太阳能光伏发电技术与建筑的一体化设计

合集下载

光伏建筑一体化名词解释

光伏建筑一体化名词解释

光伏建筑一体化名词解释
光伏建筑一体化是指将太阳能光伏技术和建筑设计与施工相结合,将光伏发电系统与建筑设施融为一体的建筑技术和工程实践。

具体而言,光伏建筑一体化包括以下几个方面的内容:
1. 光伏发电系统的设计和安装:在建筑设计和建造过程中,将光伏发电系统的设计和安装作为其中的一项关键工作,如在建筑屋顶、外墙、遮阳棚等空间内安装太阳能电池板,以收集太阳能并将其转化为电能。

2. 建筑外观的设计:在建筑外观的设计中,考虑将太阳能电池板等光伏元件作为建筑的组成部分,不仅能够满足建筑照明和供电需求,还起到美化建筑外观的作用。

3. 建筑节能设计:在建筑的设计中,考虑到光伏发电系统的特点,采用节能设计,如在建筑的朝向、窗户设计、室内遮阳等方面进行调整,以提高光伏发电效率和降低室内温度。

4. 建筑内部电力系统集成:将光伏发电系统与建筑内部的电力系统有机结合,如通过逆变器将太阳能转化为交流电并储存,满足建筑内部电力需求,实现自给自足的能源系统。

综上所述,光伏建筑一体化是将太阳能光伏技术与建筑设计和施工相结合,实现光伏发电和建筑节能、美化、功能集成的创新技术和工程实践。

太阳能建筑一体化组件设计与制造方案(五)

太阳能建筑一体化组件设计与制造方案(五)

太阳能建筑一体化组件设计与制造方案实施背景:随着全球能源需求的不断增长和环境问题的日益严重,太阳能作为一种可再生、清洁的能源形式受到了广泛关注。

太阳能建筑一体化组件是将太阳能利用技术与建筑设计和制造相结合,实现建筑物自身能源的生产和利用。

这种组件的设计与制造方案对于推动产业结构改革,实现可持续发展具有重要意义。

工作原理:太阳能建筑一体化组件是通过将太阳能光伏发电技术与建筑设计相结合,将太阳能电池板等光伏发电设备融入到建筑物的外墙、屋顶、窗户等部位,实现建筑物对太阳能的利用。

太阳能电池板可以将太阳辐射转化为直流电,通过逆变器转化为交流电,供给建筑物的用电设备使用。

实施计划步骤:1.需求分析:根据建筑物的类型、用途和能源需求,确定太阳能建筑一体化组件的设计和制造方案。

2.设计方案制定:根据需求分析的结果,确定太阳能电池板的数量、布局和安装方式,设计逆变器和电池储能系统等相关设备。

3.制造组件:根据设计方案制造太阳能电池板和其他相关设备,并进行质量检验和测试。

4.安装调试:将太阳能电池板等组件安装到建筑物的外墙、屋顶、窗户等部位,进行电气连接和调试。

5.运行监测:监测太阳能建筑一体化组件的运行情况,收集数据并进行分析,优化运行效果。

适用范围:太阳能建筑一体化组件适用于各类建筑物,包括住宅、商业建筑、工业厂房等。

根据建筑物的特点和需求,可以灵活设计和制造适用的组件。

创新要点:1.设计与制造一体化:将太阳能电池板等光伏发电设备与建筑设计和制造相结合,实现一体化的设计和制造过程。

2.灵活布局:根据建筑物的特点和需求,灵活布局太阳能电池板等组件,最大程度地利用太阳能资源。

3.高效转化:通过优化设计和制造工艺,提高太阳能电池板的转化效率,提高建筑物的能源利用效率。

预期效果:1.节能减排:太阳能建筑一体化组件可以将太阳能转化为电能,减少对传统能源的依赖,实现节能减排。

2.经济效益:通过建筑物自身产生的太阳能电力,减少对外部电力供应的需求,降低能源成本,提高经济效益。

太阳能技术与建筑屋顶一体化设计形式

太阳能技术与建筑屋顶一体化设计形式

太阳能技术与建筑屋顶一体化设计形式摘要:通过对太阳能技术的探索研究,讨论了光伏技术与建筑屋顶设计结合的几种形式,并且举例简述其优缺点。

关键词:光伏建筑、节能设计、太阳能技术。

0引言在新能源应用中太阳能有着储量丰富、无污染的优点,同时,由于其广泛的使用成本也相对较低,应用的方式方法也较为多样,近年来关于太阳能建筑一体化也多有研究实践。

太阳能一体化建筑最理想的状态应该是讲设计、制造、安装均可以集成化,其中最有必要的是,在设计初期的时候就需要考虑到太阳光能源以及建筑二者的有效结合。

[1]现如今太阳能与建筑设计结合的方式有许多,包括太阳能屋顶、太阳能立面、太阳能幕墙等。

其中太阳能光伏应用技术与建筑屋顶相结合使用是广泛使用的一体化设计方法,且通过与建筑设计结合的方式更加多样。

1太阳能技术应用在建筑方面太阳能在建筑中的广泛应用主要可分为光热应用、光电作用。

[2]其中光热作用中可分为主动式和被动式这两类。

被动式太阳能是常规使用阳光能量的方式,利用屋顶,墙壁,门窗等基础的建筑构配件,通过太阳辐射热对室内温度进行调节,这种简单利用太阳能的技术称为被动式太阳能技术。

太阳能光热转化相比光电转化技术来说,发展更为成熟、应用范围也更广。

而建筑光伏系统主要分为附加形式和建筑一体化形式。

其中附加形式是将光伏板直接安装在现有建筑物的屋顶或者立面,优点是可灵活布置。

一体化形式是通常将光伏板作为建筑物的一部分构件使用。

其主要技术包括设计、施工一体化,相对于附加形式来说实现难度更高,而且后期维护也有一定的困难。

2太阳能技术与建筑屋顶一体化设计建筑太阳能一体化即指在建筑设计方案期,利用立面设计、悬挑设计、遮阳防水等,将太阳能应用主动纳入设计重点,与建筑设计完美融合。

[3]即经过“相加”结合出一种新的设计方案,设计人员应该把太阳能系统涉及到的所有内容都添加在建筑设计中,并且能在建筑设计中与设计结合,让太阳能系统不与整个建筑设计分割,太阳能系统不只是建筑设计落成之后的附加条件。

