一元二次不等式及其解法(高考题)
一元二次不等式及其解法(高考题)
一元二次不等式及其解法链接高考1. (2016浙江杭州中学期中,★☆☆)以下不等式中,与不等式<2解集相同的是( )A.(x+8)(x2+2x+3)<2B.(x+8)<2(x2+2x+3)C.<D.>2. (2021天津南开中学月考,★☆☆)不等式≥2的解集是( )A. B. C.∪(1,3] D.∪(1,3]3. (2021江西,6,5分,★☆☆)以下选项中,使不等式x<<x2成立的x的取值范围是( )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)4. (2021重庆,2,5分,★☆☆)不等式≤0的解集为( )A. B. C.∪[1,+∞) D.∪[1,+∞)5. (2021江西,11,5分,★☆☆)不等式>0的解集是________.6. (2021课标Ⅱ,1,5分,★★☆)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},那么A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}7. (2021山东,1,5分,★★☆)已知集合A={x|x2-4x+3<0},B={x|2<x<4},那么A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)8. (2021浙江,1,5分,★★☆)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},那么(∁R P)∩Q=()A.[0,1)B.(0,2]C.(1,2)D.[1,2]9. (2021课标Ⅰ,11,5分,★★☆)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},那么A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)10. (2016河北石家庄一中期中,★★☆)假设不等式x2+2x+2>|a-2|关于一切实数x均成立,那么实数a的取值范围是________.11. (2021福建,15,4分,★★☆)已知关于x的不等式x2-ax+2a>0在R上恒成立,那么实数a的取值范围是________.12. (2021辽宁大连期末,★★☆)已知f(x)=ax2+x-a.(1)假设函数f(x)有最大值,求实数a的值;(2)假设不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围.三年模拟1. (2016四川雅安中学月考,★☆☆)不等式-x2+3x+4<0的解集为( )A.{x|-1<x<4}B.{x|x>4或x<-1}C.{x|x>1或x<-4}D.{x|-4<x<1}2. (2016河南洛阳统考,★☆☆)已知集合A={x|x2<2-x},B={x|-1<x<2},那么A∪B=()A.(-1,1)B.(-2,2)C.(-1,2)D.(-2,1)3. (2016 宁夏银川一中月考,★☆☆)不等式(1+x)(1-|x|)>0的解集是( )A.{x|-1<x<1}B.{x|x<1}C.{x|x<-1或x>1}D.{x|x<1且x≠-1}4. (2016福建师大附中模块考试,★★☆)假设关于x的方程x2+(m-1)x+m2-2=0的一个实根小于-1,另一个实根大于1,那么实数m的取值范围是( )A.(-,)B.(-2,0)C.(-2,1)D.(0,1)5. (2021山东日照一中校际联检,★☆☆)在R上概念运算:x*y=x(1-y).假设关于x的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,那么实数a的取值范围是( )A.[0,2]B.[-2,-1)∪(-1,0]C.[0,1)∪(1,2]D.[-2,0]6. (2021河北“五个一名校联盟”质检,★☆☆)设集合M={x|x2+2x-15<0},N={x|x2+6x-7≥0},那么M∩N=()A.(-5,1]B.[1,3)C.[-7,3)D.(-5,3)7. (2016四川雅安中学月考,★☆☆)一元二次不等式x2+ax+b>0的解集为(-∞,-3)∪(1,+∞),那么一元一次不等式ax+b<0的解集为________.8. (2021广东广州模拟,★☆☆)不等式x2-2x-3<0的解集是________.9. (2016山东潍坊一中月考,★☆☆)已知集合B=,C={x|a<x<a+1}.假设B∪C=B,求实数a的取值范围.10.. (2021天津南开中学月考,★★☆)解关于x的不等式>0(a∈R).。
【超级经典】一元二次不等式及其解法(含答案)
1 , 2
由函数 y 4 x 4 x 1的图象为:
2
原不等式的的解集是 { } . 方法二:∵ 原不等式等价于: (2 x 1) 0 ,
2
1 2
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
∴原不等式的的解集是 { } . (4)方法一:
2 2 因为 0 ,方程 x 4 x 5 0 无实数解,
函数 y x 4x 5 的简图为:
2
所以不等式 x 4 x 5 0 的解集是 .
2
所以原不等式的解集是 . 方法二:∵ x 4x 5 ( x 2) 1 1 0
2
函数 y x 5x 的简图为:
2
因而不等式 x 5x 0 的解集是 {x | 0 x 5} .
2
方法二: x 5x 0 x( x 5) 0
2
x 0 x 0 或 x 5 0 x 5 0
解得
x 0 x 0 或 ,即 0 x 5 或 x . x 5 x 5
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
【经典例题】 类型一:解一元二次不等式 例 1. 解下列一元二次不等式 (1) x 5x 0 ;
2
(2) x 4 x 4 0 ;
2
(3) x 4 x 5 0
2
思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为 (5)2 4 1 0 25 0 所以方程 x 5x 0 的两个实数根为: x1 0 , x2 5
高三数学 一元二次不等式及其解法(一)
其中解集为R的是( B )
(A)④ (C)② (B)③ (D)①
7.不等式2x2-3x-35>0的解集是( A ) 7 (A){x | x 或x 5} 2 7 (B){x | x 0或x 5} (C){x | 5 x 5或x 7} (D){x| x>5或x<-5}
14.若不等式(1-a)x2-4x+6>0的解集是 {x| -3<x<1},求a的值。
a=3
3.3一元二次不等式及其解法(一)
1.不等式x2>3x的解集是( B ) (A){x| x>3} (B){x| x<0或x>3}
(C){x| 0<x<3} (D)R
2.不等式2x+3-x2>0的解集是( A )
(A){x| -1<x<3}
(B){x| -3<x<1} (C){x| x<-1或x>3}
2
2
m 8.不等式 x mx 0 恒成立的条件是 2
2
( D ) (A)m>2 (B)m<2
(C)m<0或m>2 (D)0<m<2
9.方程x2+(m-3)x+m=0有两个实根,则 m的取值范围是 m≥9或m≤1 。
10.已知不等式x2+mx+n>0的解集是{x| x<
-1或x>2},则m= -1
; n= - 2 .
11.已知集合A={x∈R| x2-x-2≤0},
高考文数复习---一元二次不等式及其解法课时练习题(含答案解析)
7.不等式 x2-2ax-3a2<0(a>0)的解集为
.
{x|-a<x<3a} [x2-2ax-3a2<0⇔(x-3a)(x+a)<0.
又 a>0,则-a<3a,所以-a<x<3a.]
8.关于 x 的不等式 x2+ax+a≤1 对一切 x∈(0,1)恒成立,则 a 的取值范围
为
.
(-∞,0] [原不等式可化为 x2+ax+a-1≤0,设 f(x)=x2+ax+a-1,
a
<
1 3
时
,
原
不
等
式
的
解
集
为
xx>3a+3+
9a2-30a+9 4
3a+3- 或x<
9a2-30a+9
;
4
当 a=13时,原不等式的解集为{x|x≠1};
当13<a<1 时,原不等式的解集为 R.
综合运用练习
1.函数 f(x)=ln-x2+1 4x-3的定义域是(
)
A.(-∞,1)∪(3,+∞)
又当 x∈[1,2]时,x+2x≥2 2,当且仅当 x= 2时等号成立,则-x-2x≤-2 2.
∴m>-2 2.]
3.已知一元二次不等式 f(x)<0 的解集为xx<-1或x>13
,则 f(ex)>0 的
解集为
.
{x|x<-ln 3} [f(x)>0 的解集为 x∈-1,13.
不等式 f(ex)>0 可化为-1<ex<13,
A.xx<-1或x>12
B.x-1<x<12
C.{x|-2<x<1}
D.{x|x<-2 或 x>1}
-ba=-1+2, A [由题意知2a=-1×2,
ba=-1, 即2a=-2,
a=-1, 解得
(完整)高中数学一元二次不等式练习题
一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=∆ 0>∆ 0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象()002>=++a c bx ax的解集)0(02>>++a c bx ax的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。
(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。
(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。
(根据一元二次方程的根及不等式的方向)不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立.例1:解不等式(1) (x+4)(x+5)2(2-x)3<0 x 2-4x+1 3x 2-7x+2 ≤1 解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0根据穿根法如图不等式解集为{x ∣x>2或x<-4且x ≠5}.(2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图不等式解集为{x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2-4 -5 2 21 1 3 1一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x10、0121632>-+x x 11、0123732>+-x x 12、071522≤++x x13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x31、03282>--x x 32、031082≥-+x x 33、041542<--x x34、02122>--x x 35、021842>-+x x 36、05842<--x x1.(2012年高考上海卷)不等式2-x x +4>0的解集是________. 2.已知不等式ax 2+bx +c <0(a ≠0)的解集是R ,则( )A .a <0,Δ>0B .a <0,Δ<0C .a >0,Δ<0D .a >0,Δ>03.不等式x 2x +1<0的解集为( ) A .(-1,0)∪(0,+∞) B .(-∞,-1)∪(0,1)C .(-1,0)D .(-∞,-1)4.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z },若P ∩Q ≠∅,则m 等于( )A .1B .2C .1或25D .1或2X k b 1 . c o m 5.如果A ={x |ax 2-ax +1<0}=∅,则实数a 的集合为( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}6.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2} C .{x |-1≤x ≤2} D .{x |-1≤x <2}二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________. 3、不等式2310x x -++>的解集是 ; 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ;9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合M N = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为__________. 12、不等式0<x 2+x -2≤4的解集是___________ .13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______________. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.(1)03222<--a ax x (2)0)1(2<--+a x a x。
高考数学第 6.2 一元二次不等式及其解法 文
一元二次不等式及其解法(45分钟 100分)一、选择题(每题5分,共40分)1.一元二次不等式x2-5x-24<0的解集为( )A.(-∞,-3)B.(8,+∞)C.(-3,8)D.(-∞,-3)∪(8,+∞)2.(2021·宜昌模拟)函数f(x)=√x −2-1√3x −x 2的概念域是( )A.{x|2≤x ≤3}B.{x|2≤x<3}C.{x|0<x<3}D.{x|x>3}3.(2021·黄石模拟)在R 上概念运算⊗:x ⊗y=x(1-y).假设不等式(x-a)⊗(x+a)<1对任意实数x 成立,那么( ) <a<1 <a<212<a<32 32<a<124.(2021·天门模拟)已知函数f(x)={x +2,x ≤0,−x +2,x >0,那么不等式f(x)≥x2的解集为( )A.[-1,1]B.[-2,2]C.[-2,1]D.[-1,2]5.(2021·仙桃模拟)假设不等式ax2+bx+c>0的解集是(-4,1),那么不等式b(x2-1)+a(x+3)+c>0的解集为() A.(−43,1)B.(-∞,-1)∪(43,+∞)C.(-1,4)D.(-∞,-2)∪(1,+∞)6.(2021·武昌模拟)假设“0<x<1”是“(x-a)[x-(a+2)]≤0”的充分没必要要条件,那么实数a 的取值范围是()A.[-1,0]B.(-1,0)C.(-∞,0]∪[1,+∞)D.(-∞,-1)∪(0,+∞)7.(2021·武汉模拟)已知f(x)=x2+ax+b(a ,b ∈R)的值域为[0,+∞),且f(x)<c 的解集为(m,m+5),那么c 的值为( )B.252C.253D.2548.已知函数f(x)=ex-1,g(x)=-x2+4x-3.假设有f(a)=g(b),那么b 的取值范围 为( )A.[2-√2,2+√2]B.(2-√2,2+√2)C.[1,3]D.(1,3)二、填空题(每题5分,共20分)9.假设关于x 的不等式ax2+bx+a2-1≤0的解集为[-1,+∞),那么实数a,b 的值别离为 .10.(2021·大同模拟)已知函数f(x)=-x2+2x+b2-b+1(b ∈R),假设当x ∈[-1,1]时,f(x)>0恒成立,那么b 的取值范围是 .11.(2021·绍兴模拟)假设函数f(x)是概念在(0,+∞)上的增函数,且对一切x>0,y>0知足f(xy)=f(x)+f(y),那么不等式f(x+6)+f(x)<2f(4)的解集是 .12.(能力挑战题)已知不等式xy ≤ax2+2y2,假设对任意x ∈[1,2]及y ∈[2,3],该不等式恒成立,那么实数a 的范围是 .三、解答题(13题12分,14~15题各14分)13.(2021·福州模拟)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,咱们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发觉情形不对,同时刹车,但仍是相撞了.事后现场勘查测得甲车的刹车距离略超过12m,乙车的刹车距离略超过10m.又知甲、乙两种车型的刹车距离s(m)与车速x(km/h)之间别离有如下关系:s 甲=+,s 乙=+.问:甲、乙两车有无超速现象?14.(2021·咸宁模拟)设不等式4−xx −2>0的解集为集合A,关于x 的不等式x2+(2a-3)x+a2-3a+2<0的解集为集合B.(1)假设B ⊆A,求实数a 的取值范围.(2)假设A ∩B=∅,求实数a 的取值范围.15.(能力挑战题)已知抛物线y=(m-1)x2+(m-2)x-1(x ∈R).(1)当m 为何值时,抛物线与x 轴有两个交点?(2)假设关于x 的方程(m-1)x2+(m-2)x-1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围. 答案解析1.【解析】选C.由x2-5x-24<0,得(x-8)(x+3)<0.即-3<x<8.2.【思路点拨】将条件用不等式组列出,解不等式组可求解. 【解析】选B.要使函数成心义,应有{x −2≥0,3x −x 2>0,即{x ≥2,0<x <3,因此2≤x<3, 即函数的概念域为{x|2≤x<3}.3.【解析】选C.(x-a)⊗(x+a)<1对任意实数x 成立,即(x-a)(1-x-a)<1对任意实数x 成立.因此x2-x-a2+a+1>0恒成立,因此Δ=1-4(-a2+a+1)<0,因此-12<a<32. 4.【解析】选A.当x>0时,f(x)≥x2就为-x+2≥x2,解得0<x ≤1;当x ≤0时,f(x)≥x2就为x+2≥x2,解得-1≤x ≤0,故不等式f(x)≥x2的解集为-1≤x ≤1,即x∈[-1,1].5.【思路点拨】利用不等式解集确信a 的符号及a 与b,c 的关系,代入所求不等式可解.【解析】选A.由不等式ax2+bx+c>0的解集为(-4,1)知a<0,-4和1是方程ax2+bx+c=0的两根,因此-4+1=-b a ,-4×1=c a,即b=3a,c=-4a. 故所求解的不等式即为3a (x2-1)+a(x+3)-4a>0,即3x2+x-4<0,解得-43<x<1,应选A. 6.【解析】选A.因为(x-a)[x-(a+2)]≤0的解集为[a,a+2],由题意得(0,1)[a,a+2],因此{a ≤0,a +2≥1,解得a ∈[-1,0]. 7.【解析】选D.因为f(x)=x2+ax+b(a,b ∈R)的值域为[0,+∞),因此Δ=0,即a2-4b=0.又f(x)<c 的解集为(m,m+5),因此m,m+5是对应方程f(x)=c 的两个不同的根,因此x2+ax+b-c=0, 因此依照根与系数之间的关系得{x 1+x 2=−a ,x 1x 2=b −c ,又|x2-x1|=√(x 1+x 2)2−4x 1x 2,因此|m+5-m|=√(−a )2−4(b −c ). 