PLC控制系统的电气隔离技巧

合集下载

基于 PLC 控制技术的电气自动化控制系统优化研究

基于 PLC 控制技术的电气自动化控制系统优化研究

《基于 PLC 控制技术的电气自动化控制系统优化研究》摘要:随着科技的不断进步,电气自动化控制系统在工业生产中的重要性日益凸显。

可编程逻辑控制器(PLC)作为一种先进的控制技术,在电气自动化控制系统中得到了广泛应用。

本文深入研究了基于 PLC 控制技术的电气自动化控制系统的优化方法,包括硬件优化、软件优化和系统集成优化等方面。

通过实际案例分析,验证了优化后的系统在提高生产效率、降低成本和增强系统稳定性等方面的显著优势。

最后,对未来基于 PLC 控制技术的电气自动化控制系统的发展趋势进行了展望。

关键词:PLC 控制技术;电气自动化控制系统;优化研究一、引言电气自动化控制系统在现代工业生产中起着至关重要的作用,它能够实现对生产过程的自动控制和监测,提高生产效率、降低成本、保证产品质量。

可编程逻辑控制器(PLC)作为一种先进的控制技术,具有可靠性高、编程简单、维护方便等优点,在电气自动化控制系统中得到了广泛应用。

然而,随着工业生产的不断发展和技术的不断进步,对电气自动化控制系统的性能要求也越来越高。

因此,研究基于 PLC 控制技术的电气自动化控制系统的优化方法具有重要的现实意义。

二、PLC 控制技术概述(一)PLC 的基本概念和工作原理PLC 是一种专门为工业环境应用而设计的数字运算操作电子系统。

它采用可编程的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

PLC 的工作原理主要包括输入采样、程序执行和输出刷新三个阶段。

在输入采样阶段,PLC 依次读取输入模块的状态,并将其存储在输入映像寄存器中;在程序执行阶段,PLC 按照用户编写的程序,对输入映像寄存器和输出映像寄存器中的数据进行逻辑运算和处理;在输出刷新阶段,PLC 将输出映像寄存器中的数据传送到输出模块,控制外部设备的运行。

(二)PLC 的特点和优势1.可靠性高:PLC 采用了先进的电子技术和抗干扰措施,具有很高的可靠性和稳定性,能够在恶劣的工业环境下长期稳定运行。

电子电气设备的电路隔离技术

电子电气设备的电路隔离技术

电子电气设备的电路隔离技术1 引言电路隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。

在采用了电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。

电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。

所使用的隔离方法有:变压器隔离法、脉冲变压器隔离法、继电器隔离法、光电耦合器隔离法、直流电压隔离法、线性隔离放大器隔离法、光纤隔离法、A/D 转换器隔离法等。

数字电路的隔离主要有:脉冲变压器隔离、继电器隔离、光电耦合器隔离、光纤隔离等。

其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、继电器隔离、高频变压器隔离(个别情况下采用)。

模拟电路的隔离比较复杂,主要取决于对传输通道的精度要求,对精度要求越高,其通道的成本也就越高;然而,当性能的要求上升为主要矛盾时,应当以性能为主选择隔离元器件,把成本放在第二位;反之,应当从价格的角度出发选择隔离元器件。

模拟电路的隔离主要采用变压器隔离、互感器隔离、直流电压隔离器隔离、线性隔离放大器隔离。

模拟电路与数字电路之间的隔离主要采用模/数转换装置;对于要求较高的电路,除采用模/数转换装置外,还应在模/数转换装置的两端分别加入模拟隔离元器件和数字隔离元器件。

2 模拟电路的隔离一套控制装置或者一台电子电气设备,通常包含供电系统,模拟信号测量系统,模拟信号控制系统。

而供电系统又可分为交流供电系统和直流供电系统,交流供电系统主要采用变压器隔离,直流供电系统主要采用直流电压隔离器隔离。

模拟信号测量系统相对来说比较复杂,既要考虑其精度,频带宽度的因素,又要考虑其价格因素;对于高电压、大电流信号,一般采用互感器(电压互感器、电流互感器)隔离法,近年来,又出现了霍尔变送器,这些元器件都是高电压、大电流信号测量常规使用的元器件;对于微电压、微电流信号,一般采用线性隔离放大器。

发电厂中PLC控制系统的抗干扰措施

发电厂中PLC控制系统的抗干扰措施

发电厂中PLC控制系统的抗干扰措施发电厂的PLC控制系统作为整个发电过程的核心控制部分,在运行过程中可能会受到各种干扰因素的影响,如电磁干扰、工作环境的温度变化、电源突变等,这些干扰因素可能会引起PLC控制系统的误动作或者系统的性能下降,因此需要采取一系列的抗干扰措施来保证PLC控制系统的可靠运行。