什么是光伏建筑一体化

什么是光伏建筑一体化

什么是光伏建筑一体化?
光伏建筑一体化BIPV (Building Integrated Photovoltaics),也叫太阳能光伏建筑一体化、光电建筑一体化、太阳能光电建筑一体化。

由世界能源组织最早提出,指的是把光伏发电系统安装在现有的建筑物上,或者把光伏发电系统与新的建筑物同时设计、施工、安装,既能满足光伏发电的功能,又与建筑友好,甚至提升建筑物的美感,例如屋顶、高速公路的隔音障、公共交通的车站棚等。

光伏建筑一体化的内涵:
一体化设计。

设计的内容应包括建筑和光伏系统,也应包括其它需要的器件和结构,并把建筑物的墙体和房顶分解为结构模块一体化。

一体化制造。

建立专用的生产线,并用该生产线,对设计好的建筑结构模块,进行大规模高效率低成本的制造。

一体化安装。

用电动吊装设备,把生产出的结构模块,集中安装成房屋。

显然,一体化制造和安装将会比一体化设计,更进一步大幅度降低房屋的建造成本。

光伏建筑一体化主要的安装形式:
立面
平屋顶
平屋顶
遮阳。

光伏建筑一体化原理

光伏建筑一体化原理

光伏建筑一体化原理光伏建筑一体化原理什么是光伏建筑一体化?•光伏建筑一体化是将光伏发电系统与建筑物紧密结合的一种建筑技术。

•通过将光伏发电系统融入建筑的外墙、屋顶、雨棚等部位,实现建筑外观与发电功能的完美结合。

光伏建筑一体化原理•光伏建筑一体化原理基于光伏效应和建筑结构的设计结合。

•光伏效应是指太阳能光子射击光伏电池后,产生光电效应,进而将光能转化为电能。

•建筑结构的设计需要考虑光伏组件的布局、支撑结构的合理安排,以及与建筑物其他部分的协调。

光伏建筑一体化的主要原理光伏效应•光伏效应是光子与物质相互作用而产生电能的现象。

•光伏电池是利用光伏效应将太阳能光子转化为电能的装置。

•光伏电池材料中的半导体能级结构使光子能量被该材料吸收时,半导体中的电子从价带跃迁到导带,产生电流。

建筑设计•光伏建筑一体化需要在建筑物的设计中融入光伏发电组件。

•建筑外墙:可以用透明或半透明的太阳能玻璃代替传统的外墙材料,实现建筑外观美观且发电效果优良。

•屋顶:可利用光伏组件作为屋面材料,将太阳能转化为电能,并供应给建筑内部使用或注入电网。

•雨棚和阳台:可以利用光伏发电板覆盖雨棚和阳台的顶部,为建筑增加发电能力,同时起到遮阳和防雨的作用。

系统集成•光伏建筑一体化需要将光伏发电系统与建筑物其他部分进行有机结合。

•电池组件:太阳能电池组件需要与建筑的支撑结构结合,保证安全稳固的安装,并能够正常接收太阳光。

•电汇箱:将光伏电池组件的输出电流连接到电汇箱,并通过电缆将电汇箱与建筑内部的电力系统连接。

•逆变器:将光伏电池组件产生的直流电转换为建筑内部所需的交流电并接入电网。

光伏建筑一体化的优势•节约用地:光伏建筑一体化将光伏发电系统整合到建筑中,不占用额外用地,最大限度地节约用地资源。

•美化环境:利用光伏发电系统的组件来替代传统建筑材料,提升建筑的美观度和现代感。

•减少能耗:通过光伏发电系统的利用,可减少对传统能源的依赖,降低能耗,实现绿色低碳环保的目标。

光伏建筑一体化

光伏建筑一体化

光伏建筑一体化光伏建筑一体化是指将光伏发电系统与建筑物的设计、建造和运营相结合,将光伏发电设备整合到建筑物的外立面、屋顶、遮阳设施等部位,使建筑物具备发电功能,同时保持建筑的美观和功能。

光伏建筑一体化的具体实现方式包括以下几个方面:1. 外立面光伏建筑一体化:将光伏组件安装在建筑物的外墙表面,利用太阳能将光能转化为电能。

这种方式可以利用建筑物的立面空间,实现光伏发电和建筑外观的有机结合。

2. 屋顶光伏建筑一体化:将光伏组件安装在建筑物的屋顶上,利用太阳能进行发电。

这种方式可以最大限度地利用建筑物的屋顶空间,将其转化为发电设备的安装面。

3. 遮阳光伏建筑一体化:将光伏组件安装在建筑物的遮阳设施上,如阳台、雨棚、遮阳板等。

这种方式可以实现遮阳和发电的双重功能,兼顾建筑物的舒适性和能源利用。

4. 窗户光伏建筑一体化:将光伏组件嵌入建筑物的窗户中,利用太阳能进行发电。

这种方式可以利用建筑物的窗户面积,实现发电和采光的双重效果。

光伏建筑一体化的优势包括:1. 节约土地资源:将光伏发电系统整合到建筑物中,不需要额外的土地或场地,节约了土地资源的利用。

2. 提高建筑能源利用效率:光伏建筑一体化可以将太阳能直接转化为电能,提高建筑的能源利用效率,降低能源消耗。

3. 美化建筑外观:光伏组件可以与建筑外观进行有机结合,不仅实现了发电功能,还可以美化建筑物的外观。

4. 减少建筑物的碳排放:光伏发电是一种清洁能源,使用光伏建筑一体化可以减少建筑物的碳排放,降低对环境的影响。

总之,光伏建筑一体化是将光伏发电系统与建筑物相结合,实现发电和建筑功能的有机融合。

它是可持续发展和绿色建筑的重要组成部分,具有广阔的应用前景。

建筑工程中的太阳能建筑一体化设计

建筑工程中的太阳能建筑一体化设计

建筑工程中的太阳能建筑一体化设计太阳能作为一种清洁、可再生的能源,被广泛应用于建筑工程中的能源供应。

随着人们对环境保护和可持续发展的关注日益增强,太阳能建筑一体化设计成为了现代建筑工程的重要组成部分。

一、太阳能建筑一体化设计的意义在传统的建筑工程中,建筑只是简单地承载和隔离人类的居住和工作空间,而太阳能建筑一体化设计则将太阳能利用融入到建筑中,提供了更多的功能和价值。