即5=√a 2−4b +4c =√4c .因此c=254. 8.【思路点拨】由f(a)=g(b)可知b 的取值应使g(b)在f(x)的值域中,即求f(x)值域后令g(b)∈f(x)的值域即可.【解析】选B.函数f(x)的值域是(-1,+∞),要使得f(a)=g(b),必需使得-b2+4b-3>-1.即b2-4b+2<0,解得2-√2<b<2+√2.【误区警示】此题弄不清题意,弄不清a,b 是何意义,从而不知如何下手,致使误解.9.【思路点拨】分析不等式的解集可确信a 的取值而后利用a 的值再转化求解.【解析】依题意知,原不等式必为一元一次不等式,因此a=0,从而不等式变成bx-1≤0,于是应有{b <0,1b=−1,因此b=-1.答案:0,-110.【思路点拨】结合二次函数图象的开口方向及对称轴分析可解.【解析】由f(x)=-x2+2x+b2-b+1知二次函数开口向下,对称轴为x=1,因此f(x)在[-1,1]上单调递增,故只要f(-1)=-1-2+b2-b+1>0,即b2-b-2>0,得b<-1或b>2.答案:(-∞,-1)∪(2,+∞)11.【解析】由已知,得f(x+6)+f(x)=f(x(x+6)),2f(4)=f(16).因此f(x(x+6))<f(16).由题意,得{x (x +6)<16,x >0,x +6>0,解得0<x<2.答案:{x|0<x<2}12.【思路点拨】将参数a 分离到不等式的一边,然后求不等式另一边的最大值,令t=y x,通过换元,转化为二次函数在闭区间上的最值问题.【解析】由xy ≤ax2+2y2可得a ≥y x -2(y x )2,令t=y x,g(t)=-2t2+t,由于x ∈[1,2],y ∈[2,3],因此t ∈[1,3],于是g(t)=-2t2+t=-2(t−14)2+18,因此g(t)的最大值为g(1)=-1,故要使不等式恒成立,实数a 的范围是a ≥-1. 答案:a ≥-1【方式技术】换元法的妙用此题中涉及三个变量,但通过度离变量,将不等式的一边化为只含有x,y 两个变量的式子,然后通过换元法求出该式的最值,从而取得参数a 的取值范围.其中换元法起到了关键作用,一样地,形如a[f(x)]2+bf(x)+c 的式子,不论f(x)的具体形式如何,都可采纳换元法,将其转化为二次函数、二次不等式或二次方程加以解决,但需注意的是换元后必然要注意新元的取值范围.【加固训练】假设不等式a ·4x-2x+1>0对一切x ∈R 恒成立,那么实数a 的取值范围是 .【解析】不等式可变形为a>2x −14x =(12)x -(14)x , 令(12)x =t,那么t>0, 且y=(12)x -(14)x =t-t2=-(t −12)2+14, 因此当t=12时,y 取最大值14, 故实数a 的取值范围是a>14. 答案:a>14 13.【思路点拨】由甲、乙两车的实际刹车距离成立关于甲、乙两车车速的不等式,求出两车的实际车速然后判定是不是超速.【解析】由题意知,关于甲车,有+>12,即x2+10x-1200>0,解得x>30或x<-40(不符合实际意义,舍去).这说明甲车的车速超过30km/h.但依照题意刹车距离略超过12m,由此估量甲车车速可不能超过限速40km/h.关于乙车,有+>10,即x2+10x-2000>0,解得x>40或x<-50(不符合实际意义,舍去).这说明乙车的车速超过40km/h,超过规定限速.【方式技术】构建不等式模型解决实际问题不等式的应用问题常常以函数为背景,多是解决实际生活、生产中的最优化问题等,解题时,要认真审题,认清题目的条件和要解决的问题,理清题目中各量之间的关系,成立适当的不等式模型进行求解.【加固训练】某产品生产厂家依照已往的生产销售体会取得下面有关销售的统计规律:每生产产品x(百台),其总本钱为G(x)万元,其中固定本钱为2万元,而且每生产100台的生产本钱为1万元(总本钱=固定本钱+生产本钱),销售收入R(x)知足R(x)={−0.4x 2+4.2x −0.8,0≤x ≤5,10.2,x >5.假定该产品销售平稳,那么依照上述统计规律:(1)要使工厂有盈利,产品数量x 应操纵在什么范围?(2)工厂生产多少台产品时盈利最大?求现在每台产品的售价为多少? 【解析】(1)设厂家纯收入为y 万元,由题意G(x)=x+2,因此y=R(x)-G(x)={−0.4x 2+3.2x −2.8,0≤x ≤5,8.2−x ,x >5, 令y>0得{0≤x ≤5,−0.4x 2+3.2x −2.8>0或{x >5,8.2−x >0,解得1<x<,故当1<x<时工厂有盈利.(2)当0≤x ≤5时, y=+因此当x=4时,ymax=;当x>5时,y<=,因此当生产400台产品时盈利最大,现在R(4)=×42+×=, 故每台产品的售价为96 000400=240(元). 14.【解析】由题意4−xx −2>0⇔(x-2)(x-4)<0,解得A={x|2<x<4},集合B={x|(x+a-2)(x+a-1)<0}={x|1-a<x<2-a}.(1)假设B⊆A,那么{1−a≥2,2−a≤4,解得-2≤a≤-1,即a∈[-2,-1].(2)假设A∩B=∅,那么2-a≤2或1-a≥4,解得a∈(-∞,-3]∪[0,+∞).15.【解析】(1)依照题意,m≠1且Δ>0,即Δ=(m-2)2-4(m-1)(-1)>0,得m2>0,因此m≠1且m≠0.(2)在m≠0且m≠1的条件下,{x1+x2=m−21−m, x1·x2=11−m,因为1x1+1x2=x1+x2x1x2=m-2,因此1x12+1x22=(1x1+1x2)2-2x1x2=(m-2)2+2(m-1)≤2.得m2-2m≤0,因此0≤m≤2.因此m的取值范围是{m|0<m<1或1<m≤2}.。
高二数学一元二次不等式及其解法试题
高二数学一元二次不等式及其解法试题1.如果不等式ax2+bx+c<0(a≠0)的解集为空集,那么()A.a<0,Δ>0B.a<0,Δ≤0C.a>0,Δ≤0D.a>0,Δ≥0【答案】C【解析】只能是开口朝上,最多与x轴一个交点情况∴a>0,Δ≤0;故选C。
【考点】主要考查一元二次不等式解法。
点评:基本题型,记清不等式ax2+bx+c<0(a≠0)的解集的各种情况。
2.不等式(x+5)(3-2x)≥6的解集为()A.{x|x≤-1或x≥}B.{x|-1≤x≤}C.{x|x≥1或x≤-}D.{x|-≤x≤1}【答案】D【解析】首先移项,合并同类项,分解因式可得-≤x≤1,故选D。
【考点】主要考查一元二次不等式解法。
点评:基本题型,解不等式ax2+bx+c>0(<0)(a≠0)首选因式分解法,注意各因式中x系数化为正。
3.若二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:x-3-2-101234则不等式ax2+bx+c>0的解集是。
【答案】(-∞,-2)∪(3,+∞)【解析】两个根为2,-3,由函数值变化可知a>0∴ax2+bx+c>0的解集是(-∞,-2)∪(3,+∞)。
【考点】主要考查一元二次不等式的概念及解法。
点评:基本题型,一元二次方程的根为“变号零点”。
4.若集合A={x∈R|x2-4x+3<0},B={x∈R|(x-2)(x-5)<0},则A∩B=_______________________________.【答案】{x│2<x<3}【解析】因为,,所以A∩B={x│2<x<3}。
【考点】主要考查一元二次不等式解法、集合的运算。
点评:基本题型,求集合的交集、并集,往往先解不等式,明确集合中的元素。
借助数轴,避免出错。
5.不等式(x-2)≥0的解集为________________.【答案】{x│x≥3或x=2或x=-1}【解析】等价于x-2=0或x2-2x-3=0或取并集可得{x│x≥3或x=2或x=-1}。
高考数学 一元二次不等式及其解法大全(含练习和答案)
一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
高考复习 第7篇 第2讲 一元二次不等式及其解法知识点+例题+练习 含答案
第2讲 一元二次不等式及其解法 考点一 一元二次不等式的解法【例1】 (2014·大连模拟)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是________.解析 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3),∴a <0.且⎩⎪⎨⎪⎧1-ab a =2,-ba =-3,解得a =-1或13,∴a =-1,b =-3.∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32.答案 ⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞规律方法 解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.【训练1】 (2013·江西卷改编)使不等式x <1x <x 2成立的x 的取值范围是________. 解析 当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎨⎧x 2>1,x 3<1,解得x <-1.答案 (-∞,-1)考点二 含参数的一元二次不等式的解法【例2】 (2013·烟台期末)解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即a >-2,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1;当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 【训练2】 (1)(2013·重庆卷改编)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于________. (2)解关于x 的不等式(1-ax )2<1.(1)解析 法一 ∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由根与系数的关系知⎩⎨⎧x 1+x 2=2a ,x 1x 2=-8a 2, ∴x 2-x 1=(x 1+x 2)2-4x 1x 2=(2a )2-4(-8a 2)=15,又∵a >0,∴a =52.法二 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0, ∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a,4a ), 又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2), ∴x 1=-2a ,x 2=4a .∵x 2-x 1=15, ∴4a -(-2a )=15,解得a =52. 答案 52(2)解 由(1-ax )2<1,得a 2x 2-2ax <0, 即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a .当a <0时,2a <x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考点三 一元二次不等式恒成立问题【例3】 已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67; 当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0. 综上所述:m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二 ∵f (x )<-m +5⇔m (x 2-x +1)<6, ∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数.则g (x )在[1,3]上为减函数, ∴[g (x )]min =g (3)=67,∴m <67. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.【训练3】 (1)若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.(2)(2014·淄博模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是________.解析 (1)当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R , 只需⎩⎨⎧a >0,Δ=22-4×2a <0,解得a >12.综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.(2)∵x ∈(0,2], ∴a 2-a ≥x x 2+1=1x +1x.要使a 2-a ≥1x +1x 在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.答案 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)⎝⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞1.解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.2.当判别式Δ<0时,ax 2+bx +c >0(a >0)解集为R ;ax 2+bx +c <0(a >0)解集为∅.二者不要混为一谈.3.含参数的不等式的求解,注意选好分类标准,避免盲目讨论. 4.对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .思想方法6——数形结合思想在“三个二次”间关系的应用【典例】 (2012·福建卷)对于实数a 和b ,定义运算“*”;a *b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析 由定义可知:f (x )=(2x -1)*(x -1)=⎩⎨⎧(2x -1)2-(2x -1)(x -1),x ≤0,(x -1)2-(2x -1)(x -1),x >0,∴f (x )=⎩⎨⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1, ∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322,即0<x 2x 3<14. 令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34或1+34(舍去).∴1-34>x 1>0,∴3-14>-x 1>0, ∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 答案 ⎝ ⎛⎭⎪⎫1-316,0【自主体验】1.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎨⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1;②⎩⎨⎧1-x 2>0,x <0⇒-1<x <0. 综上可知:-1<x <2-1.答案 (-1,2-1)2.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x -1,x >0-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)基础巩固题组 (建议用时:40分钟)一、填空题1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =________.解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3]. 答案 (2,3]2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4.答案 (-∞,-4)∪(4,+∞)3.(2013·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为________.解析 f (4)=42=2,不等式即为f (x )<2.当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,f (x )<f (4)的解集为{x |x <4}. 答案 {x |x <4}4.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是________.解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 答案 (2,3)5.(2014·南京二模)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为________.解析 根据给出的定义得x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)·(x -1)<0,故这个不等式的解集是(-2,1). 答案 (-2,1)6.已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a =________. 解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax-1=0的根,∴a =-2. 答案 -27.(2013·重庆卷)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围是________.解析 不等式8x 2-(8sin α)x +cos 2α≥0恒成立,所以Δ≤0,即Δ=(8sin α)2-4×8×cos 2α≤0,整理得2sin 2 α-cos 2α≤0,即4sin 2 α≤1,所以sin 2 α≤14,即-12≤sin α≤12,因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π,即α的取值范围是⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π. 答案 ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π 8.(2014·福州期末)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析 原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3. 答案 [-4,3] 二、解答题9.求不等式12x 2-ax >a 2(a ∈R )的解集. 解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 10.(2014·长沙质检)已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1]. 法二 令g (x )=x 2-2ax +2-a ,由已知, 得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1.所求a 的取值范围是[-3,1].能力提升题组 (建议用时:25分钟)一、填空题1.(2013·新课标全国Ⅱ卷改编)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析 不等式2x(x -a )<1可变形为x -a <⎝ ⎛⎭⎪⎫12x,在同一平面直角坐标系内作出直线y =x -a 与y =⎝ ⎛⎭⎪⎫12x 的图象,由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1. 答案 (-1,+∞)2.(2013·西安二模)在R 上定义运算:⎣⎢⎡⎦⎥⎤ab cd =ad -bc .若不等式⎣⎢⎡⎦⎥⎤x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,-12≤a ≤32.答案 323.(2014·铜陵一模)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>0的解集为(1,2),若f (x )的最大值小于1,则a 的取值范围是________.解析 由题意知a <0,可设f (x )=a (x -1)(x -2)=ax 2-3ax +2a ,∴f (x )max =f ⎝ ⎛⎭⎪⎫32=-a 4<1,∴a >-4,故-4<a <0.答案 (-4,0)二、解答题4.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解 (1)∵f (x )+2x >0的解集为(1,3),f (x )+2x =a (x -1)(x -3),且a <0,因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .①由方程f (x )+6a =0,得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①,得f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧ -a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-3)∪(-2+3,0).。