下面将介绍一些常用的抗干扰措施。

1.设备选型:在选择PLC设备时,应考虑设备的抗干扰能力,例如选择具有强电磁抗干扰能力的PLC设备。

同时还要对设备的工作环境进行评估,选择适合的设备。

2.接线布线:对于输入输出信号线,应根据信号的性质进行分类,并采取相应的防护措施。

例如,对于传感器信号线,可以采用屏蔽线和屏蔽接地,有效地减少电磁干扰。

3.电源稳定性:为了保证PLC系统的稳定运行,必须提供稳定的电源。

一般情况下,电源输入应通过电源隔离,防止电源突变对PLC系统的影响。

4.环境控制:PLC设备是工作在一定环境条件下的,例如温度、湿度等。

特别是对于高温环境,需要采取散热措施,保证PLC设备的正常工作温度范围。

5.输入信号处理:输入信号通常存在一定的滤波和去抖动处理。

对于电磁干扰较强的信号,可以采用滤波器进行滤波,使其适应于PLC系统的工作环境。

6.输出信号处理:对于输出信号,特别是对于控制执行机构(如电机、阀门等)的信号,应采取适当的驱动电路,以防止电源波动或其他因素对控制执行机构的干扰。

7.地线连接:良好的地线连接可以减少电磁干扰。

在PLC系统中,要确保各部分设备的地线都连接到同一个接地点,并采取良好的接地措施。

8.屏蔽处理:对于输入输出信号线,尤其是较长的信号线,可以采取屏蔽处理,如使用屏蔽线和屏蔽接头,以减少电磁干扰对信号的影响。

9.备份措施:为了防止PLC控制系统的故障导致发电厂停运,应采取相应的备份措施。

例如,可以配置备用PLC系统,当主PLC系统出现故障时,可以自动切换到备用系统。

10.周期检查:定期对PLC控制系统进行检查和维护,包括软件和硬件的检查,以及调试和故障排除,及时发现和解决问题,保证系统的稳定运行。

常见的plc控制系统抗干扰措施

常见的plc控制系统抗干扰措施

常见的PLC控制系统抗干扰措施1. 引言PLC(Programmable Logic Controller)是一种常用于工业控制系统中的计算机控制设备。

在实际工业环境中,PLC控制系统常常面临各种干扰源的干扰,这些干扰可能导致系统稳定性下降、数据误差增加甚至系统故障。

因此,在设计和应用PLC控制系统时,需要采取一系列抗干扰措施来降低干扰的影响。

本文将介绍常见的PLC控制系统抗干扰措施,包括电磁干扰、地线干扰、高温环境干扰以及其他常见干扰的应对措施。

2. 电磁干扰的抗干扰措施电磁干扰是PLC控制系统中常见的干扰源之一,它可以导致数据误差、通信故障等问题。

以下是抗电磁干扰的措施:•屏蔽设计:在PLC设备和信号线上添加屏蔽层,以阻隔外部电磁干扰的入侵。

屏蔽层可以采用金属箔、金属编织层等材料。

•磁屏蔽:在PLC设备附近放置磁场屏蔽装置,以减弱外部磁场对设备的影响。

磁屏蔽装置可以采用铁氧体材料制成。

•地线隔离:将PLC设备的地线和电源系统的地线隔离开,防止电磁干扰通过地线传输到PLC设备中。

3. 地线干扰的抗干扰措施地线干扰是指由地线电流引起的干扰,它会导致系统电势差增大、信号失真等问题。

以下是抗地线干扰的措施:•地线去耦:在PLC设备的电源输入端和地线之间添加去耦电容,并将其接地。

去耦电容可以起到隔离地线干扰的作用。

•地线分离:将PLC设备的地线和其他设备的地线分离开,避免地线干扰的相互影响。

•良好接地:确保PLC设备的良好接地,减少地线干扰的发生。

4. 高温环境干扰的抗干扰措施高温环境对PLC控制系统的影响主要体现在PLC设备的散热和温度抗性方面。

以下是抗高温环境干扰的措施:•散热设计:合理设计PLC设备的散热结构,增加散热面积和散热风扇等设备,保证设备在高温环境下正常工作。

•温度抗性选择:选择具有良好温度抗性的元件和材料,确保PLC设备在高温环境下的可靠性。

•温度检测:安装温度传感器,实时监测PLC设备的温度,及时采取散热措施以防止设备过热。

PLC控制系统的抗干扰措施

PLC控制系统的抗干扰措施

PLC控制系统的抗干扰措施0前言PLC (可编程控制器)是一种用于工业生产自动化控制的设备,生产厂家在设计和制造过程中采用了多层次抗干扰和精选元件措施,所以具有较强的适应恶劣工业环境的能力、运行稳定性和较高的可靠14,因此一般不需要采取什么特殊措施就可以直接在工业环境使用。

但是由于它直接和现场的I/O设备相连,外来干扰很容易通过电源线或I/O传输线侵入,从而引起控制系统的误动作。

尤其是当生产环境过于恶劣,电磁干扰特别强烈,或者安装使用不当,都不能保证PLC的正常运行。

所以要提高PLC控制系统的可靠性,就要从多方面提高系统的抗干扰能力。

1 干扰源及其分类影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。

干扰类型通常按噪声产生的原因、噪声干扰模式和噪声的波形f生质的不同划分。

1、按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等。

2、按噪声的波形、性质不同,分为持续噪声・偶发噪声等。

3、按噪声干扰模式不同,分为共模干扰和差模干扰。

(1 )共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。

共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。

(2)差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。

2 PLC控制系统干扰的主要来源1、来自空间的辐射干扰。

空间的辐射电磁场(EMI ),主要由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生,通常称为辐射干扰,其分布极为复杂。

其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路的感应引入干扰。

PLC的抗干扰措施

PLC的抗干扰措施

PLC的抗干扰措施(1)电源的合理处理,抑制电网引入的干扰对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。

(2)正确选择接地点,完善接地系统良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。

接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。

完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。

可编程控制仪控制系统的地线包括系统地、屏蔽地、交流地和保护地等。

接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。

例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A,B 都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。

此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。

若系统地与其他接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。

PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC 的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。

