、 2.3不同频率年径流量及其年内分配过程 (6)四、 2.4计算日流量~频率历时曲线 (8)第三章设计洪水分析 (9)一、 3.1设计洪峰流量频率分析计算 (9)二、 3.2计算不同频率下的洪峰流量 (10)第四章水位流量关系曲线 (11)第五章水电站水能分析计算 (12)一、 5.1日平均出力~频率(历时)曲线 (12)二、 5.2出力~多年平均发电量关系曲线 (12)第六章水电站装机容量确定 (14)第七章总结 (14)第八章附表 (15)一、附表1林家村水文站实测历年逐月平均流量表 (15)二、附表2 林家村水文站实测历年最大洪峰流量表 (17)三、附表3 各水文站洪峰流量成果表 (17)四、附表4 年径流频率计算表 (18)五、附表5 洪峰流量累计计算表 (20)六、附表6 (21)七、附表7水位断面分析计算 (22)八、附表8 日平均流量-出力计算表 (23)九、附表9 出力-多年平均发电量计算表 (24)十、附表10装机~装机年利用小时数关系曲线 (25)第九章参考文献 (26)颜家河水电站水文水能计算分析第一章基本资料一、1.1流域概况颜家河水电站位于宝鸡市颜家河乡,是渭河干流陕西境内最上游的水资源开发工程,坝址控制流域面积29348 km2。

电站站址控制流域面积29950 km2。

渭河发源于甘肃渭源县乌鼠山,流经甘肃、宁夏、陕西三省26个县(市),全长818km,总流域面积6.24万km2。

某水电站厂房课程设计

某水电站厂房课程设计

某水电站厂房课程设计一、课程目标知识目标:1. 学生能够理解水电站厂房的基本结构及其功能,掌握厂房内主要设备的名称及作用。

2. 学生能够描述水电站发电过程,并了解影响水电站发电效率的主要因素。

3. 学生能够解释水电站厂房在设计时考虑的主要因素,如安全性、经济性和环保性。

技能目标:1. 学生能够通过观察和分析,绘制水电站厂房的简单示意图,并标出主要设备。

2. 学生能够运用所学的知识,对水电站厂房的设计提出改进建议,提高发电效率。

3. 学生能够通过小组合作,共同探讨水电站厂房建设中的问题,并提出解决方案。

情感态度价值观目标:1. 培养学生关注我国水电资源的开发和利用,增强环保意识,认识到保护水资源的重要性。

2. 培养学生热爱科学,勇于探究的精神,激发他们对水电工程建设的兴趣。

3. 培养学生团队合作意识,学会倾听、尊重他人意见,共同完成学习任务。

课程性质:本课程为自然科学领域,结合实际工程案例,注重理论与实践相结合,提高学生的科学素养和工程观念。

学生特点:六年级学生具备一定的观察、分析能力和动手实践能力,对新鲜事物充满好奇,喜欢探索未知。

教学要求:结合学生特点,注重启发式教学,引导学生主动参与,培养他们独立思考和解决问题的能力。

将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 水电站厂房基本结构:介绍厂房的建筑结构,包括坝体、厂房主体、尾水渠等部分,分析各部分的功能及相互关系。