高中数学必修5一元二次不等式及其解法精选题目(附答案)
高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系表题型一:一元二次不等式解法1.解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0;(4)-x2+6x-10>0.题型二:三个“二次”关系的应用2.若不等式ax 2+bx +2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-143.已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.题型三:解含参数的一元二次不等式4.解关于x 的不等式x 2+(1-a )x -a <0.巩固练习:1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a } C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1aD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)4.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >14 B .R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <32 D .∅5.函数y =17-6x -x 2的定义域为( )A .[-7,1]B .(-7,1)C .(-∞,-7]∪[1,+∞)D .(-∞,-7)∪(1,+∞)6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.7.若二次函数y =ax 2+bx +c (a <0)的图象与x 轴的两个交点为(-1,0)和(3,0),则不等式ax 2+bx +c <0的解集是________.8.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0.若f (a )≤3,则a 的取值范围是________.9.解关于x 的不等式x 2-3ax -18a 2>0. 10.若函数f (x )=2 018ax 2+2ax +2的定义域是R ,求实数a 的取值范围.参考答案:1.[解] (1)Δ=49>0,方程2x 2+5x -3=0的两根为x 1=-3,x 2=12, 作出函数y =2x 2+5x -3的图象,如图①所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <12.(2)原不等式等价于3x 2-6x +2≥0.Δ=12>0,解方程3x 2-6x +2=0,得x 1=3-33,x 2=3+33,作出函数y =3x 2-6x +2的图象,如图②所示,由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤3-33或x ≥3+33. (3)∵Δ=0,∴方程4x 2+4x +1=0有两个相等的实根x 1=x 2=-12.作出函数y =4x 2+4x +1的图象如图所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12,x ∈R.(4)原不等式可化为x 2-6x +10<0,∵Δ=-4<0, ∴方程x 2-6x +10=0无实根,∴原不等式的解集为∅. 2.解:由已知得,ax 2+bx +2=0的解为-12,13,且a <0. ∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.3.解:因为x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16 .所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.4.[解] 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式解集为{x |a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x |-1<x <a }. 5.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.5.解:(1)当a =0时, 不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 练习:1.解析:选A 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 2.解析:选A ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a >a ,∴x >1a 或x <a .3.解析:选B 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.4.解析:选A 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.5.解析:选B 由7-6x -x 2>0,得x 2+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B.6.解析:∁U A ={x |x 2-1<0}={x |-1<x <1}. 答案:{x |-1<x <1}7.解析:根据二次函数的图象知所求不等式的解集为(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞)8.解析:当a ≥0时,a 2+2a ≤3,∴0≤a ≤1;当a <0时,-a 2+2a ≤3,∴a <0.综上所述,a 的取值范围是(-∞,1].9.解:将x 2-3ax -18a 2>0变形得(x -6a )(x +3a )>0, 方程(x -6a )(x +3a )=0的两根为6a ,-3a .所以当a >0时,6a >-3a ,原不等式的解集为{x |x <-3a 或x >6a };当a =0时,6a =-3a =0,原不等式的解集为{x |x ≠0}; 当a <0时,6a <-3a ,原不等式的解集为{x |x <6a 或x >-3a }. 10.解:因为f (x )的定义域为R ,所以不等式ax 2+2ax +2>0恒成立. (1)当a =0时,不等式为2>0,显然恒成立;(2)当a ≠0时,有⎩⎨⎧ a >0,Δ=4a 2-8a <0,即⎩⎨⎧a >0,0<a <2,所以0<a <2.综上可知,实数a 的取值范围是[0,2).。
高三数学一元二次不等式试题答案及解析
高三数学一元二次不等式试题答案及解析1.如果命题“关于的不等式的解集是空集”是假命题,则实数的取值范围是_______.【答案】【解析】由已知,有解,所以,解得实数的取值范围是.【考点】命题,一元二次不等式的解法.2.已知函数则满足的实数的取值范围是 .【答案】【解析】或,∴或,∴.【考点】不等式的解法.3.不等式≤x-2的解集是()A.(-∞,0]∪(2,4]B.[0,2)∪[4,+∞)C.[2,4)D.(-∞,2]∪(4,+∞)【答案】B【解析】①当x-2>0,即x>2时,不等式可化为(x-2)2≥4,∴x≥4;②当x-2<0,即x<2时,不等式可化为(x-2)2≤4,∴0≤x<2.4.已知二次函数f(x)=ax2-(a+2)x+1(a∈Z),且函数f(x)在(-2,-1)上恰有一个零点,则不等式f(x)>1的解集为()A.(-∞,-1)∪(0,+∞)B.(-∞,0)∪(1,+∞)C.(-1,0)D.(0,1)【答案】C【解析】∵f(x)=ax2-(a+2)x+1,Δ=(a+2)2-4a=a2+4>0,∴函数f(x)=ax2-(a+2)x+1必有两个不同的零点.因此f(-2)f(-1)<0,∴(6a+5)(2a+3)<0.∵-<a<-.又a∈Z,∴a=-1,不等式f(x)>1即为-x2-x>0,解得-1<x<0.故选C.5.设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).(1)若m=-1,n=2,求不等式F(x)>0的解集;(2)若a>0,且0<x<m<n<,比较f(x)与m的大小.【答案】(1)当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2};当a<0时,不等式F(x)>0的解集为{x|-1<x<2}.(2)f(x)<m.【解析】解:(1)由题意知,F(x)=f(x)-x=a(x-m)(x-n),当m=-1,n=2时,不等式F(x)>0,即a(x+1)(x-2)>0.当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2};当a<0时,不等式F(x)>0的解集为{x|-1<x<2}.(2)f(x)-m=F(x)+x-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1),∵a>0,且0<x<m<n<,∴x-m<0,1-an+ax>0.∴f(x)-m<0,即f(x)<m.6.对于满足0≤a≤4的实数a,使x2+ax>4x+a-3恒成立的x取值范围是________.【答案】(-∞,-1)∪(3,+∞)【解析】原不等式等价于x2+ax-4x-a+3>0,∴a(x-1)+x2-4x+3>0,令f(a)=a(x-1)+x2-4x+3,则函数f(a)=a(x-1)+x2-4x+3表示直线,∴要使f(a)=a(x-1)+x2-4x+3>0,则有f(0)>0,f(4)>0,即x2-4x+3>0且x2-1>0,解得x>3或x<-1,即不等式的解集为(-∞,-1)∪(3,+∞).7.(2013•重庆)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为_________.【答案】[0,]∪[,π]【解析】由题意可得,△=64sin2α﹣32cos2α≤0,得2sin2α﹣(1﹣2sin2α)≤0∴sin2α≤,﹣≤sinα≤,∵0≤α≤π∴α∈[0,]∪[,π]8.若不等式|8x+9|<7和不等式ax2+bx>2的解集相等,则实数a、b的值分别为()A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2【答案】B【解析】根据题意可得|8x+9|<7⇒-2<x<,故由{x|-2<x<}是不等式ax2+bx>2的解集可知x1=-2,x2=是一元二次方程ax2+bx-2=0的两根,根据根与系数的关系可知x1x2==⇒a=-4,x1+x2==⇒b=-9,故选B.9.不等式3x2-x-4≤0的解集是__________.【答案】【解析】由3x2-x-4≤0,得(3x-4)(x+1)≤0,解得-1≤x≤.10.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么不等式f(x+2)<5的解集是________.【答案】(-7,3)【解析】解f(x)=x2-4x<5(x≥0),得0≤x<5.由f(x)是定义域为R的偶函数得不等式f(x)<5的解集是(-5,5),所以不等式f(x+2)<5转化为-5<x+2<5,故所求的解集是(-7,3).11.不等式x2-5x+6≤0的解集为.【答案】{x|2≤x≤3}【解析】x2-5x+6≤0,即(x-2)(x-3)≤0,故2≤x≤3.12.设f(x)=x2-bx+c,不等式f(x)<0的解集是(-1,3),若f(7+|t|)>f(1+t2),求实数t的取值范围.【答案】-3<t<3【解析】∵x2-bx+c<0的解集是(-1,3),∴>0且-1,3是x2-bx+c=0的两根,∴得∵函数f(x)=x2-bx+c图象的对称轴方程为x==1,且f(x)在[1,+∞)上是增函数,又∵7+|t|≥7>1,1+t2≥1,则由f(7+|t|)>f(1+t2),得7+|t|>1+t2,即|t|2-|t|-6<0,亦即(|t|+2)(|t|-3)<0,∴|t|<3,即-3<t<3.13.不等式(x-1)·≥0的解集为________.【答案】{x|x≥2或x=-1}【解析】原不等式等价于(x-1)>0①或(x-1)·=0②,解①,由得x>2;解②,由x2-x-2=0或x-1=0且有意义,得x=-1或x=2.综上可知,原不等式的解集是{x|x≥2或x=-1}.14.已知x>0,y>0,若恒成立,则实数m的取值范围是()A.m≥4或m≤-2B.m≥2或m≤-4C.-2<m<4D.-4<m<2【答案】D【解析】因为,要使恒成立,则,解得-4<m<2,选D.【考点】基本不等式、一元二次不等式的解法.15.己知函数.(I)若关于的不等式的解集不是空集,求实数的取值范围;(II)若关于的一元二次方程有实根,求实数的取值范围.【答案】(I);(II)【解析】(I)由题意知,只需,解出即可,根据绝对值不等式的性质知,故,解得或;(II)由题意方程有实根,则,即,化简得,提出得,,根据绝对值的几何意义知,此式表示的是到的距离与到的距离之和小于,从数轴上易知.试题解析:(I)由题意,,,解得或,所以的取值范围为.(II)由题意,,化简得,即,所以,故的取值范围为.【考点】1.绝对值不等式的解法;2.一元二次方程根的判断.16.已知不等式的解集为,则不等式的解集为()A.B.C.D.【答案】D【解析】由已知得且2,4为一元二次方程两根,由韦达定理得①,②.①除以②,得由②得注意到不等式或.故选D.【考点】一元二次不等式的解法.17.设与是定义在同一区间上的两个函数,若对任意的,都有,则称和在上是“密切函数”,称为“密切区间”,设与在上是“密切函数”,则它的“密切区间”可以是()A.B.C.D.【答案】D【解析】由题意由,得,解之得,故选D.【考点】1.含绝对值的一元二次不等式的解法;2.函数新定义题18.设集合,,则()A.B.C.D.【答案】B【解析】.【考点】1.指数不等式的解法;2.一元二次不等式的解法;3.集合的运算.19.已知关于的一元二次不等式的解集中有且仅有3个整数,则所有符合条件的的值之和是()A.13B.18C.21D.26【答案】C【解析】设,其图象是开口向上,对称轴是x=3的抛物线,如图所示.若关于的一元二次不等式的解集中有且仅有3个整数,则,即,解得,又则所有符合条件的的值之和是6+7+8=21.故选C.【考点】一元二次不等式解法,二次函数的图象和性质.20.已知不等式>0的解集为(-1,2),是和的等比中项,那么=A.3B.-3C.-1D.1【答案】D【解析】根据题意,由于不等式>0的解集为(-1,2),那么可知-1是因式ax+b=0的根,所以a=b,又因为是和的等比中项,则有,可知,故答案为1,选D.【考点】一元二次不等式的解集点评:解决的关键是对于等比中项以及二次不等式的解集的准确表示,属于基础题。
2020年高考数学专题复习一元二次不等式及其解法