模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

安全地或电源接地:将电源线接地端和柜体连线接地为安全接地。

如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。

系统接地:可编程控制仪控制器为了与所控的各个设备同电位而接地,叫系统接地。

接地电阻值不得大于4 Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。

信号与屏蔽接地:一般要求信号线必须要有惟一的参考地即“单点接地”,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成“地环路”。

信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。

PLC控制系统抗干扰的措施及方法

PLC控制系统抗干扰的措施及方法

PLC控制系统抗干扰的措施及方法摘要:介绍PLC控制系统在不同的工业环境中受到来自系统本身(包含PLC硬件及软件)以及外界(包含空间辐射电磁场、电源、信号线、接地等)的干扰;并且通过分析产生干扰的原因,提出了解决主要抗干扰措施。

关键词:PLC;控制系统;干扰类型随着科学技术的发展,PLC作为一种自动化程度高、配置灵活的工业生产过程控制装置,因为其本身的高可靠性、允许在较为恶劣的环境下工作而在自动控制领域中得到广泛应用。

由于受到现场条件所限,工业控制系统的各类PLC大多处在强电电路和强电设备所形成的恶劣电磁环境中,电磁干扰极其严重,对PLC控制系统可靠运行极其不利,因此,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求使用部门在工程设计、安装调试和运行维护过程中采取抗干扰措施,双方配合才能妥善解决问题,有效增强系统的抗干扰性能。

因此,研究PLC控制系统干扰信号的来源、成因及抑制措施,对于提高PLC控制系统的抗干扰能力和可靠性具有重要作用。

一、提高PLC硬件抗干扰能力在选择设备时,首先要选择有高效抗干扰能力的产品,其中包括了电磁兼容性。

尤其是抗外部干扰能力,如采用浮地技术、隔离性能较好的PLC系统;监控信号在接入PLC前,在信号线与地之间并接电容,以减少共模干扰;在信号两极间加装滤波器可减少差模干扰。

;另外要考察其在类似工作环境中的应用实绩。

在选择国外进口产品要注意:我国是采用220 V高内阻电网制式,而欧美地区是110 V低内阻电网制式。

由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求更高,在国外能正常工作的PLC产品在国内不一定能可靠运行,这就要在采用国外产品时,按我国的标准(GB/T13926)合理选择。

另外,在干扰多的场合,安装在控制对象侧的I/0模块要使用绝缘型的I/0模块;在干扰相对较小的场合,可使用非绝缘型的I/O模块。

PLC使用隔离电路时的接地与电路参考点

PLC使用隔离电路时的接地与电路参考点

•应该为每一个安装电路选一个参考点(0V),这些不同的参考点可能会连在一起,这种连接可能会导致预想不到的电流,它们会导致逻辑错误或损坏电路。

产生不同参考电势的原因,经常是由于接地点在物理区域上被分隔的太远。

当相距很远的设备被通讯电缆或传感器连接起来的时候,由电缆线和地之间产生的电流就会流经整个电路。

即使在很短的距离内,大型设备的负载电流也可以在其与地电势之间产生变化,或者通过电磁作用直接产生不可预知的电流。

那些不正确选定参考点的电源,相互之间的电路中有可能产生毁灭性的电流,以致破坏设备。

•当把几个具有不同地电位的CPU连到一个网络时,应该采用隔离的RS-485中继器。

•PLC产品已在特定点上安装了隔离元件,以防止安装中所不期望的电流产生。

当你打算安装时,应考虑到哪些地方有这些隔离元件,哪些地方没有。

同时你也应考虑到相关电源之间的隔离以及其它设备的隔离,还有相关电源的参考点都在什么地方。

•最好选择一个接地参考点,并且用隔离元件来破坏可能产生不可预知电流的无用的电流回路。

请记住在暂时性连接中可能引入新的电路参考点,比如说编程设备与CPU连接的时候。

•在现场接地时,一定要随时注意接地的安全性,并且要正确地操作隔离保护设备。

•在大部分的安装中,如果把传感器的供电M端子接到地上可以获得最佳的噪声抑制。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