教材章节:《水电工程设计》第二章第二节2. 水电站主要设备:讲解水轮机、发电机、变压器等主要设备的结构和工作原理,以及它们在水电站中的作用。

教材章节:《水电工程设计》第二章第三节3. 水电站发电过程:阐述水从水库流经水轮机、发电机,最终转化为电能的过程,分析影响发电效率的因素。

教材章节:《水电工程设计》第三章第一节4. 水电站厂房设计因素:探讨厂房在设计时需要考虑的安全性、经济性和环保性等因素,分析如何优化设计方案。

水电站厂房课程设计报告书

水电站厂房课程设计报告书

目录➢第一章任务书 (1)➢ 1.1 目的 (1)➢ 1.2 设计容和要求 (1)➢ 1.3 应提交的设计成果 (1)➢第二章基本资料 (2)➢ 2.1 工程概况 (2)➢ 2.2 电站枢纽 (2)➢ 2.3 设计依据及参数 (2)➢第三章设计过程 (5)➢ 3.1 确定设备尺寸 (5)➢ 3.1.1 蜗壳尺寸 (5)➢ 3.1.2 水轮机和尾水管尺寸 (6)➢ 3.1.3 发电机尺寸 (7)➢ 3.2 厂房尺寸 (7)➢ 3.2.1 主厂房的平面尺寸 (7)➢ 3.2.2 主厂房的立面尺寸 (9)➢ 3.3 主厂房各层布置 (10)➢ 3.3.1 发电机层布置 (10)➢ 3.3.2 水轮机层布置 (11)➢ 3.3.3 蜗壳层布置 (12)➢ 3.4 副厂房的布置 (12)➢ 3.5 厂区枢纽布置 (12)第一章任务书➢ 1.1 目的通过本设计,进一步巩固和加深水电站厂房部分的理论知识,使学生初步掌握水电站厂房设计的步骤和方法,培养和提高学生独立分析问题和运用所学理论知识解决实际问题的能力。

➢ 1.2 设计容和要求根据给定的原始资料及机电设备,决定厂房在枢纽中的位置,进行厂区和厂房部的布置,确定厂房的轮廓尺寸。

➢ 1.3 应提交的设计成果(-)设计说明书一份。

(二)水电站厂房设计布置图三:1、沿机组中心线厂房横剖面图(1:100);2、发电机层平面图(1:100-1:200);3、水轮机层、蜗壳层综合平面图(1:100-1:200)。

(三)厂房枢纽布置简图一(1:1000)。

➢第二章基本资料2.1 工程概况湘贺水利枢纽位于向河上游,河流全长270km,流域面积6000km2,属于山区河流。

本枢纽控制流域面积1350km2,总库容22.15m3,为多年调节水库。

本枢纽的目标是防洪和发电。

主要建筑物有重力拱坝,坝高77.5m,弧长370m;泄洪建筑物;开敞式溢洪道或泄洪隧洞;发电引水隧洞及岸边地面厂房等工程。

(完整word版)水电站课程设计(word文档良心出品).doc

(完整word版)水电站课程设计(word文档良心出品).doc

《某水电站厂房初步设计》课程设计学生姓名:学号:专业班级:水利水电 (2)班指导教师:二○一三年九月二十七日目录第一章工程概况 (1)第二章有关设计资料 (2)2.1厂区地形和地质条件 (2)2.2水电站尾水位 (2)2.3对外交通 (2)2.4地震烈度 (2)第三章水轮机型号及主要参数选择. (3)3.1水轮机型号选择 (3)3.2主轴及蜗壳形式选择 (3)3.3 HL220 型水轮机方案的主要参数选择 (3)3.4两种方案的比较分析 (6)第四章机电设备 (7)4.1水轮机 (7)4.2调速器(自动调速器) (7)4.3发电机 (8)4.4蝶阀 (8)4.5桥式起重机 (9)第五章电气主结线及电气设备布置: (10)第六章主要控制高程的确定. (11)6.1水轮机的吸出高度和安装高程 (11)6.2水轮机层的地面高程 (11)6.3尾水设计及相关高程 (11)6.4吊车轨顶高程 (12)6.5厂房天花板高程和厂房顶高程 (13)第七章主厂房的布置设计 (14)7.1机组的布置方式 (14)7.2厂房下部结构的构造和布置 (14)7.3主厂房的长度和宽度 (14)7.5 主厂房内机电设备布置及交通运输 (16)第八章副厂房的布置设计 . (17)8.1 中央控制室 (17)8.2 高压开关室 (17)8.3 厂用设备的布置 (18)8.4 楼梯 (18)8.5 厂变和工具间 (18)8.6 值班室和休息室 (18)8.7 调度室和通讯室 (18)8.8 卫生间 (18)第九章水电站枢纽布置 . (19)9.1 厂房 (19)9.2 主变压器场 (19)9.3 引水道 (19)9.4 压力钢管 (19)9.5 尾水道 (19)9.6 对外交通 (19)第十章开挖量的计算 . (20)第十一章分析与总结 . (23)11.1 问题分析 (23)11.2 课设感受 (24)参考文献. (25)附图 1:水轮机机组平面示意图 (26)附图 2:水轮发电机组剖面图 B-B. (27)附图 3:水轮发电机组横剖面图A- A. (28)附图 4:HL220型水轮机综合特性曲线图 . (29)第一章工程概况本电站是一座引水式径流开发的水电站。