一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.一元二次不等式的解集判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) (5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析:选A.由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)(教材习题改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则实数m 的取值范围是________.解析:由题意知:Δ=(m +1)2+4m >0.即m 2+6m +1>0,解得:m >-3+22或m <-3-2 2.答案:(-∞,-3-22)∪(-3+22,+∞)一元二次不等式的解法 (高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.主要命题角度有:(1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式; (3)已知一元二次不等式的解集求参数.角度一 解不含参数的一元二次不等式解下列不等式: (1)-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3. 【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1. 故原不等式的解集为{x |x >1}.角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ). 【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0}; ③当a <0时,-a 4>a3, 解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a3,或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba ,-12×⎝ ⎛⎭⎪⎫-13=-1a,解得⎩⎪⎨⎪⎧a =-6,b =5. 即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系.③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.1.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |0<x ≤1}D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1},B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]3.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b ; (2)解不等式x -cax -b>0(c 为常数). 解:(1)由题知1,b 为方程ax 2-3x +2=0的两根, 即⎩⎪⎨⎪⎧b =2a ,1+b =3a .所以a =1,b =2.(2)不等式等价于(x -c )(x -2)>0,当c >2时,解集为{x |x >c 或x <2};当c <2时,解集为{x |x >2或x <c };当c =2时,解集为{x |x ≠2}.一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.主要命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.【解析】 当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R ,只需⎩⎪⎨⎪⎧a >0,Δ=22-4×2a <0,解得a >12. 综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 【答案】 ⎝ ⎛⎭⎪⎫12,+∞角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是( )A .⎝⎛⎦⎥⎤-∞,1-32B .⎣⎢⎡⎭⎪⎫1+32,+∞C .⎝ ⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞D .⎣⎢⎡⎦⎥⎤1-32,1+32【解析】 因为x ∈(0,2], 所以a 2-a ≥xx 2+1=1x +1x .要使a 2-a ≥1x +1x在x ∈(0,2]时恒成立, 则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x≥2,当且仅当x =1时等号成立,即⎝⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.【答案】 C角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为________.【解析】 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4), 则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立方程解得x <1或x >3.【答案】 {x |x <1或x >3}(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)三个“二次”间的转化二次函数、二次方程与二次不等式统称三个“二次”,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题.(2019·温州八校联考)已知函数f (x )=mx 2-mx -1. (1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解:(1)当m =0时,f (x )=-1<0恒成立,当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0].(2)不等式f (x )<5-m ,即(x 2-x +1)m <6, 因为x 2-x +1>0,所以m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,所以g (x )min =g (3)=67,所以m <67.所以m 的取值范围是⎝⎛⎭⎪⎫-∞,67.一元二次不等式的应用某汽车厂上年度生产汽车的投入成本为1012销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?【解】 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000(1+0.6x )(0<x <1), 整理得y =-6 000x 2+2 000x +20 000(0<x <1). (2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧y -(12-10)×10 000>0,0<x <1,即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13,所以投入成本增加的比例应在⎝ ⎛⎭⎪⎫0,13范围内.解不等式应用题的步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系; (2)将文字语言转化为符号语言,用不等式(组)表示不等关系; (3)解不等式(组),得到数学结论,要注意数学模型中元素的实际意义;(4)回归实际问题,将数学结论还原为实际问题的结果.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价, 所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别. (3)不同参数范围的解集切莫取并集,应分类表述. [基础达标]1.设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A =[-1,2],B =(1,+∞),A ∩B =(1,2].2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A .56 B .16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56.3.(2019·浙江省名校协作体高三联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:选A.法一:当x ≤0时,x +2≥x 2, 所以-1≤x ≤0;①当x >0时,-x +2≥x 2,所以0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.法二:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].4.(2019·宁波效实中学模拟)不等式x 2+2x <a b +16ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)解析:选C.不等式x 2+2x <a b+16b a对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <⎝ ⎛⎭⎪⎫a b +16b a min,由于a b +16b a ≥2a b ·16b a=8(当且仅当a =4b 时等号成立),所以x 2+2x <8,解得-4<x <2.5.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:选D.原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5].6.(2019·台州联考)在R 上定义运算:=ad -bc .若不等式对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C .13D .32解析:选D.原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32,故选D.7.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)9.已知函数f (x )=x 2+2x +1,如果使f (x )≤kx 对任意实数x ∈(1,m ]都成立的m 的最大值是5,则实数k =________.解析:设g (x )=f (x )-kx =x 2+(2-k )x +1,由题意知g (x )≤0对任意实数x ∈(1,m ]都成立的m 的最大值是5,所以x =5是方程g (x )=0的一个根,将x =5代入g (x )=0,可以解得k =365(经检验满足题意).答案:36510.已知f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,3x -2,x >0,若|f (x )|≥ax 在x ∈[-1,1]上恒成立,则实数a 的取值范围是____________.解析:当x =0时,|f (x )|≥ax 恒成立,a ∈R ;当0<x ≤1时,|f (x )|≥ax 转化为a ≤|f (x )|x =|3x -2|x =|3-2x |.因为|3-2x|的最小值为0,所以a ≤0;当-1≤x <0时,|f (x )|≥ax 转化为a ≥|f (x )|x =-|x 2-2x |=-|x -2x |.因为-|x -2x|的最大值为-1,所以a ≥-1,综上可得a ∈[-1,0].答案:[-1,0]11.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.12.已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c . (1)求证:函数y =f (x )必有两个不同的零点;(2)若函数y =f (x )的两个零点分别为m ,n 求|m -n |的取值范围.解:(1)证明:由题意知a +b +c =0,且-b2a >1.所以a <0且ca>1,所以ac >0. 对于函数f (x )=ax 2+(a -b )x -c 有Δ=(a -b )2+4ac >0.所以函数y =f (x )必有两个不同零点.(2)|m -n |2=(m +n )2-4mn =(b -a )2+4ac a 2=(-2a -c )2+4ac a2=⎝ ⎛⎭⎪⎫c a 2+8⎝ ⎛⎭⎪⎫c a +4. 由不等式ax 2+bx +c >0的解集为(1,t )可知,方程ax 2+bx +c =0的两个解分别为1和t (t >1),由根与系数的关系知c a=t ,所以|m -n |2=t 2+8t +4,t ∈(1,+∞). 所以|m -n |>13,所以|m -n |的取值范围为(13,+∞). [能力提升]1.(2019·金华市东阳二中高三调研)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A .⎝ ⎛⎭⎪⎫-235,+∞ B .⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞)D .(-∞,-1)解析:选A.由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝ ⎛⎭⎪⎫-235,+∞. 2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a=2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.3.(2019·杭州模拟)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析:原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.答案:[-4,3]4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]5.(2019·杭州高级中学质检)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), 因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .6.(2019·丽水市高考数学模拟)已知函数f (x )=|x +a |x 2+1(a ∈R ).(1)当a =1时,解不等式f (x )>1;(2)对任意的b ∈(0,1),当x ∈(1,2)时,f (x )>bx恒成立,求a 的取值范围.解:(1)f (x )=|x +1|x 2+1>1⇔x 2+1<|x +1|⇔⎩⎪⎨⎪⎧x +1≥0x 2+1<x +1或⎩⎪⎨⎪⎧x +1<0x 2+1<-(x +1)⇔0<x <1.故不等式的解集为{x |0<x <1}.(2)f (x )=|x +a |x 2+1>b x ⇔|x +a |>b (x +1x )⇔x +a >b (x +1x )或x +a <-b (x +1x )⇔a >(b -1)x+b x 或a <-[(b +1)x +b x]对任意x ∈(1,2)恒成立.所以a ≥2b -1或a ≤-(52b +2)对任意b ∈(0,1)恒成立.所以a ≥1或a ≤-92.。
高考专题练习: 一元二次不等式的解法
1.一元二次不等式的解集 判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0) 的根 有两个相异实数 根x 1,x 2(x 1<x 2) 有两个相等实数 根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x >x 2或x <x 1}{x |}x ≠x 1Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2} ∅∅不等式解集 a <ba =b a >b (x -a )·(x -b )>0 {x |x <a 或x >b } {x |x ≠a }{x |x >a 或x <b } (x -a )·(x -b )<0 {x |a <x <b }∅{x |b <x <a }1.两个恒成立的充要条件(1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0, b 2-4ac <0.(2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.2.四类分式不等式 (1)f (x )g (x )>0⇔f (x )g (x )>0.(2)f (x )g (x )<0⇔f (x )g (x )<0.(3)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0. (4)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0(a ≠0)的解集为(x 1,x 2),则必有a >0.( ) (2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个实数根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)解不等式时,变形必须等价; (2)忽视二次项系数的符号;(3)对系数的讨论,忽视二次项系数为0的情况; (4)解分式不等式时,忽视分母的符号. 1.不等式2x (x -7)>3(x -7)的解集为________.解析:2x (x -7)>3(x -7)⇔2x (x -7)-3(x -7)>0⇔(x -7)(2x -3)>0,解得x <32或x >7,所以,原不等式的解集为⎩⎨⎧⎭⎬⎫x⎪⎪⎪x <32或x >7. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >72.不等式-x 2-3x +4>0的解集为________.(用区间表示)解析:由-x 2-3x +4>0可知(x +4)(x -1)<0, 解得-4<x <1. 答案:(-4,1)3.对于任意实数x ,不等式mx 2+mx -1<0恒成立,则实数m 的取值范围是________.解析:当m =0时,mx 2+mx -1=-1<0,不等式恒成立;当m ≠0时,由⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0. 综上,m 的取值范围是(-4,0]. 答案:(-4,0] 4.不等式2x +1<1的解集是________. 解析:2x +1<1⇒2-(x +1)x +1<0⇒x -1x +1>0⇒x >1或x <-1.答案:{x |x >1或x <-1}一元二次不等式的解法(多维探究) 角度一 不含参数的一元二次不等式求不等式-x 2+8x -3>0的解集.【解】 因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不相等的实数根x 1=4-13,x 2=4+13.又二次函数y =-x 2+8x -3的图象开口向下,所以原不等式的解集为{x |4-13<x <4+13}.角度二 含参数的一元二次不等式解关于x 的不等式ax 2-(a +1)x +1<0.【解】 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a =1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1a <x <1;③当0<a <1时,1a >1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1<x <1a .综上所述,当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a 或x >1;当a =0时,解集为{x |x >1}; 当0<a <1时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1<x <1a ; 当a =1时,解集为∅; 当a >1时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1a <x <1.(1)解一元二次不等式的一般步骤 ①化为标准形式.②确定判别式Δ的符号,若Δ≥0,则求出该不等式对应的一元二次方程的根,若Δ<0,则对应的一元二次方程无实数根.