1. 节约能源:太阳能建筑一体化设计能够最大限度地利用太阳能,减少对传统能源的需求,实现能源的节约与减排。

2. 提高建筑性能:太阳能建筑一体化设计将太阳能热利用、光伏发电等技术融入建筑,提高建筑的热舒适性和能源利用效率。

3. 实现可持续发展:太阳能建筑一体化设计以可持续发展为目标,使建筑与自然环境实现良好的融合,更好地满足人们的需求。

二、太阳能建筑一体化设计的主要原则太阳能建筑一体化设计需要遵循一系列原则,以保证设计方案的实用性和可行性。

1. 建筑适应性:太阳能建筑一体化设计需要根据建筑的朝向、气候特点和功能需求,合理安排太阳能设施的布局和性能参数。

2. 能源利用效率:太阳能建筑一体化设计应当最大程度地提高太阳能的吸收、利用和转换效率,确保能源的充分利用。

3. 综合性能优化:太阳能建筑一体化设计需要综合考虑建筑结构、能源系统、环境条件等因素,实现整体性能的最优化。

4. 美观与功能统一:太阳能建筑一体化设计需要将太阳能设施与建筑的外观、功能融为一体,实现美观与功能的统一。

三、太阳能建筑一体化设计的具体应用太阳能建筑一体化设计已经在各类建筑工程中得到了广泛应用,涉及住宅、商业、工业等各个领域。

1. 太阳能建筑外墙:通过将太阳能电池板安装在建筑外墙上,实现太阳能光伏发电和建筑立面的美观统一。

2. 太阳能建筑屋顶:利用太阳能光伏电池板或太阳能热水管路覆盖在建筑屋顶上,实现电力和热能的收集和利用。

3. 太阳能建筑阳台:在建筑阳台上设置太阳能热水器或太阳能光伏电池板,实现太阳能资源的合理利用。

光伏建筑一体化BIPV系统部件选择与系统设计

光伏建筑一体化BIPV系统部件选择与系统设计

光伏建筑一体化BIPV系统部件选择与系统设计光伏建筑一体化BIPV(Building Integrated Photovoltaic)系统,是将太阳能光伏发电技术应用于建筑中的一种创新能源解决方案。

BIPV系统不仅能够为建筑提供清洁能源,还可以使建筑本身具有更加现代化、环保和节能的特点。

在实际应用中,BIPV系统的部件选择和系统设计是至关重要的环节,它们直接影响着系统的发电效率、稳定性和美观性。

首先,BIPV系统的关键部件包括光伏组件、逆变器、支架和连接线等。

在选择光伏组件时,应优先考虑组件的转换效率、耐用性、外观设计和安装方式。

通常而言,单晶硅光伏组件具有较高的转换效率和较长的寿命,而多晶硅光伏组件则具有更好的价格优势。

此外,逆变器是将光伏组件产生的直流电转换为交流电的关键设备,应选择品质可靠、功率适中的产品。

支架和连接线的材质和设计也需要经过精心选择,以确保系统在安装和运行过程中具有良好的稳定性和可靠性。

其次,针对不同类型的建筑结构和设计要求,BIPV系统的设计也会有所不同。

对于屋顶BIPV系统,应充分考虑建筑的朝向、倾角和遮挡情况,以确定最佳的布局和安装方式。

对于墙面BIPV系统,应考虑建筑的外墙材料、承重能力和美观性要求,选用适合的BIPV产品和安装方案。

此外,在设计BIPV系统时还需要考虑系统的电气布置、接地保护、防雷措施等技术细节,确保系统在实际运行中具有良好的性能和安全性。

最后,为了使BIPV系统具有更好的整体性和美观性,还可以考虑采用一些创新设计和智能控制技术。

例如,可以利用玻璃幕墙、透明光伏玻璃等产品来实现建筑外墙的一体化设计,实现建筑外观的统一性和美观性。

同时,通过智能控制系统可以实现对BIPV系统的自动监测、远程控制和自适应调节,提高系统的运行效率和可靠性。

总的来说,光伏建筑一体化BIPV系统的部件选择和系统设计是一个综合考量建筑结构、技术性能和美学要求的过程。

只有在全面考虑建筑特点和功能需求的基础上,选择合适的部件和设计方案,才能实现BIPV系统在建筑中的最佳性能和效果。

光伏建筑一体化的优缺点有哪些?

光伏建筑一体化的优缺点有哪些?

光伏建筑一体化是应用太阳能发电的一种新概念,简单地讲就是将太阳能光伏发电方阵安装在建筑的围护结构外表面来提供电力。

与建筑相结合的光伏系统,可以作为独立电源或者以并网的方式供电当系统参与并网时,可以不需要蓄电池,但需要与电网的装置,而与并网发电是当今光伏应用的新趋势。

将光伏组件安装在建筑物的屋顶或外墙,引出端经过控制器与公共电网相连接需要向光伏阵列及电网并联向用户供电,这就组成了并网光伏系统。

那么,光伏建筑一体化有哪些优点和缺点呢?一、光伏建筑一体化的优点1.绿色能源。

太阳能光伏建筑一体化产生的是绿色能源,是应用太阳能发电,不会污染环境。

太阳能是最清洁并且是免费的,开发利用过程中不会产生任何生态方面的副作用。

它又是一种再生能源,取之不尽,用之不竭。

2.不占用土地。

光伏阵列一般安装在闲置的屋顶或外墙上,无需额外占用土地,这对于土地昂贵的城市建筑尤其重要;夏天是用电高峰的季节,也正好是日照量最大、光伏系统发电量最多的时期,对电网可以起到调峰作用。