水电站厂房及枢纽布置设计说明书

水电站厂房及枢纽布置设计说明书

1.课程设计目的水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。

为今后从事水电站厂房设计打下基础。

2.课程设计题目描述和要求(一)工程概况本电站是一座引水式径流开发的水电站。

拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356千米长的引水渠道,获得静水头57.0米。

电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。

在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。

池底纵坡为1:10。

通过计算得压力前池有效容积约320立方米。

大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。

本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。

钢管露天敷设,支墩采用混凝土支墩。

支承包角120度,电站厂房采用地面式厂房。

(二)设计条件及数据1.厂区地形和地质条件:水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。

沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。

并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。

以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。

2.水电站尾水位:厂址一般水位10.0米。

厂址调查洪水痕迹水位18.42米。

3.对外交通:厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。

4.地震烈度:本地区地震烈度为六度,故设计时不考虑地震影响。

(三)有关机电设备:1.水轮机;台数:四台;重量:7000Kg;型号:HL702(220)—WJ—50;参考价格:22000元/台;额定转速:n=1000n/min=57.0m;设计水头:HP设计流量:Q=1.8m3/s;P额定出力:N=845KW;查《小型水电站》中册,水轮机部分,天津大学主编,P812-813表2-3和P840图2-24得气蚀系数σ=0.133(限制工况),气蚀系数修正值Δσ=0.022=57.0米时)。

水电站课程设计报告_引水式径流水电站厂房设计-63页word资料

水电站课程设计报告_引水式径流水电站厂房设计-63页word资料

1.课程设计目的水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。

为今后从事水电站厂房设计打下基础。

2.课程设计题目描述和要求2.1工程基本概况本电站是一座引水式径流开发的水电站。

拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。

电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。

在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。

池底纵坡为1:10。

通过计算得压力前池有效容积约320立方米。

大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。

本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。

钢管露天敷设,支墩采用混凝土支墩。

支承包角120度,电站厂房采用地面式厂房。

2.2设计条件及数据1.厂区地形和地质条件:水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。

沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。

并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。

以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。

2.水电站尾水位:厂址一般水位12.0米。

厂址调查洪水痕迹水位18.42米。

3.对外交通:厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。

4.地震烈度:本地区地震烈度为六度,故设计时不考虑地震影响。

2.3课程设计成果要求厂房布置设计的内容为:根据给定的原始资料及机电设备,选择水轮机型号。

水电站课程设计报告书

水电站课程设计报告书

《水电站建筑物》课程设计BL电站计算说明书姓名:学号:指导教师:年月日一、基本资料1.1工程概况根据某市供水和灌溉的需求,于X河的Y河口坝址修建BL水电站。

该电站水库控制流域面积2085km2,坝址处多年平均径流量7.21×108m3。

水库属大(2)型,工程等别为Ⅱ等,主要建筑物为2级,次要建筑物为3级。

采用混合坝型,拟建一座坝后式水电站。

电站尾水泄入灌溉渠道,结合工农业用水进行发电。

水电站厂房按3级建筑物设计,厂房经右岸坝下公路对外联系。

1.2设计的目的与任务目的:通过本次课程设计,使学生将所学水电站基本知识加以系统化,能够运用基本理论知识解决实际工程问题,使学生在分析问题、理论计算、制图、编写说明书与计算书等方面得到锻炼,初步掌握水电站的设计步骤、方法、基本理论,为参加工作打下基础。