增强PLC系统干扰抵抗能力的综合策略分析

增强PLC系统干扰抵抗能力的综合策略分析

增强PLC系统干扰抵抗能力的综合策略分析PLC(可编程逻辑控制器)是工业自动化领域中广泛应用的控制设备。

随着工业互联网的快速发展,PLC系统的网络化程度逐渐提高,但同时也面临着来自网络攻击的风险。

为了保障PLC系统的正常运行和数据安全,提高其干扰抵抗能力是至关重要的。

本文将就如何增强PLC系统干扰抵抗能力进行综合策略分析。

首先,完善PLC系统的安全防护措施是增强干扰抵抗能力的基础。

具体措施包括:1. 网络隔离:将PLC系统从公开网络中隔离出来,采取私有网络或虚拟专用网络(VPN)等手段,限制外部访问。

这可以有效降低网络攻击的可能性。

2. 强化密码措施:设置强密码,并定期更改密码。

密码应具备一定的复杂性,包括大小写字母、数字和特殊字符等,并避免使用常见密码。

3. 更新和维护安全补丁:及时安装PLC系统供应商发布的安全补丁,以修复系统存在的漏洞,防止被攻击者利用。

4. 多重身份验证:采用双因素或多因素身份验证机制,使得攻击者更难以突破系统安全防线。

5. 实施访问控制策略:通过访问控制列表(ACL)或基于角色的访问控制(RBAC)等手段,限制用户的访问权限,并对访问进行审计和监控。

其次,加强PLC系统的数据安全保护是提升干扰抵抗能力的重要措施。

以下是相关策略:1. 数据加密:对PLC系统中的敏感数据进行加密,防止未经授权访问和窃取。

采用对称加密算法、非对称加密算法等方式,确保数据传输的机密性和完整性。

2. 安全备份:定期备份PLC系统的数据,并将备份数据进行安全存储。

在系统遭受攻击或数据损坏时,可以及时恢复数据,避免业务中断。

3. 强化日志管理:开启系统日志和安全审计功能,将日志数据存储在安全的地方,以便后续检查系统的安全性和追踪攻击行为。

4. 攻击检测与响应:部署入侵检测系统(IDS)和入侵防御系统(IPS),实时监测PLC系统的网络流量和行为,及时发现和响应异常活动,并处置恶意攻击。

最后,加强人员培训与意识提升也是提高PLC系统干扰抵抗能力的重要环节:1. 培训人员:对PLC系统操作人员进行相关专业知识的培训,提高他们的安全意识和技能水平,使其能够娴熟运用系统安全控制措施。

PLC控制系统输入/输出回路的隔离设计

PLC控制系统输入/输出回路的隔离设计

PLC控制系统输入/输出回路的隔离设计1.开关量输入/输出电路的隔离(1)开关量输入电路的隔离考虑控制电路的抗干扰性能,开关量输入、输出电路均应采用光电耦合器。

带光电耦合器的开关量输入电路如图1所示。

外电路电源电压为+15V,plc的电源电压为+5V,两个电源是隔离的。

当开关K断开时,光电耦合器的发光二极管熄灭,光敏管呈高阻特性,A点为低电平,经与门后输出电压为低电平。

当开关K闭合时,光电耦合器的发光二极管发光,光敏管呈低阻特性,A点为高电平,经与门电路后输出电压为高电平。

图1 带光电耦合器的开关量输入电路(2)开关量输出电路的隔离采用光电耦合器的开关量输出电路如图2所示。

+5V 电源为PLC的电源,+24V电源为开关量输出电源,两个电源是隔离的。

当DO 接口端输出高电平时,经与非门电路之后,A点为低电平,经光电耦合器使驱动晶体管VT导通,出口继电器J得电吸合。

当DO接口端输出低电平时,经与非门电路后,A点输出高电平,经光电耦合器使VT截止,J释放。

图2 带光电耦合器的开关量输出电路2.模拟量输入/输出电路的隔离对于速度检测通常采用测速发电机将速度信号变成电压信号Un,Un=n(为速度反馈系数)。

电流检测通常采用电流互感器或霍尔效应电流检测器实现,将电流信号变成电压信号Ui,Ui=Id(为电流反馈系数)。

若采用A/D转换电路,可直接将模拟电压信号接到PLC的模入端,如图3所示。

模入信号为测速发电机的输出电压,分压后将输入电压Un限制为0~5V。

图3 A/D口直接连接测速反馈电路这种模拟输入电路的特点是结构简单,但存在不安全因素,测速发电机的电枢电压高达100多伏,直接与PLC的输入引脚相连,一方面会给微处理器芯片带来干扰,另一方面瞬时过电压会损坏微处理器芯片。

考虑变频调速系统的抗干扰能力及可靠性,需要将检测的模拟量Un、Ui与PLC 电路之间进行隔离。

模拟量隔离电路的方式有变压器隔离及光电耦合器隔离两种。

电气隔离在PLC控制系统上的应用

电气隔离在PLC控制系统上的应用

维普资讯
P O与 D S L G
Pk an C d DCS
自动化技 术与应用 》2 0 0 7年第 2 6卷第 8期
行耦合 , 具有较高的 电气隔离和抗干扰能力 。 在 P C应用系统 中, L 由于测控系统与被测和被控设备之间不 可避免地要进行长线传输, 信号在传输过程中很易受到干扰, 导致传 输信号发生畸变或失真 ; 另外, 在通过较长电缆连接的相距较远的设
信号之间常用的隔离方式有光电隔离、 脉冲变压器隔离、 继电器
隔离和布 线隔离等 。
的各种干扰很难反馈到输入系统[ 3 1 。
光电耦合器把输入信号与内部电路 隔离开来 , 或者是把 内部 输出信号与外部 电路 隔离开来 , 图1 如 所示。 开关量输入 电路接入 光 电耦合器后 , 由于光电耦合器 的隔离作用 , 使夹杂在输 ^ 开关量 中的各种干扰脉冲都被挡在输入回路的一侧 。 由于光电耦合器不 是将输入侧和输出侧 的电信号进行直接耦合 , 以光为媒介进 而是
电气隔离 目的之一是从 电路上 把干扰源和易干扰 的部分隔
域及工业 自动控 制领域 中, 它可 以代替继 电器 、变压器、斩波器
等, 而用于隔离 电路、开关 电路 、数模转换、逻辑电路 、过流保
离开来 , 从而达到 隔离现场干扰的 目 , 的 电路隔离的主要是通过隔 离元器件把噪声干扰的路径切 断, 从而达到抑制噪声干扰的效果 。 在采用了电路 隔离的措施以后 , 绝大多数 电 路都能够取得 良好的
维普资讯
《 动 技 与 用》 07 第2 卷 期 自 化 术 应 20 年 第8 6
P C与 D S L C
PL an C d DC8
电气 隔离在 PL 控 制 系统 上 的应 用 C