3.太阳能光伏建筑一体技术采用并网光伏系统,不需要配备蓄电池,既节省投资,又不受蓄电池荷电状态的限制,可以充分利用光伏系统所发出的电力。

4.起到建筑节能作用。

光伏阵列吸收太阳能转化为电能,大大降低了室外综合温度,减少了墙体得热和室内空调冷负荷,所以也可以起到建筑节能作用。

因此,发展太阳能光伏建筑一体化,可以“节能减排”。

二、光伏建筑一体化的缺点1.造价较高。

光伏建筑一体化建筑物造价较高。

一体化设计建造的带有光伏发电系统的建筑物造价较高,在科研技术方面还有待提升。

2.成本高。

太阳能发电的成本高。

太阳能发电的成本是每度2.5元,比常规发电成本每度1元翻倍。

3.不稳定。

光伏发电不稳定,受天气影响大,有波动性。

这是由于太阳并不是一天24小时都有,因此如何解决太阳能光伏发电的波动性,如何储电也是亟待解决的问题。

原标题:光伏建筑一体化的优缺点有哪些?。

太阳能光伏系统的建筑一体化设计

太阳能光伏系统的建筑一体化设计

太阳能光伏系统的建筑一体化设计随着环保意识的提升和对可再生能源的需求日益增长,太阳能光伏系统在建筑领域中扮演着重要角色。

传统的建筑设计和太阳能光伏系统的集成往往是独立进行的,导致一些问题如能源浪费、视觉重负荷等逐渐浮出水面。

因此,将太阳能光伏系统与建筑一体化设计相结合,成为了现代建筑设计的新趋势。

太阳能光伏系统的建筑一体化设计是指在建筑设计的初期,将光伏组件、相关系统以及电气设备等整合到建筑的各个方面,从而将太阳能光伏系统无缝地融入建筑结构和环境中。

这种一体化设计的好处在于,能够最大限度地提高太阳能光伏系统的效率,并且减少对建筑整体造型和视觉设计的影响。

首先,太阳能光伏系统的建筑一体化设计可以优化光伏组件的布置和安装方式,提高光伏系统的发电效率。

通常情况下,传统的光伏组件常常以飞架的形式安装在建筑屋面上,这不仅影响了建筑整体造型,还限制了光伏组件的布置密度。

而建筑一体化设计则能够将光伏组件嵌入到建筑结构中,充分利用建筑的外墙、屋顶等空间进行光伏组件的布置,使得光伏系统的发电面积增大,进而提高了发电效率。

其次,太阳能光伏系统的建筑一体化设计还可以使得建筑在能源利用方面更为高效。

通过在建筑外墙和屋顶处安装光伏组件,可以将太阳能转化为电能,供给建筑的日常用电需求。

同时,光伏系统配备的电池储能设备还可以将多余的电能储存起来,以备晚上或阴天使用,从而进一步提高了能源利用效率和节能效果。

此外,太阳能光伏系统的建筑一体化设计还能为建筑带来更加舒适和宜居的环境。

通过合理设计和布置光伏组件,可以为建筑提供遮阳、隔热和保温的功能,降低建筑内部空间的温度和日照照度,从而提高了建筑的舒适性。

同时,光伏组件还能有效地吸收外界的噪音和振动,提高建筑的隔音效果,进一步改善了建筑的宜居性。

然而,太阳能光伏系统的建筑一体化设计也面临一些挑战和限制。

首先,建筑的形状、朝向和周围环境等因素会对光伏系统的效率产生影响,因此需要在设计初期进行充分的分析和评估。

光伏建筑一体化范文

光伏建筑一体化范文

光伏建筑一体化范文光伏建筑一体化是指将光伏发电技术和建筑设计相结合,将太阳能光伏电池板直接安装在建筑物的外墙、屋顶、阳台、遮阳蓬等位置,通过吸收太阳能转换为电能,实现建筑物自给自足的电力供应。

光伏建筑一体化不仅能够满足建筑物自己的用电需求,还能将多余的电力输送到电网上,实现对外供电。

首先,光伏建筑一体化可以有效节约能源。

由于太阳能是一种可再生的能源,通过光伏建筑一体化能够有效地利用太阳能,减少对传统能源的依赖,降低能源消耗。

其次,光伏建筑一体化可以减少对环境的污染。

相比传统的燃煤发电方式,太阳能发电不会产生任何污染物,不会产生废气和废水,对环境的影响非常小。

再次,光伏建筑一体化可以提升建筑物的外观和形象。

传统的太阳能发电系统往往需要额外的安装空间,会影响到建筑物的美观性。

而光伏建筑一体化将太阳能电池板与建筑物完美地结合在一起,不仅不会破坏建筑物的外观,反而可以增加建筑物的现代感和科技感。

最后,光伏建筑一体化可以提供可靠的电力供应。

太阳能光伏发电系统不仅可以给建筑物自己提供电能,还可以将多余的电能卖给电网,实现对外供电。

这不仅可以实现建筑物自给自足,还可以为建筑物的主人带来经济利益。

在实际应用中,光伏建筑一体化已经取得了一些成功的案例。

比如中国上海世博园的中华馆就采用了光伏建筑一体化技术,将太阳能电池板直接安装在建筑物外墙上,实现了建筑物的自给自足。

此外,德国柏林植物园也有一座光伏建筑一体化的设施,该设施将太阳能电池板安装在屋顶上方的遮阳蓬上,不仅为植物园提供了照明和通电设备所需的电力,还为周边社区供电。

然而,目前光伏建筑一体化还存在一些挑战和问题需要解决。

首先,光伏建筑一体化的成本较高,需要投入大量的资金。

其次,光伏建筑一体化需要积极的政策支持,包括太阳能发电补贴和优惠政策等。

最后,光伏建筑一体化的技术仍然需要进一步完善和提升,例如提高光伏电池板的转换效率、降低材料的成本等。

总之,光伏建筑一体化是一种创新的太阳能利用方式,具有广阔的应用前景和巨大的经济和环境效益。

太阳能光伏与建筑一体化应用技术导则光伏建筑设计规范

太阳能光伏与建筑一体化应用技术导则光伏建筑设计规范

目次1总则 (1)2术语 (2)3光伏系统设计 (4)3.1 一般规定 (4)3.2 系统分类 (4)3.3 系统设计 (5)3.4 系统接入电网 (7)4光伏与建筑一体化设计 (9)4.1 一般规定 (9)4.2 规划设计 (9)4.3 建筑设计 (10)4.4 结构设计 (11)4.5 电气设计 (12)5光伏系统安装和调试 (14)5.1 一般规定 (14)5.2 基座工程安装 (15)5.3 支架工程安装 (15)5.4 光伏组件工程安装 (16)5.5 光伏系统电气工程安装 (16)5.6 数据检测系统工程安装、调试 (17)5.7 系统工程检测、调试 (17)6环保及卫生、安全、消防 (19)6.1 环保及卫生 (19)6.2 安全 (19)6.3 消防 (19)7工程质量验收 (20)7.1 一般规定 (20)7.2 光伏系统测评 (21)8运行管理与维护 (22)8.1 一般规定 (22)8.2 人员培训 (22)8.3 维护管理 (22)附录 A 子分项工程验收检查 (24)A.1 子分项工程验收记录 (24)A.2 子分项工程验收项目 (24)A.2.1 基座工程 (24)A.2.2 支架工程 (25)A.2.3 光伏组件工程 (26)A.2.4 系统电气工程 (28)1总则1.1.1为规范太阳能光伏系统在建筑中的应用,促进太阳能光伏系统与建筑一体化在市的推广,制定本导则。