任务:进行水轮机选型与厂房布置设计。

1.3BL电站设计资料气象资料:该地区多年平均气温9.3℃,最低气温-35.8℃。

最大风速北风21m/s。

最大冰厚0.37m。

地面冻结深度一般在1.1m左右。

水文资料:(1)水库特征水位与溢洪道泄量特征:(2电站尾水渠出口即为灌溉渠道的渠首,渠底高程40.35m,渠顶高程45.90m,渠道设计流量48.0m 3/s 。

渠道加大流量53.0m 3/s 。

电站尾水渠水位流量关系表(Z ~Q ):(3)厂房地质资料水库坝址系由变质岩、沙岩、熔岩及花岗岩类组成,坝址有一组北北西向断层,在厂房围有一小断层通过。

本地区地震基本烈度为Ⅶ度。

厂房设计烈度为7度。

(4)水轮机选型的基本资料:经水能计算,最终确定: 1.电站最大水头H max =27.8m ; 2.加权平均水头H a =22.1m ; 3.设计水头H r =21.3m ;4.电站正常运转时的最小水头H min =14.0m 。

5.水电站总装机容量N f =6400kW ,考虑水电站运行及用水量变化规律,经方案比较,决定选用两台机组。

课程设计报告-水电站

课程设计报告-水电站

一、总体布置安全设计1.1 枢纽总体布置安全设计1.1.1工程概述江坪河水电站位于溇水上游河段,湖北省鹤峰县走马镇。

坝址区至走马镇16km,经走马镇向西至鹤峰县城84km,经走马镇向东至湖南省石门县城167km。

江坪河水电站的开发任务以发电为主,兼顾防洪,并有水产养殖、旅游等综合效益。

根据江坪河水电站预可行性研究阶段成果,大坝正常蓄水位470.00m,汛期限制水位459.70m,死水位427.00m,相应库容13.66亿m3,调节库容6.78亿m3,具有多年调节能力。

电站装机容量450MW,年利用小时数2142小时,多年平均发电量9.64亿kWh。

大坝采用面板堆石坝,在拦河坝左侧山体内设2条引水洞,引水至下游地面式发电厂房。

主厂房全长73.50m,宽22.50m,安装2台单机容量225MW水轮发电机组,总装机容量450MW,保证出力68.3 MW,多年平均发电量9.638亿kW²h。

本工程为I等工程,工程规模为大(1)型,工程枢纽由混凝土面板堆石坝、右岸泄水建筑物(包括隧洞式溢洪道和泄洪放空洞)、左岸引水发电系统等建筑物组成。

1.1.2枢纽布置枢纽工程和建筑物的设计标准与规定(1) 洪水标准。

永久一级建筑物设计洪水标准为1000年一遇洪水,校核标准为10000年一遇洪水加大10%。

永久二级建筑物设计洪水标准为100年一遇洪水。

(2) 地震设防标准。

坝址地震基本烈度为Ⅵ度,永久建筑物地震设防烈度为Ⅶ度。

(3) 枢纽泄洪规定。

枢纽设备的泄洪能力,除满足水库防洪调度要求外,泄洪设备要留有余地,确保枢纽安全,需对枢纽泄洪设备的运用作出规定。

(4) 水位和流量。

枢纽特征水位及流量见表1—1。

表1—1 枢纽特征水位及流量项目初期后期正常水位 156 175防洪限制水位 135 145枯季消落水位 140 155最高库水位(m) 150.7 157.5 20年一遇洪水枝城最大泄流量(m3/s) 56700 56700100年一遇洪水最高库水位(m) 162.3 166.9枝城最大泄流量(m3/s) 56700 56700最高库水位(m) 170 1751000年一遇洪水坝址最大下泄量(m3/s) 71000 69800坝址最高下游水位(m3/s) 76.6 76.40 校核洪水最高库水位(m) 180.4*坝址最大下泄量(m3/s) 102500 (10000年一遇+10%)坝址最高下游水位(m3/s) 83.1 枯水期平均调节流量 5130 5860(5) 电站参数。