数控机床电气控制系统中的电气隔离技术

数控机床电气控制系统中的电气隔离技术

数控机床电气控制系统中的电气隔离技术摘要:在抗干扰技术中应用效果较好的就是电气隔离技术,在电路中电气隔离技术可以很好的分离干扰与被干扰信号,最终获得隔离现场的目的,本文主要分析了数控机床电气控制系统概述,数控机床电气控制系统中存在的干扰因素,数控机床电气控制系统中的电气隔离技术。

关键词:数控机床;电气控制;隔离技术1 数控机床电气控制系统概述1.1 数据输入装置是将信息指令和各类应用数据输入数控系统的重要装置。

它可以是穿孔带阅读机、软盘驱动器、键盘、存储卡和计算机等。

1.2 数控系统是数控机床的中枢体系,它将收到的数控指令程序实行译码、处理刀补、预处理速度、处理插补与位控,随后有顺序的发出沿着各个坐标轴运动的指令,直到结束程序。

1.3 可编程逻辑控制器,假如将数控系统作为人的大脑,plc就是人的小脑,它将会帮助大脑完成一些控制机床的操作,例如旋转的刀库、打开与关闭切削液、夹紧与放松的卡盘。

数控系统与plc 包含了两种关系,一是将plc作为组成数控系统的一部分,这种形式就是内装形式的plc;另一种关系就是将plc独立控制在数控系统以外,也称之为外装形式的plc。

1.4 主轴驱动系统主要接受驱动指令,经过调节速度和转矩能够及时输出驱动信号对主电动机实行驱动转动,同时进行及时反馈并且有效控制电气闭环速度。

利用plc将轴具表现的各种工作状况通告给cnc以便能够对各项主轴功能实行控制。

主轴具有两种驱动形式分别是主轴驱动系统与主轴串行驱动系统,主轴驱动系统的模拟一般应用变频器。

1.5 电器硬件电路伴随着plc的功能而逐渐强大,电器硬件电路的首要任务就是控制电路生成的电源、隔离部分继电器以及执行各种类型的电气装置,很好会出现继电器具有的逻辑电路。

可是外国进口的一些机床柜还会使用含有一定逻辑的专门组合型的继电器。

1.6 机床包含全部的电动机、制动器、各种开关等。

它们是实现各种机床操作的执行者和各种机床状态的报告者。

基于PLC技术的电气设备自动控制系统

基于PLC技术的电气设备自动控制系统

基于PLC技术的电气设备自动控制系统摘要:为了给工业自动化提供技术支持,设计了一种基于PLC技术的电气设备自动控制系统。

获取电气设备运行的相关信息,输入到PLC可编程控制器,用于控制电气设备。

这些信息被输入到输出模块,用于控制电气设备和开关阀电路的工作状态。

显示模块为用户提供电气设备的运行信息。

实验结果表明,该系统运行稳定,具有良好的通信性能,能够控制电气设备的温度和压力,实际应用效果较好。

关键词:PLC技术;电气设备;自动控制系统引言可编程逻辑控制器的缩写是PLC。

在PLC控制技术出现之前,计算机技术在自动控制中的应用很少。

但是自从PLC技术的出现,它可以将计算机技术和自动控制技术有机的融合在一起,这两种新技术可以更好的促进相关产业的发展。

后期很多企业很好的更新了PLC控制系统的产品,使得PLC更加先进,在很多工业领域得到应用。

这大大提高了人们对PLC的认识,更多的企业选择使用PLC技术来控制其相关系统,尤其是在电气自动化方面。

1简述PLC技术PLC主要由微处理器存储器等组成。

通过智能设计实现智能控制系统。

PLC 技术可以通过逻辑分析对输入信号进行处理,通过输出形式对其进行控制,使其智能工作。

PLC系统可以执行某些操作,如内部逻辑运算,而传统的控制系统主要用于电气自动化,连接过程繁琐,系统灵活性低。

PLC系统包括电源等相关部件,用户可根据需要适当扩展和补充外部设备的辅助控制。

在PLC控制系统中,电源可以控制系统的关机和启动,并通过输入输出接口有效地发送和接收相应的命令。

CPU在PLC控制系统中起着重要的作用,可以有效地管理用户的流水线指标。

PLC是一种具有多种功能的专用工业控制设备。

PLC硬件主要包括内存,可以满足小型PLC控制系统的需要。

PLC技术的发展逐渐形成了一个比较完整的系统,内存影响着PLC系统的使用效果。

PLC系统运行过程中,数据以采样方式输入系统,必须保证输入脉冲信号宽度,使输入脉冲信号宽度大于随后的采样周期。

PLC控制系统的抗干扰措施

PLC控制系统的抗干扰措施

PLC控制系统的抗干扰措施0前言plc(可编程控制器)是一种用于工业生产自动化控制的设备,生产厂家在设计和制造过程中采用了多层次抗干扰和精选元件措施,所以具有较强的适应恶劣工业环境的能力、运行稳定性和较高的可靠性,因此一般不需要采取什么特殊措施就可以直接在工业环境使用。