③结合二次函数的图象得出不等式的解集,特别地,若一元二次不等式左边的二次三项式能分解因式,则可直接写出不等式的解集.(2)含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.1.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0,即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,所以原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]2.求不等式12x 2-ax >a 2(a ∈R )的解集. 解:因为12x 2-ax >a 2,所以12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得x 1=-a 4,x 2=a 3. 当a >0时,-a 4<a3,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-a 4或x >a 3; 当a =0时,原不等式变形为x 2>0,解集为{x |x ∈R 且x ≠0}; 当a <0时,-a 4>a3,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <a 3或x >-a 4.一元二次方程与一元二次不等式(师生共研)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧x ⎪⎪⎪-12<x⎭⎪⎬⎪⎫<-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.(2)给出一元二次不等式的解集,相当于知道了相应一元二次函数的开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:选C .关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),所以a =b <0,所以不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, 所以所求不等式的解集是(-1,3).一元二次不等式恒成立问题(多维探究) 角度一 在R 上的恒成立问题若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]【解析】 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].【答案】 D角度二 在给定区间上的恒成立问题(一题多解)设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.【解】 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0, 所以m <67,所以0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)=m -6<0,所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧m ⎪⎪⎪⎭⎬⎫m <67. 方法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0, 所以m <6x 2-x +1. 因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67, 所以只需m <67即可.所以,m的取值范围是⎩⎨⎧m ⎪⎪⎪⎭⎬⎫m <67. 角度三 给定参数范围的恒成立问题函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 【解】 (1)因为当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 所以实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0恒成立,分如下三种情况讨论(如图所示):(i)如图①,当g (x )的图象恒在x 轴或x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.(ii)如图②,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0,即⎩⎨⎧Δ≥0,x =-a 2≤-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≤-2,4-2a +3-a ≥0,可得⎩⎨⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅.(iii)如图③,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0.即⎩⎨⎧Δ≥0,x =-a 2≥2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≥2,7+a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≤-4,a ≥-7.所以-7≤a ≤-6,综上,实数a 的取值范围是[-7,2]. (3)令h (a )=xa +x 2+3,当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. 所以实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).形如f (x )≥0(f (x )≤0)恒成立问题的求解策略(1)对x ∈R 的不等式确定参数的范围时,结合二次函数的图象,利用判别式来求解.(2)对x ∈[a ,b ]的不等式确定参数的范围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式参数的取值范围.(3)已知参数m ∈[a ,b ]的不等式确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.[提醒] 解决恒成立问题一定要搞清楚谁是主元,谁是参数.1.若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________.解析:要使y =mx 2-(1-m )x +m 有意义,即mx 2-(1-m )x +m ≥0对∀x ∈R 恒成立,则⎩⎪⎨⎪⎧m >0,(1-m )2-4m 2≤0,解得m ≥13. 答案:⎣⎢⎡⎭⎪⎫13,+∞2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,求实数b 的取值范围.解:由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )的图象开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以当x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, 若当x ∈[-1,1]时,f (x )>0恒成立, 则b 2-b -2>0恒成立,解得b <-1或b >2. 所以实数b 的取值范围为(-∞,-1)∪(2,+∞).[A 级 基础练]1.不等式2x 2-x -3>0的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <32B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >32或x <-1C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-32<x <1D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >1或x <32解析:选B .由2x 2-x -3>0,得(x +1)(2x -3)>0,解得x >32或x <-1. 所以不等式2x 2-x -3>0的解集为⎩⎨⎧x⎪⎪⎪⎭⎬⎫x >32或x <-1. 2.不等式1-x2+x ≥1的解集为( )A .⎣⎢⎡⎦⎥⎤-2,-12B .⎝ ⎛⎦⎥⎤-2,-12C .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞D .(-∞,-2]∪⎝ ⎛⎭⎪⎫-12,+∞解析:选B .1-x 2+x ≥1⇔1-x 2+x -1≥0⇔1-x -2-x2+x ≥0⇔-2x -12+x≥0⇔2x +1x +2≤0⇔⎩⎪⎨⎪⎧(2x +1)(x +2)≤0,x +2≠0⇔-2<x ≤-12.故选B . 3.若不等式ax 2+bx +2<0的解集为{x |x <-12或x >13},则a -b a 的值为( ) A .56B .16C .-16D .-56解析:选A .由题意得方程ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a =1-b a =1-16=56.4.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]解析:选B .原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.5.(2021·湖南益阳4月模拟)已知函数f (x )=ax 2+(a +2)x +a 2为偶函数,则不等式(x -2)f (x )<0的解集为( )A .(-2,2)∪(2,+∞)B .(-2,+∞)C .(2,+∞)D .(-2,2)解析:选A .因为函数f (x )=ax 2+(a +2)x +a 2为偶函数, 所以a +2=0,得a =-2,所以f (x )=-2x 2+4,所以不等式(x -2)f (x )<0可转化为⎩⎪⎨⎪⎧x -2<0,f (x )>0或⎩⎪⎨⎪⎧x -2>0,f (x )<0,即⎩⎪⎨⎪⎧x <2,-2x 2+4>0或⎩⎪⎨⎪⎧x >2,-2x 2+4<0,解得-2<x <2或x >2. 故原不等式的解集为(-2,2)∪(2,+∞).故选A . 6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.答案:{x |0<x <2}7.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________.解析:原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,所以a <x <1a .答案:⎝ ⎛⎭⎪⎫a ,1a8.规定符号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为非负实数),若1⊙k 2<3,则k 的取值范围是________.解析:因为定义a ⊙b =ab +a +b (a ,b 为非负实数),1⊙k 2<3,所以k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1. 答案:(-1,1)9.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9, 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.则实数x 的取值范围为(-∞,2)∪(4,+∞). 10.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数f (x )=ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0, 解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)因为f (x )=ax 2+2ax +1=a (x +1)2+1-a ,因为a >0,所以当x =-1时,f (x )min =1-a ,由题意得,1-a =22,所以a =12,所以不等式x 2-x -a 2-a <0可化为x 2-x -34<0. 解得-12<x <32,所以不等式的解集为⎝ ⎛⎭⎪⎫-12,32.[B 级 综合练]11.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则实数a 的取值范围是( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4]解析:选D .因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }; 当a <1时,不等式的解集为{x |a <x <1},要使不等式的解集中至多包含2个整数,则a ≤4且a ≥-2,所以实数a 的取值范围是a ∈[-2,4],故选D .12.定义运算:x ⊗y =⎩⎨⎧x ,xy ≥0,y ,xy <0,例如:3⊗4=3,(-2)⊗4=4,则函数f (x )=x 2⊗(2x -x 2)的最大值为________.解析:由已知得f (x )=x 2⊗(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 2(2x -x 2)≥0,2x -x 2,x 2(2x -x 2)<0=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x <0或x >2,易知函数f (x )的最大值为4. 答案:413.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)14.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小. 解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为 {x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a , 所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .[C 级 提升练]15.已知f (x )=x 2+2x +1+a ,∀x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫5-12,+∞B .⎣⎢⎡⎭⎪⎫5-32,+∞C .[-1,+∞)D .[0,+∞)解析:选B .设t =f (x )=(x +1)2+a ≥a ,则f (t )≥0对任意的t ≥a 恒成立,即(t +1)2+a ≥0对任意的t ∈[a ,+∞)恒成立.当a ≤-1时,f (t )min =f (-1)=a ≤-1,不符合题意;当a >-1时,f (t )min =f (a )=a 2+3a +1,由a 2+3a +1≥0,得a ≥5-32,故选B .16.(2020·湖北孝感3月模拟)设关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实数根x 1,x 2.(1)求(1+x 1)(1+x 2)的值; (2)求证:x 1<-1且x 2<-1;(3)如果x 1x 2∈⎣⎢⎡⎦⎥⎤110,10,试求a 的取值范围.解:(1)因为关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实数根x 1,x 2. 所以x 1+x 2=-1a ,x 1x 2=1a ,则(1+x 1)(1+x 2)=1+x 1+x 2+x 1·x 2=1-1a +1a =1. (2)证明:由Δ≥0,得0<a ≤14.设f (x )=ax 2+x +1,则f (x )的对称轴与x 轴交点横坐标x =-12a ≤-2,又由于f (-1)=a >0,所以f (x )的图象与x 轴的交点均位于点(-1,0)的左侧, 故x 1<-1且x 2<-1.(3)由⎩⎪⎨⎪⎧x 1+x 2=-1a ,x 1·x 2=1a⇒(x 1+x 2)2x 1·x 2=x 1x 2+x 2x 1+2=1a .因为x 1x 2∈⎣⎢⎡⎦⎥⎤110,10,所以1a =x 1x 2+x 2x 1+2∈⎣⎢⎡⎦⎥⎤4,12110⇒a ∈⎣⎢⎡⎦⎥⎤10121,14.又⎩⎪⎨⎪⎧a >0,Δ=1-4a ≥0⇒0<a ≤14, 所以a 的取值范围为⎣⎢⎡⎦⎥⎤10121,14.。
高三数学一元二次不等式试题答案及解析
高三数学一元二次不等式试题答案及解析1.不等式≤x-2的解集是()A.(-∞,0]∪(2,4]B.[0,2)∪[4,+∞)C.[2,4)D.(-∞,2]∪(4,+∞)【答案】B【解析】①当x-2>0,即x>2时,不等式可化为(x-2)2≥4,∴x≥4;②当x-2<0,即x<2时,不等式可化为(x-2)2≤4,∴0≤x<2.2.已知a∈[-1,1],不等式x2+(a-4)x+4-2a>0恒成立,则x的取值范围为()A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)【答案】C【解析】把原不等式的左端看成关于a的一次函数,记f(a)=(x-2)a+x2-4x+4,则f(a)>0对于任意的a∈[-1,1]恒成立,易知只需f(-1)=x2-5x+6>0①,且f(1)=x2-3x+2>0②即可,联立①②解得x<1或x>3.故选C.3.若不等式ax2+bx+2>0的解集为-<x<,则不等式2x2+bx+a<0的解集是________.【答案】(-2,3)【解析】由题意,知-和是一元二次方程ax2+bx+2=0的两根且a<0,所以,解得.则不等式2x2+bx+a<0即2x2-2x-12<0,其解集为{x|-2<x<3}.4. [2014·皖南八校联考]不等式x2-2x+5≥a2-3a对任意实数x恒成立,则实数a的取值范围为()A.[-1,4]B.(-∞,-2]∪[5,+∞)C.(-∞,-1]∪[4,+∞)D.[-2,5]【答案】A【解析】x2-2x+5=(x-1)2+4的最小值为4,所以x2-2x+5≥a2-3a对任意实数x恒成立,只需a2-3a≤4,解得-1≤a≤4,故选A.5.已知f(x)=,则不等式x+xf(x)≤2的解集是________.【答案】(-∞,1]【解析】(1)当x≥0时,原不等式可化为x2+x-2≤0,解得-2≤x≤1,即0≤x≤1;(2)当x<0时,原不等式可化为x2-x+2≥0,得≥0恒成立,即x<0.综合(1)(2)知x≤1,所以解集为(-∞,1].6.若关于的不等式的解集为,则关于的不等式的解集为 .【答案】【解析】由题设得,且,所以不等式可变为,解这得.【考点】一元二次不等式的解法.7.若不等式对满足的所有都成立,则x的取值范围是( )A.B.C.D.【答案】D【解析】不等式化为:,令,则时,恒成立所以只需即,所以x的范围是,选D.8.不等式3x2-x-4≤0的解集是__________.【答案】【解析】由3x2-x-4≤0,得(3x-4)(x+1)≤0,解得-1≤x≤.9.关于x的不等式x2-ax-20a2<0任意两个解的差不超过9,则a的最大值与最小值的和是________.【解析】方程x2-ax-20a2=0的两根是x1=-4a,x2=5a,则由关于x的不等式x2-ax-20a2<0任意两个解的差不超过9,得|x1-x2|=|9a|≤9,即-1≤a≤1,且a≠0,故填0.10.关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则a=()A.B.C.D.【答案】A【解析】由题意知x1,x2是方程x2-2ax-8a2=0的两根,所以x1+x2=2a,x1x2=-8a2,则(x2-x1)2=(x1+x2)2-4x1x2=4a2+32a2=36a2,又x2-x1=15,可得36a2=152,又a>0,则a=.故选A.11.不等式2x2-x-1>0的解集是()A.(-,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-)∪(1,+∞)【答案】D【解析】由2x2-x-1>0得(2x+1)(x-1)>0,解得x>1或x<-,∴2x2-x-1>0的解集为(-∞,- )∪(1,+∞).故选D.12.关于的不等式的解集为.【答案】;【解析】由得(x-6)(x+1),解得.【考点】一元二次不等式的解法.13.若命题“”是真命题,则实数的取值范围是。