水电站厂房设计引水隧洞和厂房毕业设计_说明书

水电站厂房设计引水隧洞和厂房毕业设计_说明书

水电站厂房设计(引水隧洞和厂房)毕业设计说明书目录摘要 (1)前言 (3)1 基本资料 (4)1.1 工程概况 (4)1.2 工程地质 (4)1.3 枢纽布置情况 (7)1.4 工程特性表 (8)2 枢纽布置 (11)2.1厂房类型确定 (11)3 主要设备的选择 (12)3.1 水轮机型号及主要参数选择 (12)3.1.1 水轮机机组台数和单机容量选择 (12)3.1.2 水轮机型号选择 (13)3.1.3 水轮机主要参数选择 (13)3 .2 水轮机重量估算 (16)3.3 转轮重量估算 (16)3.4 发电机型号的选择 (16)3.5 起重设备的选择 (17)3.5.1 起重机的型号确定 (17)4 引水系统的设计 (19)4.1 进水口设计 (19)4.1.1 进水口的类型 (19)4.1.2 供水方式的选择 (19)4.1.3 引水道直径计算 (19)4.1.4 进水口尺寸计算 (20)4.1.5 进水口高程计算 (23)4.2 引水道设计 (24)4.2.1 线路比较 (24)4.3 调压室设计 (25)4.3.1 调压室作用 (25)4.3.2 调压室的设置判断 (25)4.4 调节保证计算 (26)4.4.1 调节保证计算的任务 (26)4.4.2 调节保证计算的目的 (27)4.4.3 调节保证计算的标准 (27)4.4.4 调节保证计算的容 (27)4.4.5 调节保证计算过程 (27)4.5 水头损失计算 (32)4.5.1 沿程水头损失计算 (32)4.5.2 局部水头损失计算 (32)4.6 压坡线的绘制 (34)5 厂房布置设计 (35)5.1 蜗壳尺寸的确定 (35)5.2 尾水管单线图的绘制 (38)5.2.1 进口直锥段计算 (38)5.2.2 肘管计算 (38)5.2.3 出口扩散段计算 (39)5.2.4 尾水管高度 (39)5.2.5 尾水管单线图 (39)5.3 厂房平面尺寸计算 (39)5.3.1 主厂房长度计算 (40)5.3.2 主厂房宽度计算 (42)5.3.3 主厂房的剖面设计 (44)5.4 厂房枢纽布置 (47)5.4.1 安装间的位置选择及计算 (47)5.4.2 尾水平台的布置 (47)5.4.3 厂房电气设备布置 (48)6 结构设计 (49)6.1 工作闸门结构设计 (49)6.1.1 闸门基本资料 (49)6.1.2 闸门的结构形式及布置 (49)6.1.3 面板设计 (50)6.1.4 水平次梁、顶梁和底梁设计 (51)6.1.5 主梁设计 (56)6.1.6 横隔板设计 (62)6.1.7 纵向连接系设计 (63)6.1.8 边梁设计 (65)6.2 闸门附属结构设计 (68)6.2.1 行走支承设计 (68)6.2.2 轨道设计 (69)结论 (71)总结与体会 (72)辞 (73)参考文献 (74)摘要本次毕业设计的题目是黄龙滩水电站厂房设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.课程设计目的水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。