1.1.2本导则适用于新建、改建和扩建的工业与民用建筑光伏系统工程,以及既有工业与民用建筑光伏系统工程的设计、施工、验收和运行维护。

1.1.3新建、改建和扩建的工业与民用建筑光伏系统设计应纳入建筑工程设计,统一规划、同步设计、同步施工、同步验收,与建筑工程同步投入使用。

1.1.4既有建筑安装光伏系统应按照建筑工程审批程序进行专项工程的设计、施工和验收。

1.1.5工业与民用建筑光伏系统设计除应符合本导则规定外,还应符合现行的国家、行业和浙江省有关标准的规定。

光伏建筑一体化(BIPV)的设计

光伏建筑一体化(BIPV)的设计

设计BIPV系统的步骤BIPV系统应采用节能设计技术,并仔细选择和指定设备和系统。

它们应该从生命周期成本的角度来看待,而不仅仅是最初的第一成本,因为总成本可能会因它们所取代的建筑材料和劳动力的避免成本而降低。

BIPV系统的设计考虑因素必须包括建筑物的使用和电气负载,其位置和方向,适当的建筑和安全规范以及相关的公用事业问题和成本。

1.仔细考虑应用节能设计实践和/或节能措施,以减少建筑物的能源需求。

这将提高舒适度并节省资金,同时也使给定的BIPV系统能够为负载提供更大的百分比贡献。

2.在公用事业交互式光伏系统和独立光伏系统之间进行选择:(1)绝大多数BIPV系统将连接到公用电网,使用电网作为存储和备份。

系统的大小应满足所有者的目标-通常由预算或空间限制定义;而且,逆变器的选择必须了解公用事业的要求。

(2)对于那些仅由光伏供电的“独立”系统,系统(包括存储)的尺寸必须满足建筑物的峰值需求/最低功率生产预测。

为了避免光伏/电池系统因异常或偶尔的峰值负载而过大,通常使用备用发电机。

这种系统有时被称为“光伏发电机组混合动力”。

3.移峰:如果峰值建筑负荷与光伏阵列的峰值功率输出不匹配,则经济上可能适合将电池纳入某些并网系统以抵消最昂贵的电力需求期。

该系统还可以充当不间断电源系统(UPS)。

4.提供足够的通风:工作温度升高会降低光伏转换效率。

晶体硅光伏电池比非晶硅薄膜更真实。

为了提高转换效率,请在模块后面允许适当的通风以散热。

5.使用混合光伏-太阳能热系统进行评估:作为优化系统效率的一种选择,设计人员可以选择捕获和利用通过加热模块开发的太阳能热资源。

这在寒冷的气候下对于预热进入的通风补充空气很有吸引力。

6.考虑整合采光和光伏收集:使用半透明薄膜模块,或在两层玻璃之间具有定制间隔单元的晶体模块,设计师可以使用PV在立面,屋顶或天窗光伏系统中创建独特的采光功能。

BIPV元件还有助于减少与大面积建筑玻璃相关的不必要的冷却负荷和眩光。

太阳能光伏发电建筑一体化施工工法(2)

太阳能光伏发电建筑一体化施工工法(2)

太阳能光伏发电建筑一体化施工工法太阳能光伏发电建筑一体化施工工法一、前言:太阳能光伏发电作为一种清洁能源,得到了越来越广泛的应用。

为了提高太阳能光伏发电的效率和利用率,太阳能光伏发电建筑一体化施工工法应运而生。

该工法将太阳能光伏发电系统与建筑物的设计和施工相结合,实现了对建筑立面、屋顶等各个部位的光伏发电布局,从而将太阳能光伏发电系统融入到建筑中,提高发电性能,减少对传统能源的依赖。

本文将对太阳能光伏发电建筑一体化施工工法进行详细介绍。

二、工法特点:太阳能光伏发电建筑一体化施工工法具有以下几个特点:1. 一体化设计:该工法将太阳能光伏发电系统的设计与建筑物的设计相融合,使得太阳能光伏发电系统与建筑物形成有机整体,增加了太阳能光伏发电系统的布局空间,提高了发电效率。

2. 灵活性:太阳能光伏发电建筑一体化施工工法适用于不同类型的建筑物,可以根据建筑物的形状和特点进行灵活布局,最大化地利用太阳能资源。

3. 综合效益:太阳能光伏发电建筑一体化施工工法不仅可以发电,还可以起到遮阳、保温、隔音等功能,提高建筑物的能源利用效率和舒适性。

三、适应范围:太阳能光伏发电建筑一体化施工工法适用于各类建筑物,包括住宅、商业建筑、工业建筑等。

无论是新建的建筑物还是现有的建筑物都可以使用该工法进行施工。

四、工艺原理:太阳能光伏发电建筑一体化施工工法的工艺原理是将太阳能光伏发电系统与建筑物结构进行有机整合。

具体工艺原理如下:1. 施工工法与实际工程之间的联系:根据建筑物的形状和特点,进行太阳能光伏发电系统的布局设计,并与建筑结构进行衔接,确保太阳能光伏发电系统能够稳固地安装在建筑物上。

2. 采取的技术措施:通过使用特殊材料和技术,将太阳能电池板与建筑物表面相结合,形成一个整体。

采用透明太阳能电池板、双面太阳能电池板等技术,提高光伏发电系统的发电效率。

五、施工工艺:太阳能光伏发电建筑一体化施工工法包括以下施工阶段:1. 设计阶段:根据建筑物的形状和特点,结合太阳能光伏发电系统的要求,进行光伏发电系统的布局设计和建筑物结构的调整设计。

光伏建筑一体化设计标准

光伏建筑一体化设计标准

光伏建筑一体化设计标准一、一般规定1.光伏建筑的规划设计应根据建设地点的地理气候及太阳能资源条件等因素,统筹确定建筑的布局、朝向、间距、群体组合和空间环境,满足光伏系统设计和安装的技术要求;2.光伏系统应结合建筑的功能、外观安装场地以及周围环境条件,合理选择光伏组件的类型、色泽及安装位置,不得影响安装部位的建筑功能,外观应与建筑统一协调,使之成为建筑的有机组成部分,同时兼顾建筑力学、电学、美学性能。

3.光伏系统设计应与建筑设计建筑结构设计等相关专业密切配合,共同确定光伏系统各组成部分在建筑中的位置。

4.安装在建筑各部位或直接构成建筑围护结构的光伏组件应满足该部位的使用功能、结构安全电气安全及建筑节能等要求。

5.在既有建筑上增设或改造光伏系统,应进行建筑结构安全及使用功能、建筑电气安全的复核,并满足光伏组件所在建筑部位的防水、防火、防雷、防静电等相关功能要求和建筑节能要求。