一元二次不等式及其解法练习题
不等式的解法一、一元二次不等式及其解法:先找对应二次方程的根(可参考十字相乘或求根公式),若有两个不等实根,大于取两边小于取中间,若有两个等根或无根考虑恒成立问题。
例1.解下列不等式(1)x2-7x+12>0(2)-x2-2x+3≥0(3)x2-2x+1<0(4)x2-2x+2<0二、已知解集求参数值:可参考韦达定理,利用两根只和和两根之积。
3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解集为。
4.已知关于x的不等式ax2+bx+c>0的解集为{x|α<x<β},其中0<α<β,a<0,求cx2+bx+a>0的解集.三、含参数的不等式的解法:先讨论二次项系数,然后找对应二次方程的根(可参考十字相乘或求根公式),若有两个实根讨论根的大小,若无法确定讨论判别式。
5.解不等式21()10x a xa-++=6、解关于x的一元二次不等式:ax2+(a-1)x-1>0.四、恒成立问题,在R上利用判别式和在区间上利用二次函数的最值。
7、函数y = x 2+mx +m 2对一切x ∈R 恒成立,则实数m 的取值范围 8、.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围9.已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围;(2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围.五、解其他不等式(1).1<x 2-3x+3≤7(2)(x 2+4x-5)(x 2-2x+2)>0(3) (x 2+4x-5)(x 2-4x+4)>0(4)x 4-x 2-6≥0(5) +4-1x x >0(6)-3+7x x ≤0。
2020高考数学(文)刷题首选卷:一元二次不等式及其解法(含解析)
考点测试33 一元二次不等式及其解法高考概览高考在本考点的常考题型为选择题、填空题,分值5分,中、低等难度 考纲研读1.会从实际问题的情境中抽象出一元二次不等式模型2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系 3.会解一元二次不等式一、基础小题1.不等式2x 2-x -3>0的解集是( ) A .-32,1B .(-∞,-1)∪32,+∞C .-1,32D .-∞,-32∪(1,+∞)答案 B解析 2x 2-x -3>0可因式分解为(x +1)(2x -3)>0,解得x >32或x <-1,∴不等式2x 2-x -3>0的解集是(-∞,-1)∪32,+∞.故选B .2.若不等式ax 2+bx -2<0的解集为⎩⎨⎧⎭⎬⎫x -2<x <14,则ab =( )A .-28B .-26C .28D .26 答案 C解析 ∵-2,14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-2a =-2×14=-12,-b a =-74,∴⎩⎪⎨⎪⎧a =4,b =7,∴ab =28.3.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( ) A .[-4,4] B .(-4,4)C .(-∞,-4]∪[4,+∞) D.(-∞,-4)∪(4,+∞) 答案 D解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4.故选D .4.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A .52 B .72 C .154 D .152 答案 A解析 由x 2-2ax -8a 2=0的两个根为x 1=-2a ,x 2=4a ,得6a =15,所以a =52.5.若函数f (x )=kx 2-6kx +k +8的定义域为R ,则实数k 的取值范围是( ) A .{k |0<k ≤1} B.{k |k <0或k >1} C .{k |0≤k ≤1} D .{k |k >1} 答案 C解析 当k =0时,8>0恒成立;当k ≠0时,只需⎩⎪⎨⎪⎧k >0,Δ≤0,即⎩⎪⎨⎪⎧k >0,36k 2-4k (k +8)≤0,则0<k ≤1.综上,0≤k ≤1.6.不等式|x 2-x |<2的解集为( )A .(-1,2)B .(-1,1)C .(-2,1)D .(-2,2) 答案 A解析 由|x 2-x |<2,得-2<x 2-x <2,即⎩⎪⎨⎪⎧x 2-x <2, ①x 2-x >-2. ②由①,得-1<x <2.由②,得x ∈R .所以解集为(-1,2).故选A .7.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间 答案 C解析 设销售价定为每件x 元,利润为y ,则y =(x -8)[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件销售价应定为12元到16元之间.8.如果二次函数y =3x 2+2(a -1)x +b 在区间(-∞,1]上是减函数,那么a 的取值范围是( )A .(-∞,-2)B .(2,+∞)C .(-∞,-2]D .[2,+∞) 答案 C解析 ∵二次函数y =3x 2+2(a -1)x +b 在区间(-∞,1]上是减函数,∴-2(a -1)2×3≥1,解得a ≤-2.故选C .9.设函数f (x )=⎩⎪⎨⎪⎧-2,x >0,x 2+bx +c ,x ≤0,若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为( )A .(-∞,-3]∪[-1,+∞)B .[-3,-1]C .[-3,-1]∪(0,+∞)D .[-3,+∞) 答案 C解析 当x ≤0时,f (x )=x 2+bx +c 且f (-4)=f (0),故其对称轴为x =-b2=-2,∴b =4.又f (-2)=4-8+c =0,∴c =4.当x ≤0时,令x 2+4x +4≤1,有-3≤x ≤-1;当x >0时,f (x )=-2≤1显然成立,故不等式的解集为[-3,-1]∪(0,+∞).10.设a ∈R ,关于x 的不等式ax 2+(1-2a )x -2>0的解集有下列四个命题: ①原不等式的解集不可能为∅;②若a =0,则原不等式的解集为(2,+∞);③若a <-12,则原不等式的解集为⎝ ⎛⎭⎪⎫-1a ,2;④若a >0,则原不等式的解集为-∞,-1a∪(2,+∞).其中正确命题的个数为( ) A .1 B .2 C .3 D .4答案 C解析 原不等式等价于(ax +1)(x -2)>0.当a =0时,不等式化为x -2>0,得x >2.当a ≠0时,方程(ax +1)·(x -2)=0的两根分别是2和-1a ,若a <-12,解不等式得-1a<x <2;若a =-12,不等式的解集为∅;若-12<a <0,解不等式得2<x <-1a ;若a >0,解不等式得x <-1a或x >2.故①为假命题,②③④为真命题.11.若不等式-3≤x 2-2ax +a ≤-2有唯一解,则a 的值是( ) A .2或-1 B .-1±52C .1±52D .2答案 A解析 令f (x )=x 2-2ax +a ,即f (x )=(x -a )2+a -a 2,因为-3≤x 2-2ax +a ≤-2有唯一解,所以a -a 2=-2,即a 2-a -2=0,解得a =2或a =-1.故选A .12.已知三个不等式:①x 2-4x +3<0,②x 2-6x +8<0,③2x 2-9x +m <0.要使同时满足①②的所有x 的值满足③,则m 的取值范围为________.答案 m ≤9解析 由①②得2<x <3,要使同时满足①②的所有x 的值满足③,即不等式2x 2-9x +m <0在x ∈(2,3)上恒成立,即m <-2x 2+9x 在x ∈(2,3)上恒成立,又-2x 2+9x 在x ∈(2,3)上大于9,所以m ≤9.二、高考小题13.(经典浙江高考)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6 C.6<c ≤9 D.c >9 答案 C解析 由⎩⎪⎨⎪⎧f (-1)=f (-2),f (-1)=f (-3),得⎩⎪⎨⎪⎧3a -b =7,4a -b =13,解得⎩⎪⎨⎪⎧a =6,b =11.则有f (-1)=c -6,由0<f (-1)≤3,得6<c ≤9.14.(2015·广东高考)不等式-x 2-3x +4>0的解集为________(用区间表示). 答案 (-4,1)解析 不等式-x 2-3x +4>0等价于x 2+3x -4<0,解得-4<x <1.15.(经典江苏高考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 由题可得f (x )<0对于x ∈[m ,m +1]恒成立,等价于⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0,解得-22<m <0. 16.(经典四川高考)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.答案 (-7,3)解析 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).三、模拟小题17.(2018·温州九校联考)已知不等式ax 2-5x +b >0的解集为{x |-3<x <-2},则不等式bx 2-5x +a >0的解集为( )A .x -12<x <-13B .xx >-13或x <-12C .{x |-3<x <2}D .{x |x <-3或x >2} 答案 A解析 由题意得⎩⎪⎨⎪⎧5a =-3-2,ba =-3×(-2),解得a =-1,b =-6,所以不等式bx 2-5x +a >0为-6x 2-5x -1>0,即(3x +1)(2x +1)<0,所以解集为x -12<x <-13.故选A .18.(2018·贵阳一模)已知函数f (x )=ln (x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞) 答案 D解析 依题意得函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,则函数g (x )的值域取遍一切正实数,因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4.故选D .19.(2018·湖南湘潭一中模拟)若不等式(m +1)x 2-(m -1)x +3(m -1)<0对任意实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞) B.(-∞,-1)C .-∞,-1311D .-∞,-1311∪(1,+∞)答案 C解析 ①当m =-1时,不等式化为2x -6<0,即x <3,显然不对任意实数x 恒成立.②当m ≠-1时,由题意得⎩⎪⎨⎪⎧m +1<0,Δ<0,所以m <-1311.故选C .20.(2018·河北石家庄二中月考)在R 上定义运算☆:a ☆b =ab +2a +b ,则满足x ☆(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞) D.(-1,2) 答案 B解析 根据定义得x ☆(x -2)=x (x -2)+2x +(x -2)=x 2+x -2<0,解得-2<x <1,所以实数x 的取值范围为(-2,1),故选B .21.(2018·湖北沙市中学月考)已知函数f (x )=mx 2-mx -1.若对于任意的x ∈[1,3],f (x )<5-m 恒成立,则实数m 的取值范围是( )A .-∞,67 B .(-∞,1)C .(1,5)D .(1,+∞) 答案 A解析 因为f (x )<-m +5⇔m (x 2-x +1)<6,而x 2-x +1>0,所以将不等式变形为m <6x 2-x +1,即不等式m <6x 2-x +1对于任意x ∈[1,3]恒成立,所以只需求6x 2-x +1在[1,3]上的最小值即可.记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=x -122+34,显然h (x )在x ∈[1,3]上为增函数.所以g (x )在[1,3]上为减函数,所以g (x )min =g (3)=67,所以m <67.故选A .22.(2018·江西八校联考)已知定义域为R 的函数f (x )在(2,+∞)上单调递减,且y =f (x +2)为偶函数,则关于x 的不等式f (2x -1)-f (x +1)>0的解集为( )A .-∞,-43∪(2,+∞)B .-43,2C .-∞,43∪(2,+∞)D .43,2 答案 D解析 ∵y =f (x +2)为偶函数,∴y =f (x )的图象关于x =2对称.又∵f (x )在(2,+∞)上单调递减,∴由f (2x -1)-f (x +1)>0得f (2x -1)>f (x +1),∴|2x -1-2|<|x +1-2|,∴(2x -3)2<(x -1)2,即3x 2-10x +8<0,(x -2)(3x -4)<0,解得43<x <2,故选D .23.(2018·福建漳州八校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式kx +a +x +b x +c <0的解集为-2,-13∪12,1,则关于x的不等式kx ax +1+bx +1cx +1<0的解集为________. 答案 -3,-12∪(1,2)解析 由kx +a +x +b x +c <0的解集为-2,-13∪12,1,且k 1x +a +1x +b 1x+c <0,即kx ax +1+bx +1cx +1<0,得-2<1x <-13或12<1x <1,即-3<x <-12或1<x <2,故不等式kx ax +1+bx +1cx +1<0的解集为-3,-12∪(1,2).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2018·黑龙江虎林一中模拟)已知f(x)=2x 2+bx +c ,不等式f(x)<0的解集是(0,5).(1)求f(x)的解析式;(2)若对于任意的x∈[-1,1],不等式f(x)+t≤2恒成立,求t 的取值范围. 解 (1)∵f(x)=2x 2+bx +c ,不等式f(x)<0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=5,c 2=0,∴b=-10,c =0,f(x)=2x 2-10x.(2)f(x)+t≤2恒成立等价于2x 2-10x +t -2≤0恒成立, ∴2x 2-10x +t -2的最大值小于或等于0.设g(x)=2x 2-10x +t -2,则由二次函数的图象可知 g(x)=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g(x)max =g(-1)=10+t ,∴10+t≤0,即t≤-10. ∴t 的取值范围为(-∞,-10].2.(2018·湖北宜昌月考)已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围.解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0,所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.3.(2018·辽宁沈阳月考)已知二次函数f (x )满足f (-2)=0,且2x ≤f (x )≤x 2+42对一切实数x 都成立.(1)求f (2)的值; (2)求f (x )的解析式. 解 (1)∵2x ≤f (x )≤x 2+42对一切实数x 都成立,∴4≤f (2)≤4,∴f (2)=4. (2)设f (x )=ax 2+bx +c (a ≠0). ∵f (-2)=0,f (2)=4,∴⎩⎪⎨⎪⎧4a +2b +c =4,4a -2b +c =0⇒⎩⎪⎨⎪⎧b =1,c =2-4a .∵ax 2+bx +c ≥2x ,即ax 2-x +2-4a ≥0,∴Δ=1-4a (2-4a )≤0,即(4a -1)2≤0,得a =14,同理f (x )≤x 2+42对一切实数x 都成立,也解得a =14, ∴当a =14,满足2x ≤f (x )≤x 2+42,∴a =14,c =2-4a =1,故f (x )=x24+x +1.4.(2018·江西八校联考)已知二次函数f (x )=mx 2-2x -3,关于实数x 的不等式f (x )≤0的解集为[-1,n ].(1)当a >0时,解关于x 的不等式:ax 2+n +1>(m +1)x +2ax ;(2)是否存在实数a ∈(0,1),使得关于x 的函数y =f (a x )-3a x +1(x ∈[1,2])的最小值为-5?若存在,求实数a 的值;若不存在,说明理由.解 (1)由不等式mx 2-2x -3≤0的解集为[-1,n ]知关于x 的方程mx 2-2x -3=0的两根为-1和n ,且m >0,由根与系数关系得⎩⎪⎨⎪⎧-1+n =2m,-1×n =-3m,解得⎩⎪⎨⎪⎧m =1,n =3,所以原不等式化为(x -2)(ax -2)>0.①当0<a <1时,原不等式化为(x -2)x -2a >0且2<2a ,解得x <2或x >2a;②当a =1时,原不等式化为(x -2)2>0,解得x ∈R 且x ≠2; ③当a >1时,原不等式化为(x -2)x -2a >0且2>2a,解得x <2a或x >2;综上所述,当0<a ≤1时,原不等式的解集为x ⎪⎪⎪x <2或x >2a ;当a >1时,原不等式的解集为x ⎪⎪⎪x <2a或x >2.(2)假设存在满足条件的实数a ,由(1)得m =1,f (x )=x 2-2x -3,y =f (a x )-3a x +1=a 2x -(3a +2)a x -3,令a x =t (a 2≤t ≤a ),则y =t 2-(3a +2)t -3(a 2≤t ≤a ),对称轴为t =3a +22,因为a∈(0,1),所以a 2<a <1,1<3a +22<52,所以函数y =t 2-(3a +2)t -3在[a 2,a ]单调递减,所以当t =a 时,y 的最小值为y min =-2a 2-2a -3=-5,解得a =5-12(负值舍去).。