但是由于它直接和现场的i/o设备相连,外来干扰很容易通过电源线或i/o传输线侵入,从而引起控制系统的误动作。

尤其是当生产环境过于恶劣,电磁干扰特别强烈,或者安装使用不当,都不能保证plc的正常运行。

所以要提高plc控制系统的可靠性,就要从多方面提高系统的抗干扰能力。

1干扰源及其分类影响PLC控制系统的干扰源与影响工业控制设备的干扰源相同。

它们大多产生于电流或电压变化剧烈的部位。

电荷剧烈运动的部分是噪声源,即干扰源。

干扰类型通常按噪声产生的原因、噪声干扰模式和噪声的波形性质的不同划分。

1.根据产生噪声的原因不同,可分为放电噪声、浪涌噪声、高频振荡噪声等。

根据噪声波形和特性的不同,可分为连续噪声、偶发噪声等。

根据噪声干扰模式的不同,将其分为共模干扰和差模干扰。

(1)共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。

共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统i/o模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。

(2)差模干扰是指作用在信号两极之间的干扰电压,主要由信号之间空间电磁场的耦合感应和不平衡电路对共模干扰的转换而形成。

这种干扰叠加在信号上,直接影响测量和控制精度。

PLC控制系统中的主要干扰源1、来自空间的辐射干扰。

空间的辐射电磁场(emi),主要由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生,通常称为辐射干扰,其分布极为复杂。

其影响主要通过两条路径:一是直接对plc内部的辐射,由电路感应产生干扰;二是对plc通信网络的辐射,由通信线路的感应引入干扰。

PLC控制系统的抗干扰措施

PLC控制系统的抗干扰措施

PLC控制系统的抗干扰措施工作发生异常,测量精度降低,甚至很损伤PLC元器件。

如果PLC控制系统隔离性稍差,可能或造成其传输的信号互相干扰,导致其共地系统总线发生回流现象,PLC控制系统就会误动或者死机。

3)接地系统干扰。

PLC控制系统正确接地主要作用是消除各电路电流流经一个公共地阻抗是产生噪声电压,避免电磁场和地电位差的影响,使其不能形成地环路,提高抑制干扰能力。

同时给控制系统建立一个基准电压,保证系统正常稳定工作。

但PLC控制系统的地线接地方式较多,系统接地、屏蔽接地保护接地以及交流等很容易搞混乱,接地混乱会导致干扰信号侵入,导致各个接地点电位差而产生地环路电流,影响PLC控制系统运行。

同时屏蔽层很容易受到变化磁场的影响产生感应电流,如果其电流与芯线电流发生耦合就会形成干扰信号回路影响PLC控制系统运行。

2.3 PLC控制系统内部干扰PLC控制系统内部干扰就是其内部元器件与电路之间互相进行电磁辐射而发生的干扰。

产生,包括系统的逻辑电路发生互辐射、逻辑地与模拟地发生生互辐射、系统元器件之间不匹配等现象都会造成对PLC控制系统内部的干扰。

3 PLC控制系统抗干扰措施3.1 电源抗干扰措施为PLC控制系统提供的电源占有极重要的地位。

为抑制电力系统网络对CPU电源与I/O 电源等的干扰,PLC控制系统在装置应该配有隔离变压器,其选择的容量要比实际高1.2倍以上。

屏蔽层接地良好,同时,为降低电源线之间的相互干扰,隔离变压器的二次线圈连接线选择双绞线,在交流电源输入端加入低通滤波器。

如图1示。

变压器一次连接线与二次级连接线应用的都是双绞线,可以将干扰信号经滤波隔离后降低,PLC控制的供电系统的控制器与I/O系统均有各自的隔离变压器进行供电,同时,供电电源与与主电路电源是分开的。

假设输入或者输出供电因为故障出现中断,控制器可以继续供电,由此可见系统可靠性大大提高。

如果PLC控制的供电系统供电质量缺乏保证,电网馈点经常中断,应该采用UPS电源给控制器供电,即将控制器前面的屏蔽变压器改为UPS电源。

集控PLC电源隔离系统设计及应用

集控PLC电源隔离系统设计及应用

集控PLC电源隔离系统设计及应用摘要:为实现集控室集控操作智能化管理,减少人力与物力的浪费,本文以山东博选矿物资源技术开发有限公司新河矿业选煤厂为例,分析了选煤厂PLC控制故障的原因及解决方案,并提出可行性设计。

集控PLC电源隔离系统将主控制回路电源改为24V,使其与返回信号电压一致,用主控制回路中增加的直流中间继电器来控制需要220V电压的接触器线圈,220V电源与24V电源形成隔离状态,不再对集控PLC模块及CPU产生影响。

该控制回路设计巧妙,材料投入和人工投入都比较少,稳定性好成熟度高。

关键词:电源隔离;PLC集控控制一、项目研究背景以新河矿业选煤厂为例:该选煤厂采用S7-300的西门子PLC系统对车间设备进行集中控制,在设计之初因配电室空间和成本受限,未设计安装中间继电器柜,PLC控制柜与现场设备控制箱仅用12芯控制电缆连接,12芯电缆中既有220V交流电源又有24V直流电,交流电源为控制箱的控制回路,直流电源为返回信号,在实际生产中,电缆长期暴露在室外,绝缘值会降低,轻则造成信号干扰,重则导致VC220V电窜入到DC24V中,造成PLC模块及CPU烧坏。

通过集控PLC电源隔离系统设计及应用,在每台设备的控制回路中加一个中间直流继电器,把去现场的220V电压改为直流24V控制电压,将两种电压的电源进行隔离,解决了信号干扰和经常烧PLC模块及CPU的问题,避免长时间影响生产,年增加洗煤效益42.64万元。