6.安装光伏组件的建筑部位,应设置防止光伏组件损坏、坠落的安全防护措施。

7.建筑设计应为光伏系统的安装使用检修和更换等提供必要的承载条件和空间。

二、规划设计1.安装光伏系统的建筑主要朝向宜为可获取光伏发电量最大的朝向。

2.安装光伏系统的建筑不应降低建筑本身或相邻建筑的建筑日照标准。

3.应合理规划光伏组件的安装位置,避免遮挡投射到光伏组件上的阳光。

4.应对光伏构件可能引起的光污染进行预测并采取相应的措施。

三、建筑设计1.光伏系统各组成部分在建筑中的位置应合理确定,并满足其所在部位的建筑防水、排水、雨水、隔热及节能、美观等功能要求。

2.建筑设计应为光伏系统提供安全的安装条件在安装光伏组件的部位采取安全防护措施。

3.安装的光伏组件不应跨越建筑变形缝。

4.光伏组件的安装应保持通风降温。

5.光伏组件布置在建筑平屋面上时,应符合以下要求:5.1采用建材型光伏组件和构件型光伏组件时,应保障屋面排水通畅;5.2普通型光伏组件安装支架可采用固定式或可调节式安装支架;5.3普通型光伏方阵中光伏组件的间距应满足冬至日上午9:00至下午15:00不遮挡太阳光的要求;5.4光伏组件的基座与结构层相连时,防水层应包到支座和金属埋件的上部,并在地脚螺栓周围作密封处理:在屋面防水层上安装光伏组件时,其支架基座下部应增设附加防水层;5.5光伏组件宜按最佳倾角布置,并应考虑设置维修通道与人工清洗设施,通道最小宽度宜为500mm;5.6光伏组件周围屋面、检修通道、屋面出入口和光伏方阵之间的人行通道上部应铺设屋面保护层;5.7光伏组件的引线穿过屋面处应预埋防水套管,并作防水密封处理。

光伏建筑一体化政策

光伏建筑一体化政策

光伏建筑一体化政策
光伏建筑一体化政策的实施对于推动可持续发展和绿色能源的利用具有重要意义。

该政策为促进太阳能光伏发电和建筑产业的融合提供了框架和指导。

以下是光伏建筑一体化政策的重要方面:
首先,政策鼓励在建筑物的设计、施工和改造过程中广泛应用太阳能光伏技术。

这意味着建筑物的屋顶、立面和其他适宜的部位将被用于安装光伏发电系统。

通过融合光伏发电技术和建筑设计,可以将太阳能转化为电能,提供清洁的可再生能源供电。

其次,光伏建筑一体化政策鼓励技术创新和产业发展。

政府将提供一系列的财
政激励措施,包括补贴、税收优惠和研发资金支持,以推动光伏建筑一体化技术的研发和应用。

这将有助于提高技术水平、降低成本,促进产业链的整合和发展。

此外,政策还重点关注光伏建筑一体化技术的标准和规范。

通过制定统一的技
术标准和规范,可以确保安装的光伏发电系统具有可靠性、安全性和高效性。

这有助于解决技术难题,提高系统的性能和使用寿命。

光伏建筑一体化政策还强调了市场化和可持续发展的理念。

政府将鼓励发展专
业的光伏建筑一体化公司和服务供应商,为市场提供高质量的产品和技术支持。

同时,政策也支持基于分散式发电的电力体制改革,鼓励居民和企业参与光伏发电,并将其与建筑物能耗进行有效管理和协调。

总结起来,光伏建筑一体化政策为光伏发电技术与建筑产业的结合提供了指导
和支持。

通过在建筑设计、施工和改造中广泛应用光伏技术,我们可以推动可持续发展和绿色能源的利用,为环境保护和经济发展赢得双赢的局面。

这一政策的实施将有助于推动清洁能源产业的发展,促进经济的可持续增长。

光伏建筑一体化设计原则

光伏建筑一体化设计原则

光伏建筑一体化设计原则光伏建筑一体化设计是指将太阳能光伏发电系统融入到建筑的设计中,以实现能源的高效利用和建筑的绿色环保。

它不但可以为建筑提供电力,还可以通过建筑本身的特点,最大限度地发挥太阳能的利用效果。

在光伏建筑一体化设计中,有一些原则需要遵循和注意。

首先,充分利用建筑的自然条件。

在光伏建筑一体化设计中,应充分利用建筑的朝向、倾斜角度、高度等自然条件,以最大限度地接收太阳能。

例如,建筑在选择朝向时,应选择南向以获得最多的阳光照射;建筑的倾斜角度应尽量使光伏面板与太阳光垂直,以提高能源转化效率;建筑的高度应考虑到周围遮挡物的影响,尽量避免遮挡光照。