为今后从事水电站厂房设计打下基础。

2.课程设计题目描述和要求2.1工程基本概况本电站是一座引水式径流开发的水电站。

拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。

电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。

在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。

池底纵坡为1:10。

通过计算得压力前池有效容积约320立方米。

大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。

本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。

钢管露天敷设,支墩采用混凝土支墩。

支承包角120度,电站厂房采用地面式厂房。

2.2设计条件及数据1.厂区地形和地质条件:水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。

沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。

并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。

以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。

2.水电站尾水位:厂址一般水位12.0米。

厂址调查洪水痕迹水位18.42米。

3.对外交通:厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。

4.地震烈度:本地区地震烈度为六度,故设计时不考虑地震影响。

2.3课程设计成果要求厂房布置设计的内容为:根据给定的原始资料及机电设备,选择水轮机型号。

决定厂房的型式及其在枢纽中的位置,进行厂区和厂房内部的布置,决定厂房的轮廓尺寸;计算管壁厚度并进行管壁应力分析。

完成厂区布置及主、副厂房布置得设计;绘制厂房典型平面图及剖面图;编写设计计算说明书。

3.课程设计报告内容3.1水轮机型号选择根据该水电站的水头:平均静水头57.0米、最小水头50米、最大水头65米。

水头作用范围50~65m ,在水轮机系列型谱表3-3,表3-4中查出合适的机型有HL230和HL220两种,现将两种水轮机作为初选方案,分别求出其有关参数,并进行比较分析。

表3-1 大中型混流式转轮参数(暂行系列型谱)3.2 HL220型水轮机的主要参数选择 1. 转轮直径1D 的计算通过查《水电站》表3-6可得HL220型水轮机在限制工况下的单位流量s m s L 3'1M 15.11150Q ==,效率%89=M η,由此可初步假定原型水轮机在该工况下的单位流量s m s L 3'1M '115.11150Q Q ===,效率%15.89=η,即假设%15.0=∆η,%15.89%15.0%89=+=+∆=M ηηη。

上述的'1Q 、η和KW N r 845=、m H r 0.57=代入m H H Q N r r r442.08915.0575715.181.984581.9D '11=⨯⨯⨯⨯==η表3-2 反击型水轮机转轮标称直径系列 (单位:cm )查表3-2选用与之接近而偏大的标称直径m D 5.01=。

2. 转速n 的计算查《水电站》表3-4可得HL220型水轮机在最优工况下单位转速min 70'10r n M =初步假定%91'10'10==M n n ,将已知的'10n 和m H av 0.57=,m D 5.01=代入min 0.10575.057701'1r D H n n =⨯==,表3-3 磁极对数与同步转速关系通过查表3-3磁极对数与同步转速关系,选取与之接近的同步转速:min /1000r n =。

3. 效率及单位参数修正查《水电站》表3-6可得HL220型水轮机在最优工况下的模型最高效率为%0.91Mmax =η,模型转轮直径为m D M 46.01=,得原型效率:%15.915.046.0)91.01(1)1(15511Mmax max =--=--=D D M ηη 效率修正值%15.0%0.91%15.91Mmax max =-=-=∆ηηη,由此可得原型水轮机在最优工况和限制工况下的效率为:%15.91%15.0%0.91Mmax max =+=∆+=ηηη%15.89%15.0%89=+=∆+=ηηηM (与假定值相同) 单位转速的修正值按下式计算)1(max max '10'1-=∆M M n n ηη则()03.00008.0191.09115.01max max'10'1<=-=-=∆M Mn n ηη,按规定单位转速可不加修正,同时,单位流量'1Q 也可不加修正。

由上可知,原假定的%91=η、‘M Q 1'1Q =、‘’M 1010ηη=是正确的,那么上述计算及选用的结果m D 5.01=、m in 1000r n =也是正确的。

4. 工作范围的检验在选定m D 5.01=、m in 1000r n =后,水轮机的'm ax 1Q 及各特征水头相对应的'1n 即可计算出来。

水轮机在r H 、r N 下工作时,其'1Q 即为'm ax 1Q ,故898.08915.057575.081.984581.9221'max 1=⨯⨯⨯⨯==ηr r rH H D N Q <1.15s m /3,此值与原选用的'1Q =1.15s m /3相比,符合“接近而不超过”原则,说明所选的D 1是合适的。