二、新河矿业选煤厂集控PLC事故案例分析2017年4、5月份,新河选煤厂发生2次自动控制系统的PLC模块及CPU发生烧坏事故,影响洗煤生产长达78小时。

后经分析事故原因发现,PLC控制柜与现场设备控制箱仅用12芯控制电缆连接,12芯电缆中既有220V交流电源又有24V直流电,交流电源为控制箱的控制回路,直流电源为返回信号,在实际生产中,电缆长期暴露在室外,绝缘值会降低,轻则造成信号干扰,重则导致VC220V电窜入到DC24V中,造成PLC模块及CPU烧坏。

PLC与变频器的光隔离联网方案

PLC与变频器的光隔离联网方案

PLC与变频器的光隔离联网方案纺织机械中经常需要西门子S7-200系列PLC与变频器组成RS485通讯网络,传统的做法是将PLC和变频器的RS485通信口直接相连组成网络,实际应用发现对于一些干扰较恶劣的工业现场,特别是使用西门子MM4XX系列变频器时,通讯常常产生误码、死机甚至烧RS485口的故障,系统的可靠性大大降低。

对于架空线路,若遭雷击则很可能使总线上的所有设备损坏!解决以上问题的最简单有效的办法是在PLC和变频器的RS485通讯口加装带浪涌保护的RS485光电隔离器以消除地线环路的干扰和变频器特有的瞬态过电压等干扰,下图是采用生产的PFB-G总线隔离器和BH-485G隔离器组成的PLC和变频器通讯网络,由图可见,所有设备的RS485口均被隔离,整个通讯线路被浮空,有效的抑制了干扰的进入,也彻底解决了由于设备接地问题而引起的串扰,使系统的可靠性得到很大提高。

PFB-G直接插在PLC的RS485口(DB9F)上,工作电源由PLC通信口的7脚和2脚的24VDC供给无需另接电源,BH-485G 为标准导轨安装结构,安装在变频器机柜中,24VDC工作电源可取自变频器的24VDC电源输出端子,安装非常方便。

该方案已在工程中大量使用,实践证明效果十分理想。

串口泵-----一种将RS232通讯距离延长2公里的产品一、引言串口泵也称为RS232隔离长线驱动器,是研制的RS232/RS422/RS485系列产品之一,外形采用DB25转接盒,外插RS232串口,即插即用,使用极为方便。

独特的串口窃电技术使得该系列产品不需要外接电源,也不需靠初始化设置串口来供电,使用本系列产品后均不会对软件作任何修改,确保适合一切软件!该产品全部采用工业级元器件,并设有抗雷击等瞬态电压抑制电路。

特别适用于工业现场,野外等恶劣环境,外形如图1所示:● 外形尺寸:60×50×17● 重量:40克● 工作温度:-40~+85℃● 工作湿度:0~95%二、工作原理采用RS232接口单端信号传送方式,通讯距离只能达到15米,很大程度上限制了计算机的应用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PLC控制系统的电气隔离技术
德维森科技(深圳)有限公司
一般工业控制系统既包括弱电控制部分,又包括强电控制部分。

为了使两者之间既保持控制信号联系,又要隔绝电气方面的联系,即实行弱电和强电隔离,是保证系统工作稳定,设备与操作人员安全的重要措施。

电气隔离目的之一是从电路上把干扰源和易干扰的部分隔离开来,从而达到隔离现场干扰的目的。

一、信号隔离
信号的隔离目的之一是把引进的干扰通道切断,使测控装置与现场仅保持信号联系,不直接发生电的联系。

工控装置与现场信号之间常用的隔离方式有光电隔离、脉冲变压器隔离、继电器隔离和布线隔离等。

1.光电隔离
光电隔离是由光电耦合器件来完成的。

其输入端配置发光源,输出端配置受光器,因而输入和输出在电气上是完全隔离的。

由于光电耦合器的输入阻抗(100Ω~1kΩ)与一般干扰源的阻抗(105~106Ω)相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光。

另外光电耦合器的隔离电阻很大(约1012Ω)、隔离电容很小(约几个pF),所以能阻止电路性耦合产生的电
磁干扰,被控设备的各种干扰很难反馈到输入系统。

光电耦合器把输入信号与内部电路隔离开来,或者是把内部输出信号与外部电路隔离开来,如图1所示。

开关量输入电路接入光电耦合器后,由于光电耦合器的隔离作用,使夹杂在输入开关量中的各种干扰脉冲都被挡在输入回路的一侧。

由于光电耦合器不是将输入侧和输出侧的电信号进行直接耦合,而是以光为媒介进行耦合,具有较高的电气隔离和抗干扰能力。

目前,大多数光电耦合器件的隔离电压都在2.5kV以上,有些器件达到了8kV,既有高压大电流大功率光电耦合器件,又有高速高频光电耦合器件(频率高达10MHz)。

常用的器件如
4N25,其隔离电压为5.3kV;6N137,其隔离电压为3kV,频
率在10MHz以上。

2.脉冲变压器隔离
脉冲变压器的匝数较少,而且一次绕组和二次绕组分别绕于铁氧体磁芯的两侧,这种工艺使得它的分布电容特小,仅为几个pF,所以可作为脉冲信号的隔离元件。