其次,合理布局光伏组件。

在光伏建筑一体化设计中,光伏组件的布局是非常重要的。

应避免光伏组件之间的相互遮挡,以保证每个光伏组件都能够充分接收到阳光。

同时,还应考虑到光伏组件的防水和防火问题,以确保光伏组件的安全和稳定运行。

此外,在布局光伏组件时,还应充分考虑建筑的美观性,使光伏组件与建筑完美融合。

第三,合理设计光伏电池板。

光伏电池板是光伏建筑一体化设计中的核心部件,其设计应该充分考虑到建筑的需求和环境条件。

首先,应选用高效的光伏电池板,提高能源转化效率。

其次,电池板的安装方式应根据建筑的具体情况来确定,可以选择嵌入式安装、立面安装、屋顶安装等方式。

再次,还应考虑电池板的美观性,使其与建筑的外观形成统一的整体。

第四,合理利用光伏发电系统的余热和废弃物。

在光伏建筑一体化设计中,除了发电外,还可以充分利用光伏发电系统的余热和废弃物。

例如,可以利用余热进行建筑的供暖和制冷,以提高能源利用效率;可以利用废弃物进行建筑材料的再利用,以提高资源利用效率。

最后,合理规划建筑的能源管理系统。

在光伏建筑一体化设计中,应合理规划建筑的能源管理系统,以实现能源的高效利用和建筑的绿色运行。

可以通过智能控制系统,对建筑的能源进行监测和管理,以实现能源的合理分配和优化利用。

例如,可以根据建筑的能源需求,灵活调整光伏发电系统的运行状态,以提高能源利用效率。

太阳能与建筑一体化

太阳能与建筑一体化

太阳能与建筑一体化现如今,能源危机和环境污染成为全球面临的共同挑战。

在如此背景下,太阳能作为一种可再生能源逐渐受到重视,并被应用在建筑一体化设计中。

太阳能与建筑一体化不仅能为建筑提供清洁能源,还能增加建筑的可持续性和美观性。

随着太阳能技术的进步,太阳能光电发电被广泛应用于建筑物的屋顶和立面。

通过太阳能光伏板的安装,建筑可以直接利用太阳光来产生电能。

这项技术不仅减少了对传统石油、煤炭等非可再生能源的依赖,还能降低建筑的能耗和碳排放,为环境保护作出贡献。

与传统的太阳能光伏板相比,建筑一体化的太阳能设计更加灵活和美观。

太阳能光伏建筑一体化的设计将太阳能电池板融入建筑的结构中,使其与建筑外观融为一体,呈现出美观大方的外观效果。

这样的设计不仅优化了建筑的外观和空间利用,还为建筑提供了可再生能源的供应。

值得一提的是,建筑一体化的太阳能设计还具备良好的经济效益。

尽管初始投资可能较高,但随着太阳能技术的发展和推广,太阳能板的价格逐渐下降,而且建筑一体化的设计可以减少安装和维护的成本。

同时,太阳能发电的收益可以通过供应电网或储存电池来获取,为建筑提供可靠的经济来源。

另外,太阳能与建筑一体化技术的应用也有助于改善建筑的舒适性。

太阳能光伏板的安装不仅可以为建筑提供电能,还能通过调节太阳能吸收和热量释放来改善建筑的温度和光线条件。

通过科学的太阳能设计,建筑可以减少能源消耗,提高能源效率,为居民提供更加舒适和宜居的环境。

然而,尽管太阳能与建筑一体化的潜力巨大,它仍面临一些挑战和限制。

太阳能技术的成本、效能和可靠性等方面仍需要不断的改进和突破。

此外,对于一些建筑,可能存在限制太阳能光伏板安装的空间和结构问题,需要寻找合适的解决方案。

这就需要工程师和设计师们持续努力,寻找创新的技术和设计方案。

综上所述,太阳能与建筑一体化是一种可持续发展的解决方案,可以减少对非可再生能源的依赖,降低能耗和碳排放,提高建筑的美观性和舒适性。

虽然面临一些技术和空间方面的挑战,但随着技术的改进和推广,相信太阳能与建筑一体化将在未来得到更广泛的应用。

光伏一体化工程施工方案

光伏一体化工程施工方案

光伏一体化工程施工方案一、项目概述光伏一体化工程是指在建筑工程中加装太阳能光伏发电设施,利用建筑物外墙、屋顶等空间布置光伏板,将太阳能光伏发电系统与建筑物整体融为一体,实现建筑与太阳能发电的有机结合。

本项目是一座办公大楼的光伏一体化工程设计与施工。

二、项目背景办公大楼位于市中心主干道旁,是一座高层建筑,共有20层。

该建筑原电力供应主要来自于市电,为了降低用电成本,减少碳排放并提高建筑绿色环保等级,业主决定在建筑屋顶、外墙等位置进行光伏一体化工程。

三、施工方案1. 方案选择根据办公大楼的建筑结构、用电负荷和太阳光资源等因素,决定采用太阳能光伏板一体化幕墙和屋面方案。

光伏幕墙将安装在建筑主立面,光伏屋面将安装在建筑屋顶。

2. 设计与选材根据建筑结构和要求,设计光伏一体化工程方案,合理布局光伏板,保证发电效率和美观性。

选用高效太阳能光伏板材料,并结合建筑外观设计,采用玻璃幕墙等材料,确保光伏板与建筑完美融合。

3. 安装与施工光伏幕墙安装:根据设计要求,进行立面结构加固和预埋光伏支撑结构,然后安装光伏板和连接电缆。

同时,对立面进行外观处理,确保光伏幕墙与建筑外观一致。

光伏屋面安装:进行屋面结构加固和安全防护,铺设支撑结构并安装光伏板,同时施工完成排水系统、电缆布线、接地系统等工程。

4. 系统联调与调试完成光伏板的安装后,进行系统联调与电气调试,确保光伏发电系统正常运行。

同时进行安全监测和测试,保障光伏系统的安全和性能。

5. 完工验收与投运使用完成光伏一体化工程后,进行整体验收和检测,确保工程符合设计要求和安全标准,然后进行竣工验收,并办理相关手续,通过相关部门的验收后项目正式投运使用。

四、施工难点及解决方案1. 外观设计与美观性保障难点:办公大楼的外观设计要求高,光伏一体化工程的安装需要与建筑外观完美结合,光伏板的颜色、形状、布局等需要与建筑结构融为一体。

解决方案:设计师与施工部门密切合作,实地勘察并制定合理的布局和外观设计方案,确保光伏一体化工程的美观性和完美融合性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能光伏发电技术与建筑的一体化设计摘要:本文通过介绍太阳能光伏组件与建筑的结合方式,运用ecotect软件进行太阳辐射量分析来确定沈阳市太阳能光伏组件的
最佳安装倾角及最佳阵列间距,完善太阳能光伏关键词:太阳能;光伏发电技术;一体化设计
abstract: this paper introduces the components and building solar photovoltaic combining ways, using ecotect software to solar radiation analysis to determine the best components of solar photovoltaic installation angle and best array spacing, perfect solar photovoltaic
keywords: solar; photovoltaic power generation technology; integration design
中图分类号:s611文献标识码:a文章编号:
光伏组件的布置方式直接影响到其发电的效果,所以在节能建
筑概念设计或者初步设计阶段,要充分考虑太阳能的最大限度利用,从而确定有利于光伏组件布置的建筑造型。

同时,光伏构件本身也有着丰富多变的美学特征,不同颜色,不同大小尺寸光伏板通过一定规律组合运用在建筑的围护结构上,不仅满足了建筑的能源供给,同时具有韵律感,成为立面的活泼元素,丰富立面形态。

1.光伏组件与建筑的结合方式
1.1光伏组件结合屋顶设计
就光伏材料的发电效率而言,坡屋面是比较理想的屋面形式,
他能够自然形成倾斜角,比平屋面的布置方式更有利。