2020年高考数学复习题:一元二次不等式及其解法
一元二次不等式及其解法[基础训练]1.[2016全国卷Ⅱ]设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A .[2,3]B .(-∞,2]∪[3,+∞)C .[3,+∞)D .(0,2]∪[3,+∞)答案:D 解析:集合S =(-∞,2]∪[3,+∞), 结合数轴,可得S ∩T =(0,2]∪[3,+∞).2.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A. 52B. 72 C. 154 D. 152答案:A 解析:解法一:∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由韦达定理知⎩⎪⎨⎪⎧x 1+x 2=2a ,x 1x 2=-8a 2,∴x 2-x 1=(x 1+x 2)2-4x 1x 2=(2a )2-4(-8a 2)=15, 又∵a >0,∴a =52,故选A. 解法二:由x 2-2ax -8a 2<0,得 (x +2a )(x -4a )<0, ∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a ,4a ), 又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2), ∴x 1=-2a ,x 2=4a .∵x 2-x 1=15,∴4a -(-2a )=15,解得a =52,故选A.3.[2019贵州贵阳适应性考试]不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( )答案:A 解析:由题意,知ax 2+bx +2=0的两根为-1,2,且a <0,即-1+2=-b a ,-1×2=2a ,解得a =-1,b =1,则不等式2x 2+bx +a >0, 即2x 2+x -1>0, 则不等式的解集为{x ⎪⎪⎪⎭⎬⎫x <-1或x >12,故选A. 4.[2019福建闽侯期末]已知关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则有( )A .m ≤-3B .m ≥-3C .-3≤m <0D .m ≥-4答案:A 解析:∵x 2-4x ≥m 对任意x ∈(0,1]恒成立, 令f (x )=x 2-4x ,x ∈(0,1],f (x )图象的对称轴为直线x =2, ∴f (x )在(0,1]上单调递减,∴当x =1时,f (x )取最小值为-3, ∴实数m 应满足m ≤-3,故选A.5.[2019宁夏银川期末]已知不等式ax 2+bx +c >0(a ≠0)的解集为{x |m <x <n },且m >0,则不等式cx 2+bx +a >0的解集为( )A.⎝ ⎛⎭⎪⎫1n ,1mB.⎝⎛⎭⎪⎫-1m ,1n C.⎝ ⎛⎭⎪⎫-∞,1n ∪⎝ ⎛⎭⎪⎫1m ,+∞ D.⎝⎛⎭⎪⎫-∞,-1m ∪⎝⎛⎭⎪⎫1n ,+∞答案:C 解析:∵不等式ax 2+bx +c >0的解集为(m ,n ), ∴a <0,m +n =-b a ,mn =ca , ∴b =-a (m +n ),c =amn ,∴cx 2+bx +a <0⇔amnx 2-a (m +n )x +a <0. ∵a <0,∴mnx 2-(m +n )x +1>0, 即(mx -1)(nx -1)>0. 又∵0<m <n ,∴1m >1n , ∴x >1m 或x <1n ,故不等式cx 2+bx +a <0的解集是⎝ ⎛⎭⎪⎫-∞,1n ∪⎝ ⎛⎭⎪⎫1m ,+∞. 故选C.6.[2019山东潍坊质检]不等式4x -2≤x -2的解集是( )A .{x |x ≤0或2≤x <4}B .{x |0≤x <2或x ≥4}C .{x |2≤x ≤4}D .{x |x ≤2或x >4}答案:B 解析:原不等式可化为4-(x -2)2x -2=-x 2+4xx -2≤0,即⎩⎪⎨⎪⎧x (x -4)(x -2)≥0,x -2≠0,解得0≤x <2或x ≥4,故选B. 7.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]答案:A 解析:x 2-2x +5=(x -1)2+4的最小值为4, 所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4,解得-1≤a ≤4.8.不等式x 2-2mx -1>0对一切1≤x ≤3都成立,则m 的取值范围是________.答案:(-∞,0) 解析:解法一:∵x 2-2mx -1=0的判别式Δ=4m 2+4>0恒成立,∴函数f (x )=x 2-2mx -1的图象开口向上,且与x 轴有两个交点, 设两交点为(x 1,0),(x 2,0),则x 1x 2=-1,即x 1与x 2异号, 故要使不等式x 2-2mx -1>0对一切1≤x ≤3都成立, 则方程x 2-2mx -1=0的正根小于1, f (1)=1-2m -1>0,∴m <0,∴m 的取值范围是(-∞,0). 解法二:由原不等式,得2mx <x 2-1, 又1≤x ≤3,∴m <x 2-12x .(*) 设f (x )=12⎝⎛⎭⎪⎫x -1x ,x ∈[1,3],要使(*)式成立,只需m <f (x )min . 易证f (x )=12⎝ ⎛⎭⎪⎫x -1x 在[1,3]上是增函数,∴f (x )min =f (1)=0,∴实数m 的取值范围是(-∞,0).9.已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案:(-5,0)∪(5,+∞) 解析:由于f (x )为R 上的奇函数, 所以当x =0时,f (0)=0; 当x <0时,-x >0,所以f (-x )=x 2+4x =-f (x ), 即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎨⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞).10.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为________.答案:[-8,4] 解析:因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0恒成立, 即a 2-λba +(8-λ)b 2≥0恒成立,由二次不等式的性质,得Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0, 所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.11.[2019安徽淮北濉溪月考]若关于x 的不等式ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案:⎝ ⎛⎭⎪⎫-1,45 解析:因为关于x 的不等式ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,所以a <0,b a =15,所以不等式ax 2+bx -45a >0可化为x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,所以不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎪⎫-1,45.[强化训练]1.[2019甘肃天水月考]若不等式ax 2+2ax -4<2x 2+4x 对任意实数x 均成立,则实数a 的取值范围是( )A .(-2,2)B .(-2,2]C .(-∞,-2)∪[2,+∞)D .(-∞,2]答案:B 解析:不等式ax 2+2ax -4<2x 2+4x 可化为(a -2)x 2+2(a -2)x -4<0,当a -2=0,即a =2时,不等式恒成立,符合题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧a -2<0,Δ<0,解得-2<a <2.所以a 的取值范围为(-2,2].故选B.2.[2019湖南衡阳期末]已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最大值是( )A.63B.233C.433D .-433答案:D 解析:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2).由根与系数的关系,可得x 1x 2=3a 2,x 1+x 2=4a ,那么x 1+x 2+a x 1x 2=4a +13a .∵a <0,∴-⎝⎛⎭⎪⎫4a +13a ≥24a ×13a =433,即4a +13a ≤-433,故x 1+x 2+a x 1x 2的最大值为-433.故选D.3.[2019河南南阳考试]已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .6B .7C .9D .10答案:C 解析:由题意知,f (x )=x 2+ax +b =0只有一个根,即Δ=a 2-4b =0,则b =a24.不等式f (x )<c 的解集为(m ,m +6),即x 2+ax +a 24<c 的解集为(m ,m +6),则方程x 2+ax +a24-c =0的两个根为m ,m +6.∴两根之差|m +6-m |=a 2-4⎝ ⎛⎭⎪⎫a 24-c =6, 解得c =9,故选C.4.[2019湖南湘东3月联考]若∀x ∈R ,函数f (x )=2mx 2-2(4-m )x +1与g (x )=mx 的值至少有一个为正数,则实数m 的取值范围为( )A .(0,4]B .(0,8)C .(2,5)D .(-∞,0)答案:B 解析:当m <0且x 趋于+∞时,函数f (x )=2mx 2-2(4-m )x +1与g (x )=mx 的值均为负值,不符合题意.当m =0时,g (x )=0,f (x )=-8x +1,当x ≥18时,f (x )≤0,g (x )=0,不符合题意.∴m >0,易知f (x )的图象的对称轴为x =4-m 2m ,f (0)=1>0,当4-m2m ≥0,即0<m ≤4时,函数f (x )的图象与x 轴的交点都在y 轴右侧,如图1所示,符合题意;当4-m2m <0,即m >4时,要满足题意,需f (x )的图象在x 轴上方, 如图2所示,则Δ=4(4-m )2-8m =4(m -8)(m -2)<0,则4<m <8. 综上可得,0<m <8. 故选B.5.若不等式(a -a 2)(x 2+1)+x ≤0对于一切x ∈(0,2]恒成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,1-32 B.⎣⎢⎡⎭⎪⎫1+32,+∞ C.⎝ ⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞ D.⎣⎢⎡⎦⎥⎤1-32,1+32 答案:C 解析:因为x ∈(0,2], 所以a 2-a ≥x x 2+1=1x +1x.要使a 2-a ≥1x +1x在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎫1x +1x max .由基本不等式,得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎫1x +1x max =12, 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.6.[2019安徽蒙城、淮南等“五校”联考]在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则a 的取值范围是 ( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4]答案:D 解析:关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x-a )<0.当a =1时,不等式的解集为∅; 当a >1时,不等式的解集为1<x <a ; 当a <1时,不等式的解集为a <x <1.要使得解集中至多包含2个整数,则a ≤4且a ≥-2, 所以实数a 的取值范围是[-2,4]. 故选D.7.[2019云南昆明期末]若△ABC 的三边互不相等且边长成等差数列,则它的最小边与最大边比值的取值范围是( )A.⎝ ⎛⎭⎪⎫14,1B.⎝ ⎛⎭⎪⎫13,1C.⎝⎛⎭⎪⎫12,1 D.⎝⎛⎭⎪⎫23,1 答案:B 解析:设三角形的三边长度分别为b -m ,b ,b +m (b >m >0),三角形满足两边之和大于第三边,则b -m +b >b +m ⇒b >2m ,bm >2恒成立,(b -m )+(b +m )>b ⇒b >0恒成立, b +(b +m )>b -m ⇒b >-2m 恒成立,则最小边与最大边的比值b -m b +m=bm -1b m +1=1-2b m +1.∵bm >2,∴b -m b +m >13,很明显b -m b +m<1,据此可得,最小边与最大边比值的取值范围是⎝⎛⎭⎪⎫13,1.故选B.8.[2019吉林辽源五校期末联考]若函数f (x )=x 2+ax +b 的两个零点是-1和2,则不等式af (-2x )>0的解集是________.答案:⎝⎛⎭⎪⎫-1,12 解析:∵f (x )=x 2+ax +b 的两个零点是-1,2,∴-1,2是方程x 2+ax +b =0的两根,由根与系数的关系知,⎩⎪⎨⎪⎧ -1+2=-a ,-1×2=b ,即⎩⎪⎨⎪⎧a =-1,b =-2,∴f (x )=x 2-x -2.不等式af (-2x )>0,即-(4x 2 +2x -2)>0, 则2x 2+x -1<0,解集为⎝⎛⎭⎪⎫-1,12.9.[2019上海月考]已知关于x 的不等式组1≤kx 2+2x +k ≤2有唯一实数解,则实数k 的取值集合是________.答案:⎩⎨⎧⎭⎬⎫1-52,1+2解析:若k =0,则不等式组1≤kx 2+2x +k ≤2可化为1≤2x ≤2,不满足条件;若k >0,则不等式组1≤kx 2+2x +k ≤2,当4k 2-44k =2时,满足条件,解得k =1+2;若k <0,则不等式组1≤kx 2+2x +k ≤2,当4k 2-44k =1时,满足条件,解得k =1-52.因此不等式的解集为⎩⎨⎧⎭⎬⎫1-52,1+2. 10.[2019江苏盐城期末]已知函数f (x )=x 2+(1-a )x -a ,若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是________.答案:[-3,22-3] 解析:由f (x )=x 2+(1-a )x -a =(x -a )(x +1)<0,①当a =-1时,f (x )=(x +1)2<0无解,满足题意;②当a >-1时,f (x )<0的解为-1<x <a ,此时f (f (x ))<0,只需f (x )≥a 恒成立,即x 2+(1-a )x -2a ≥0恒成立,所以只需Δ=a 2+6a +1≤0,解得-1<a ≤22-3;③当a <-1时,f (x )<0的解为a <x <-1,此时f (f (x ))<0,只需f (x )≥-1恒成立,即x 2+(1-a )x -a +1≥0恒成立,所以只需Δ=a 2+2a -3≤0, 解得-3≤a <-1.综合①②③可知,-3≤a ≤22-3.11.[2019重庆铜梁联考]当x ∈⎣⎢⎡⎦⎥⎤32,4时,不等式|ax 2+bx +4a |≤2x 恒成立,则6a +b 的最大值是________.答案:6 解析:∵当x ∈⎣⎢⎡⎦⎥⎤32,4时,不等式|ax 2+bx +4a |≤2x 恒成立,∴|ax 2+bx +4a |x≤2恒成立,即⎪⎪⎪⎪⎪⎪ax +b +4a x ≤2恒成立. 设f (x )=ax +b +4a x =a ⎝ ⎛⎭⎪⎫x +4x +b ,x +4x ∈[4,5]. ∵|f (x )|≤2,∴⎩⎪⎨⎪⎧-2≤4a +b ≤2,-2≤5a +b ≤2. 又6a +b =-(4a +b )+2(5a +b ),∴-2+2×(-2)≤6a +b ≤2+2×2,即-6≤6a +b ≤6,∴6a +b 的最大值为6.12.[2019江苏如东期末]设f (x )=ax 2+bx +6(a ,b ∈R ).(1)若不等式f (x )>0的解集为{x |-2<x <3},求a ,b 的值;(2)记b =a 2,若f (-1)>0且f (-2) <0,求a 的取值范围.解:(1)由题意得⎩⎪⎨⎪⎧a <0,-2+3=-b a ,-2×3=6a ,解得⎩⎪⎨⎪⎧ a =-1,b =1. (2)∵b =a 2,∴f (x )=ax 2+a 2x +6,由题意得⎩⎪⎨⎪⎧ f (-1)=a -a 2+6>0,f (-2)=4a -2a 2+6<0, 解得-2<a <-1,故a 的取值范围是(-2,-1).。
高考数学 考点 第二章 不等式 一元二次不等式及其解法(理)-人教版高三全册数学试题