脉冲变压器传递输入、输出脉冲信号时,不传递直流分量,PLC使用的数字量信号输入/输出的控制设备不要求传递直流分量,因而在工控系统中得到了广泛的应用。

图2是脉冲变压器的应用实例。

电路的外部信号经RC滤波电
路和双向稳压管抑制常模噪声干扰,然后输入脉冲
变压器的一次侧。

为了防止过高的对称信号击穿电路元件,脉冲变压器的二次侧输出电压被稳压管限幅后进入测控系统内部。

一般地说,脉冲变压器的信号传递频率在1kHz~1MHz之间,
新型的高频脉冲变压器的传递频率可达到10MHz。

3.继电器隔离
继电器的线圈和触点没有电气上的联系,因此,可利用继电器的线圈接受信号,利用触点发送和输出控制信号,从而避免强电和弱电信号之间的直接接触,实现了抗干扰隔离。

图3是继电器输出隔离的实例示意图。

在该电路中,通过继电器把低压直流与高压交流隔离开来,使高压交流侧的干扰无法进入低压直流侧。

4.布线隔离
将微弱信号电路与易产生噪声污染的电路分开布线,最基本的
要求是信号线路必须和强电控制线路、电源线路分开走线,而且相互间要保持一定的距离。

配线时应区别分开交流线、直流稳压电源线、数字信号线、模拟信号线、感性负载驱动线等。

配线间隔越大,配线越短,则噪声影响越小。

但是,实际设备的内外空间是有限的,配线间隔不可能太大,只要能维持最低限度的间隔距离便可。

附表列出了信号线和动力线之间应保持的最小间距。

如果受环境条件的限制,信号线不能与高压线和动力线等离得足够远时,就得采用诸如信号线路接电容器等各种抑制电磁感应噪声的措施。

二、供电系统的隔离
采用1∶1隔离变压器供电是传统的抗干扰措施,对电网尖峰
脉冲干扰有很好的效果。

图4是典型的隔离变压器原理图。

它抗干扰的原理是一次侧对
高频干扰呈现很高的阻抗,而位于一次、二次绕组之间的金属
屏蔽层又阻隔了一、二次侧所产生的分布电容,因此一次绕组
只有对屏蔽层的分布电容存在,高频干扰通过这个分布电容而
被旁路入地。

1∶1隔变效果的好坏,往往取决于屏蔽层的工艺。

最好选用0.2mm厚的纯铜板材,一次侧、二次侧各加一个屏
蔽层。

通常,一次侧的屏蔽层通过一个电容器与二次侧的屏蔽
层接到一起,再接到二次侧的地上。

也可以一次侧的屏蔽层接
一次侧的地线,二次侧的屏蔽层接二次侧的地线。

并且接地引
线的截面积也要大一些好。

1∶1隔变还有效地隔离了接地环路的共模干扰。

1.交流供电系统的隔离
由于交流电网中存在着大量的谐波、雷击浪涌、高频干扰等噪
声,所以对由交流电源供电的控制装置和电子电气设备,都应采取抑制来自交流电源干扰的措施。

采用电源隔离变压器,可以有效地抑制窜入交流电源中的噪声干扰。

但是,普通变压器却不能完全起到抗干扰的作用,这是因为,虽然一次绕组和二次绕组之间是绝缘的,能够阻止一次侧的噪声电压、电流直接传输到二次侧,有隔离作用。

然而,由于分布电容(绕组与铁心之间、绕组之间、层匝之间和引线之间)的存在,交流电网中的噪声会通过分布电容耦合到二次侧。

为了抑制噪声,必须在绕组间加屏蔽层,这样就能有效地抑制噪声,消除干扰,提高设备的电磁兼容性。

图5a、5b所示为不加屏蔽层和加屏蔽层的隔离变压器分布电
容的情况。

在图5a中,隔离变压器不加屏蔽层,C12是一次侧和二次侧之间的分布电容,在共模电压U1C的作用下,二次绕组所耦合的共模噪声电压为U2C,C2E是二次侧的对地电容,则从图可知二次侧的共模噪声电压U2C为:
U2C=U1CC12/(C12+C2E)
在图5b中,隔离变压器加屏蔽层,其中C10、C20分别代表一次侧和二次侧对屏蔽层的分布电容,ZE是屏蔽层的对地阻抗,C2E是二次侧的对地电容,则从图可知二次侧的共模噪声电压U2C为:
U2C=〔U1CZE/(ZE+1/jωC10)〕〔C2E/(C20+C2E)〕
由于C2是屏蔽层的对地阻抗,在低频范围内,
ZE<<(1/jωC10),所以U2C→0。

由此可见,采取屏蔽措施后,通过隔离变压器的共模噪声电压被大大地削弱了。

图6所示为交流电源抗干扰的综合方案。

为了将测控系统和供电电网电源隔离开,消除因公共电阻引起的耦合,减少负载波动的影响,同时也为了安全,常常在电源变压器和低通滤波器之前增加一个1∶1的隔离变压器。

目前,国外已研制成功了专门抑制噪声的隔离变压器(简称NCT),这是一种绕组和变压器整体都有屏蔽层的多层屏蔽变压器。

这类变压器的结构,铁心材料、形状及其线圈位置都比较特殊,它可以切断高频噪声漏磁通和绕组的交链,从而使差模噪声不易感应到二次侧,故这种变压器既能切断共模噪声电压,又能切断差模噪声电压,是比较理想的隔离变压器。

2.直流供电系统的隔离
当控制装置和电子电气设备的内部子系统之间需要相互隔离时,它们各自的直流供电电源间也应该相互隔离,其隔离方式如下:第一种是在交流侧使用隔离变压器,如图7a所示;第二种是
使用直流电压隔离器(即DC/DC变换器),如图7b所示。

采用了电气隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。

相关文档
最新文档