在设计中可考虑协调建筑的功能,在屋顶造型上设计出南向倾斜的坡屋面。

在我国城市住宅和公共建筑更多采用的是平屋面,平屋面光伏构件的布置方式同样分两种:支架式和嵌入式。

支架式布置光伏构件以倾斜面接收太阳辐射,布置的自由度和灵活性较大,光伏阵列可以调整倾斜角、方位角以及前后组光伏构件的间距,以此避免阴影,最大效率的发电。

支架式构造简单,适用于各类平屋面建筑,比较容易普及。

但支架式布置的情况下光伏和建筑二者的关系比较松散,融合的程度低,同时支架式布置光伏构件对提升建筑美观的作用较小。

嵌入式的布置方式是在屋面系统集成光伏材料。

光伏构件的使用可以与被动式利用太阳能、自然采光相互协调,有利于降低建筑能耗。

但水平的光伏构件由于难以利用雨水自洁,灰尘和树叶往往会影响其发电效率,因而需要定期清扫。

平屋顶的建筑也可以同时使用两种布置方式,不需要天窗的部分屋面采用支架式,需要设置天窗的部分采用嵌入式光伏屋面。

公共建筑的屋顶也可做成锯齿形高侧窗,南面为斜坡用来铺设光电板,北向玻璃窗用来采光。

中庭上铺设光伏构件的构造处理方式,同嵌入式的墙面或屋面类似。

在办公楼、商场展览建筑中往往设有中庭,夏季大量的太阳辐射往往使中庭成为建筑节能的薄弱环节。

在中庭上布置光伏构件,一方面可获得电能;另一方面,调节光伏电池的间距和不透明度,可有效控制室内照度,避免室内热负荷过大。

1.2光伏组件结合立面设计
在竖直的墙面上布置光伏构件是较直接的方式。

考虑到建筑立面效果,光伏的颜色需要与其他建筑材料协调。

光伏构件的构造方式可根据不同墙面系统(实墙,窗户与窗间墙,玻璃幕墙)来确定,总体上可分为外挂和内嵌两种方式。

考虑到采光和视线的因素.在竖向高度上要区分光伏材料的不透明度,如视线上下范围内采用透明玻璃窗或半透明光伏材料,其他窗间墙可采用不透明光伏材料。

对于高层建筑,竖直墙面的面积较多而屋顶面面积有限,南向墙面可布置光伏材料。

如果在城市中建筑物比较密集,或者建筑周围有树木环绕,太阳光收到阻挡,可以在建筑物较高部位的墙面上设置光伏板。

纽约时代广场4号楼在35-48层墙上就安装了光伏板。

部分地区东西向也可设置,因为低纬度地区建筑的南向墙面在夏季获得太阳直接辐射明显少于水平屋面和东西墙面。

建筑平面布局有时不能面向太阳光辐射最优的朝向,局部采用水平向锯齿状布置方式,是巧妙化整为零的处理手法,以此优化光伏构件布置的方向,趣味变化的造型也改变了建筑的视线和景观。

1.3光伏组件结合遮阳设计
光伏组件可布置在遮阳板上,成为建筑的附属构件,如图1为荷兰能源研究中心31号建筑的光伏遮阳构架。

建筑外遮阳常常具有一定的倾斜角,为光伏板的设置提供了合适的条件。

夏季阳光照射到光伏组件,采用光伏发电遮挡阳光直射到室内,减少建筑物制冷负荷,在冬季通过调节光伏组件不影响阳光照射到室内。

且光伏遮阳板与建筑表皮独立,不影响外墙的保温.防水和防噪。

对于新
建或改建的情况都比较适用,建造成本也较低。

图1 荷兰能源研究中心31号建筑的光伏遮阳构架图2 光伏活动遮阳工作原理
2.最佳倾角分析
安装倾角是太阳能电池阵列平面与水平地面的夹角。

确定安装倾角需综合考虑多种因素,如可实现装机容量、发电效率、安装成本、上网电价等,有降雪的地区还要特别考虑积雪滑落的倾斜角(斜率大于50%~60%)。

目前已安装的光伏发电系统,安装倾角大多参照安装所在地的纬度并综合考虑多方面因素进行确定,方阵从垂直放置到10°~20°倾角放置的都有。

图3 不同倾角阵列的太阳能辐射量
本文利用autodesk ecotect analisys的太阳能辐射量分析,输入沈阳市的地理坐标及气候参数,并绘制正南朝向、不同倾角的光伏阵列进行太阳辐射量分析,倾角范围选在10°~90°,每隔5°度放置一个模型。

图3是沈阳地区8:00~10:00不同倾角的的全年累计辐射量分析,由于辐射量差别不是很多,所以颜色差别不大,通过表1数据分析,可以很清楚的看出,模型旋转角度在50°时,即安装倾角在40°时,全年9:00~15:00的太阳能辐射量最大,同时看出此处的每平方米累计辐射量约为1169657.875wh/㎡。

表1 不同角度的光伏组件全年累计太阳辐射量
3.最佳阵列间距分析
图4 光伏组件阴影范围模拟
在组件排布方案中,电池阵列间距也需要计算分析。

两阵列的垂直距离过小,前面的阵列对后面的阵列形成遮挡;距离过大,又会造成安装面积的浪费。

两阵列之间的垂直距离一般以冬至日当天9:00~15:00光伏电池阵列不被遮挡为最佳。

建筑师在进行光伏系统方案设计时,一般采用计算方法得出光伏阵列间距d,计算公式如下:
d=0.707h/tan[arcsin(0.648cosψ-0.399sin﹞]
式中: ψ为纬度(在北半球为正、南半球为负)
h为光伏方阵阵列或遮挡物与可能被遮挡组件底边高度差。

我们同样取沈阳地区纬度ψ=41.7°,h=964mm,计算得
d=2252.6mm。

接下来,我们运
用autodesk ecotect analisys软件对阵列间距进行直观地分析设计。

设置纬度ψ=41.7°,h=964mm,时间为冬至日9:00~15:00。

分析结果如图4,图中现实了高度964mm的阵列在冬至日9:00~15:00产生阴影范围,阴影长度为2553mm,考虑测量误差和计算误差,软件模拟结果和公式计算结果基本一致。

参考文献:
徐燊,李保峰.光伏建筑的整体造型和细部设计[j].建筑学报,2010,1
陈维,沈辉,刘勇. bipv中光伏阵列朝向和倾角对性能影响理论研究[j] .太阳能学报,2009,30(2)
龙文志.太阳能光伏建筑一体化[j].建筑技术,2009,40(9)
注:文章内所有公式及图表请以pdf形式查看。

相关文档
最新文档