则最大引用流量为:s m H D Q Q r /695.1575.0898.03221'max 1max =⨯⨯==与特征水头max H 、min H 、r H 相对应的单位转速为:min /02.62655.01000max 1'min 1r H nD n =⨯==min /71.70505.01000min 1'max 1r H nD n =⨯==min /23.66575.010001'1r H nD n r r =⨯==在HL220型水轮机模型综合特性曲线图上分别绘出m Q 3'max 1898.0=,min /71.70'max 1r n =和min /02.62'min 1r n =的直线,得这三根线所围成的水轮机工作范围基本上包含了该特性曲线的高效率区。

所以对于HL220型水轮机方案,所选定的参数.5m 0D 1=和min /1000r n =是合理的。

5. 吸出高度Hs 的确定查《小型水电站》中册,水轮机部分,天津大学主编,P812-813表2-3和P840图2-24得气蚀系数σ=0.133(限制工况),气蚀系数修正值Δσ=0.022(当HP =57.0米时),由此可求出水轮机的吸出高度为:()()m H H s 154.157022.013.0900121090010=⨯+--=∆+-∆-=σσ可见,HL220型水轮机方案的吸出高度满足电站要求。

3.3 HL230型水轮机的主要参数选择 1. 转轮直径1D 的计算通过查《水电站》表3-6可得HL230型水轮机在限制工况下的单位流量s m s L 3'1M 11.11110Q ==,效率%2.85=M η,由此可初步假定原型水轮机在该工况下的单位流量s m s L 3'1M '111.11110Q Q ===,效率%59.85=η,即假设%39.0=∆η,%59.85%39.0%2.85=+=+∆=M ηηη。

上述的'1Q 、η和KW N r 845=、m H r 0.57=代入m H H Q N r r r451.08559.0575715.181.984581.9D '11=⨯⨯⨯⨯==η查表3-2选用与之接近而偏大的标称直径m D 5.01=。

2. 转速n 的计算查《水电站》表3-4可得HL230型水轮机在最优工况下单位转速min 71'10r n M =初步假定%7.90'10'10==M n n ,将已知的'10n 和m H av 0.57=,m D 5.01=代入min 08.10725.057711'1r D H n n =⨯==,通过查表3-2磁极对数与同步转速关系表,选取与之接近的同步转速:min /1000r n =。

3. 效率及单位参数修正查《水电站》表3-6可得HL230型水轮机在最优工况下的模型最高效率为%7.90Mmax =η,模型转轮直径为m D M 404.01=,得原型效率:%09.915.0404.0)907.01(1)1(15511Mmax max =--=--=D D M ηη 效率修正值%39.0%7.90%09.91Mmax max =-=-=∆ηηη,由此可得原型水轮机在最优工况和限制工况下的效率为:%09.91%39.0%7.90Mmax max =+=∆+=ηηη%59.85%39.0%2.85=+=∆+=ηηηM (与假定值相同) 单位转速的修正值按下式计算)1(max max '10'1-=∆M M n n ηη则()03.00021.01907.09109.01max max'10'1<=-=-=∆M Mn n ηη,按规定单位转速可不加修正,同时,单位流量'1Q 也可不加修正。

由上可知,原假定的%91=η、‘M Q 1'1Q =、‘’M 1010ηη=是正确的,那么上述计算及选用的结果m D 5.01=、m in 1000r n =也是正确的。

4. 工作范围的检验在选定m D 5.01=、m in 1000r n =后,水轮机的'm ax 1Q 及各特征水头相对应的'1n 即可计算出来。

水轮机在r H 、r N 下工作时,其'1Q 即为'm ax 1Q ,故935.08559.057575.081.984581.9221'max 1=⨯⨯⨯⨯==ηr r rH H D N Q <1.15s m /3,此值与原选用的'1Q =1.15s m /3相比,符合“接近而不超过”原则,说明所选的D 1是合适的。

相关文档
最新文档