一元二次不等式及其解法一元二次不等式的解集有两相等实根x =x概念方法微思考1.一元二次不等式ax 2+bx +c >0(a >0)的解集与其对应的函数y =ax 2+bx +c 的图象有什么关系? 提示 ax 2+bx +c >0(a >0)的解集就是其对应函数y =ax 2+bx +c 的图象在x 轴上方的部分所对应的x 的取值X 围.2.一元二次不等式ax 2+bx +c >0(<0)恒成立的条件是什么?提示 显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0;ax2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.1.(2019•某某)设x R ∈,使不等式2320x x +-<成立的x 的取值X 围为__________. 【答案】2(1,)3-【解析】2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<;即:2{|1}3x x -<<;或2(1,)3-.故答案为:2(1,)3-.2.(2020•B 卷模拟)已知方程20x bx c ++=的两个根是2,3. (1)某某数b ,c 的值;(2)求不等式210cx bx -+的解集. 【解析】二次方程20x bx c ++=的根为2,3, 23b ∴+=-,23c ⨯=; 5b ∴=-,6c =;(2)不等式22106510(21)(31)0cx bx x x x x -+⇒++⇒++; 1123x ∴--; 则不等式不等式210cx bx -+的解集11{|}23x x --.1.(2020•某某模拟)已知区间(,)a b 是关于x 的一元二次不等式2210mx x -+<的解集,则32a b +的最小值是()A B .5+.52D .3 【答案】C【解析】(,)a b 是不等式2210mx x -+<的解集, a ∴,b 是方程2210mx x -+=的两个实数根且0m >, 2a b m ∴+=,1ab m=, ∴112a b ab a b+=+=;且0a >,0b >; 11132(32)()2a b a b a b∴+=++ 1231231(5)(52)(526)222b a b a a b a b =+++=+,=时“=”成立;32a b ∴+的最小值为15(522+=.故选C .2.(2020•某某模拟)一元二次不等式(23)(1)0x x -+>的解集为()A .3{|1}2x x -<<B .3{|2x x >或1}x <-C .3{|1}2x x -<<D .{|1x x >或3}2x <-【答案】B【解析】不等式(23)(1)0x x -+>对应方程的解为32和1-, 所以不等式的解集为{|1x x <-,3}2x >.故选B .3.(2020•某某模拟)若(3,6)x ∈,则不等式23100x x --成立的概率为() A .13B .14C .23D .34【答案】A【解析】不等式23100x x --可化为(5)(2)0x x -+, 解得2x -或5x ,利用几何概型的概率公式计算所求概率为 651633P -==-. 故选A .4.(2020•一卷模拟)已知关于x 的不等式2230ax x a -+<在(0,2]上有解,则实数a 的取值X 围是()A .(-∞B .4(,)7-∞C .)+∞D .4(,)7+∞ 【答案】A【解析】(0x ∈,2]时,不等式可化为32aax x+<; 当0a =时,不等式为02<,满足题意; 当0a >时,不等式化为32x x a+<,则2323x a x>=,当且仅当x =所以a,即0a <;当0a <时,32x x a+>恒成立;综上知,实数a 的取值X围是(-∞. 故选A .5.(2020•乃东区校级一模)若不等式210x ax ++对一切(0x ∈,1]2成立,则a 的最小值为()A .52-B .0C .2-D .3-【答案】A【解析】不等式210x ax ++对一切(0x ∈,1]2成立1()max a x x ⇔--,(0x ∈,1]2.令1()f x x x =--,(0x ∈,1]2. 22211()10x f x x x'-=-+=>,∴函数()f x 在(0x ∈,1]2上单调递增,∴当12x =时,函数()f x 取得最大值,115()2222f =--=-. a ∴的最小值为52-.故选A .6.(2020•乃东区校级一模)关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是()A .(-∞,1)(3-⋃,)+∞B .(1,3)-C .(1,3)D .(-∞,1)(3⋃,)+∞ 【答案】A【解析】关于x 的不等式0ax b ->的解集是(1,)+∞,∴01a b a>⎧⎪⎨=⎪⎩.∴关于x 的不等式()(3)0ax b x +->可化为(1)(3)0x x +->,1x ∴<-或3x >.∴关于x 的不等式()(3)0ax b x +->的解集是{|1x x <-或3}x >.故选A .7.(2020•某某二模)对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式24[]36[]450x x -+<成立的x 的X 围是()A .315(,)22B .[2,8]C .[2,8)D .[2,7]【答案】C【解析】由24[]36[]450x x -+<,得315[]22x <<, 又[]x 表示不大于x 的最大整数,所以28x <. 故选C .8.(2020春•某某期末)已知不等式20x bx c +-<的解集为{|36}x x <<,则不等式2(1)20bx c x -++->的解集为() A .1{|9x x <,或2}x >B .1{|2}9x x << C .1{|9x x <-,或2}x >D .1{|2}9x x -<<【答案】C【解析】由题意,20x bx c +-=的两根为3,6. 则3636b c +=-⎧⎨⨯=-⎩,解得918b c =-⎧⎨=-⎩,则不等式2(1)20bx c x -++->可化为291720x x -->, 解得19x <-,或2x >.故选C .9.(2020春•某某期末)关于x 的不等式2(1)10(0)ax a x a -++><的解集为() A .1{|1}x x a <<B .{|1x x <或1}x a >C .1{|x x a <或1}x >D .1{|1}x x a<<【答案】A【解析】不等式可化为(1)(1)0ax x -->, 0a <,∴原不等式等价于1()(1)0x x a--<,且不等式对应的一元二次方程的根为1a和1;又11a<,原不等式的解集为1{|1} x xa<<.故选A.10.(2020春•某某期末)关于x的不等式210x mx-+>的解集为R,则实数m的取值X围是() A.(0,4)B.(-∞,2)(2-⋃,)+∞C.[2-,2]D.(2,2)-【答案】D【解析】不等式210x mx-+>的解集为R,所以△0<,即240m-<,解得22m-<<.故选D.11.(2020春•某某期末)一元二次不等式(32)(1)0x x-+<的解集是()A.3(1,)2B.3(,1)(,)2-∞-+∞C.3(,1)2-D.3(,)(1,)2-∞-+∞【答案】B【解析】不等式(32)(1)0x x-+<⇒不等式(23)(1)0x x-+>对应方程的解为32和1-,所以不等式的解集为{|1x x<-或3}2 x>.故选B.12.(2020春•某某期末)不等式2230x x+-<的解集为() A.(3,1)-B.(1,3)-C.(-∞,3)(1-⋃,)+∞D.31x-<<【答案】A【解析】2230x x+-<,(3)(1)0x x∴+-<,解得31x-<<.用集合表示为(3,1)-.故选A .13.(2019•某某三模)若不等式210ax ax +-的解集为实数集R ,则实数a 的取值X 围为() A .04a B .40a -<<C .40a -<D .40a - 【答案】D【解析】0a =时,不等式210ax ax +-化为10-,解集为实数集R ; 0a ≠时,应满足00a <⎧⎨⎩, 所以2040a a a <⎧⎨+⎩,解得40a -<;综上,实数a 的取值X 围是40a -. 故选D .14.(2020•某某模拟)设[]x 表示不小于实数x 的最小整数,则满足关于x 的不等式2[][]120x x +-的解可以为()A .3C . 4.5-D .5- 【答案】BC【解析】不等式2[][]120x x +-可化为([]4)([]3)0x x +-, 解得4[]3x -;又[]x 表示不小于实数x 的最小整数,且4=,[3]3=,[ 4.5]4-=-,[5]5-=-; 所以满足不等式2[][]120x x +-的解可以为B 、C . 故选BC .15.(2020•鼓楼区校级模拟)设关于x 的不等式28(1)7160ax a x a ++++,()a Z ∈,只有有限个整数解,且0是其中一个解,则全部不等式的整数解的和为__________. 【答案】10-【解析】设28(1)716y ax a x a =++++,其图象为抛物线.对于任意一个给定的a 值其抛物线只有在开口向下的情况下才能满足0y 而整数解只有有限个,所以0a <.因为0为其中的一个解可以求得167a -,又a Z ∈,所以2a =-,1-,则不等式为22820x x --+和290x -+,可分别求得252x -和33x -,x 为整数,4x ∴=-,3-,2-,1-,0和3x =-,2-,1-,0,1,2,3 ∴全部不等式的整数解的和为10-故答案为:10-.16.(2020春•仓山区校级期末)已知关于x 的不等式230x ax ++,它的解集是[1,3],则实数a =__________. 【答案】4-【解析】关于x 的不等式230x ax ++,它的解集是[1,3], 所有关于x 的方程230x ax ++=的两根为1和3, 由根与系数的关系知,实数(13)4a =-+=-. 故答案为:4-.17.(2020•某某一模)若关于x 的不等式230x mx -+<的解集是(1,3),则实数m 的值为__________. 【答案】4【解析】不等式230x mx -+<的解集是(1,3), 所以方程230x mx -+=的解1和3, 由根与系数的关系知, 134m =+=.故答案为:4.18.(2020•某某模拟)若关于x 的不等式210mx mx -+<的解集不是空集,则m 的取值X 围是__________.【答案】(-∞,0)(4⋃,)+∞【解析】若0m =,则原不等式等价为10<,此时不等式的解集为空集.所以不成立,即0m ≠. 若0m ≠,要使不等式210mx mx -+<的解集不是空集,则 ①0m >时,有△240m m =->,解得4m >. ②若0m <,则满足条件.综上满足条件的m 的取值X 围是(-∞,0)(4⋃,)+∞. 故答案为:(-∞,0)(4⋃,)+∞.19.(2020•某某二模)已知关于x 的不等式2(4)(4)0ax a x --->的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为__________. 【答案】2-【解析】已知关于x 的不等式2(4)(4)0ax a x --->, ①0a <时,4[()](4)0x a x a-+-<,其中40a a +<,故解集为4(a a+,4), 由于44()2(4a a a a a +=-----=-, 当且仅当4a a -=-,即2a =-时取等号,4a a ∴+的最大值为4-,当且仅当44a a+=-时,A 中共含有最少个整数,此时实数a 的值为2-; ②0a =时,4(4)0x -->,解集为(,4)-∞,整数解有无穷多,故0a =不符合条件; ③0a >时,4[()](4)0x a x a -+->,其中44a a+,∴故解集为(-∞,44)(a a+⋃,)+∞,整数解有无穷多,故0a >不符合条件; 综上所述,2a =-. 故答案为:2-.。
高三数学一元二次不等式试题答案及解析
高三数学一元二次不等式试题答案及解析1.已知,则“”是“成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】解得其解集,解得,因为,所以,”是“成立”的必要不充分条件,选.【考点】充要条件,一元二次不等式的解法.2.已知同时满足下列条件:①;②.则实数的取值范围 .【答案】【解析】①说明给定一个的值,中至少一个的值小于0.对,当时;当时.所以当时必有,从而.由得.由得.当时,的解为或,此时应有.当时,的解为或,此时应有,所以.时,此时,不满足②.当时,都满足②.故实数的取值范围是.【考点】函数与不等式.3. [2014·大连模拟]若关于x的不等式ax-b>0的解集为(-∞,1),则关于x的不等式(ax+b)(x-2)>0的解集为________.【答案】(-1,2)【解析】由题意可得a=b<0,故(ax+b)(x-2)>0等价于(x+1)(x-2)<0,解得-1<x<2,故所求不等式的解集为(-1,2).4.关于的不等式的解集为,则实数的取值范围是________.【答案】【解析】由题意,当时,原不等式变为,其解集为,不满足题意.当时,令,其对称轴,要使对恒成立,需,解得;当时,令,其对称轴,要使对恒成立,需解得,综上,.【考点】1.一元二次含参不等式的求解;2.分类讨论思想的应用.5.不等式3x2-x-4≤0的解集是__________.【答案】【解析】由3x2-x-4≤0,得(3x-4)(x+1)≤0,解得-1≤x≤.6.已知不等式x2-2x+k2-3>0对一切实数x恒成立,则实数k的取值范围是________.【答案】k>2或k<-2【解析】由Δ=4-4(k2-3)<0,知k>2或k<-2.7.已知不等式(2+x)(3-x)≥0的解集为A,函数f(x)=(k<0)的定义域为B.(1)求集合A;(2)若集合B中仅有一个元素,试求实数k的值;(3)若B A,试求实数k的取值范围.【答案】(1)A=[-2,3](2)k=-4(3)-4≤k≤-【解析】(1)由(2+x)(3-x)≥0,得(2+x)(x-3)≤0,解得-2≤x≤3,故A=[-2,3].(2)记g(x)=kx2+4x+k+3,则g(x)≥0在R上有且仅有一解,而k<0,所以Δ=0.由k<0与16-4k(k+3)=0,解得k=-4.(3)记g(x)=kx2+4x+k+3,首先g(x)≥0在R上有解,而k<0,所以Δ=16-4k(k+3)≥0,解之得-4≤k<0.①设g(x)=0的两个根为x1,x2(x1<x2),则B=[x1,x2].由BA,得即②由①与②,解得-4≤k≤-.8.不等式2x2-x-1>0的解集是()A.(-,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-)∪(1,+∞)【答案】D【解析】由2x2-x-1>0得(2x+1)(x-1)>0,解得x>1或x<-,∴2x2-x-1>0的解集为(-∞,- )∪(1,+∞).故选D.9.“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当a=0时,1>0,显然成立;当a≠0时,故ax2+2ax+1>0的解集是实数集R等价于0≤a<1.因此,“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的充分而不必要条件.10.已知,若,则实数的取值范围为( )A.B.C.D.【答案】B【解析】,等价于即若,则,解得.【考点】解不等式.11.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于 .【答案】-3【解析】由x2-2x-3<0解得;由x2+x-6<0解得,则,于是是方程的二根,即,所以.【考点】一元二次不等式的解法、集合的运算、根与系数的关系12.(本小题12分)已知全集U=R,非空集合<,<. (1)当时,求;(2)命题,命题,若q是p的必要条件,求实数的取值范围.【答案】(1){x︱ };(2)或【解析】(1)首先接触集合A,B,然后求出,最后计算即可;(2)若,则,可得,解之即可.试题解析:(1)A={x︱ },当时,B={x︱ },所以={x︱ }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次不等式及其解法
链接高考
1.(2016浙江杭州中学期中,★☆☆)下列不等式中,与不等式<2解集相同的是()
A.(x+8)(x2+2x+3)<2
B.(x+8)<2(x2+2x+3)
C.<
D.>
2.(2015天津南开中学月考,★☆☆)不等式≥2的解集是()
A. B. C.∪(1,3] D.∪(1,3]
3.(2013江西,6,5分,★☆☆)下列选项中,使不等式x<<x2成立的x的取值范围是()
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)
4.(2012重庆,2,5分,★☆☆)不等式≤0的解集为()
A. B. C.∪[1,+∞) D.∪[1,+∞)
5.(2012江西,11,5分,★☆☆)不等式>0的解集是________.
6.(2015课标Ⅱ,1,5分,★★☆)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
7.(2015山东,1,5分,★★☆)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则
A∩B=()
A.(1,3)
B.(1,4)
C.(2,3)
D.(2,4)
8.(2015浙江,1,5分,★★☆)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则
(∁R P)∩Q=()
A.[0,1)
B.(0,2]
C.(1,2)
D.[1,2]
9.(2014课标Ⅰ,11,5分,★★☆)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则
A∩B=()
A.[-2,-1]
B.[-1,2)
C.[-1,1]
D.[1,2)
10.(2016河北石家庄一中期中,★★☆)若不等式x2+2x+2>|a-2|对于一切实数x 均成立,则实数a的取值范围是________.
11.(2012福建,15,4分,★★☆)已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是________.
12.(2015辽宁大连期末,★★☆)已知f(x)=ax2+x-a.
(1)若函数f(x)有最大值,求实数a的值;
(2)若不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围.
三年模拟
1.(2016四川雅安中学月考,★☆☆)不等式-x2+3x+4<0的解集为()
A.{x|-1<x<4}
B.{x|x>4或x<-1}
C.{x|x>1或x<-4}
D.{x|-4<x<1}
2.(2016河南洛阳统考,★☆☆)已知集合A={x|x2<2-x},B={x|-1<x<2},则
A∪B=()
A.(-1,1)
B.(-2,2)
C.(-1,2)
D.(-2,1)
3.(2016 宁夏银川一中月考,★☆☆)不等式(1+x)(1-|x|)>0的解集是()
A.{x|-1<x<1}
B.{x|x<1}
C.{x|x<-1或x>1}
D.{x|x<1且x≠-1}
4.(2016福建师大附中模块考试,★★☆)若关于x的方程x2+(m-1)x+m2-2=0的
一个实根小于-1,另一个实根大于1,则实数m的取值范围是()
A.(-,)
B.(-2,0)
C.(-2,1)
D.(0,1)
5.(2015山东日照一中校际联检,★☆☆)在R上定义运算:x*y=x(1-y).若关于x 的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是()
A.[0,2]
B.[-2,-1)∪(-1,0]
C.[0,1)∪(1,2]
D.[-2,0]
6.(2015河北“五个一名校联盟”质检,★☆☆)设集合
M={x|x2+2x-15<0},N={x|x2+6x-7≥0},则M∩N=()
A.(-5,1]
B.[1,3)
C.[-7,3)
D.(-5,3)
7.(2016四川雅安中学月考,★☆☆)一元二次不等式x2+ax+b>0的解集为
(-∞,-3)∪(1,+∞),则一元一次不等式ax+b<0的解集为________.
8.(2015广东广州模拟,★☆☆)不等式x2-2x-3<0的解集是________.
9.(2016山东潍坊一中月考,★☆☆)已知集合B=,C={x|a<x<a+1}.若B∪C=B,求实数a的取值范围.
10..(2015天津南开中学月考,★★☆)解关于x的不等式>0(a∈R).。