大学物理波动习题
大学物理_波动及课后习题
![大学物理_波动及课后习题](https://img.taocdn.com/s3/m/5a5cc25a767f5acfa1c7cd5a.png)
A 2
2 0 3
取 S点为坐标 原点,以
波的传播方向为 x 轴正方向。
2) 在 x 轴上任取一点 P, OP = x ,
y
o s
x
u
P
x
由于 P点相位落后
S点的时间为—— 于是得到波的表达式为 :
x 2 y 8 10 cos[ (t ) ]m u 3
2
结论:
(1) 质元并未“随波逐流”
波的传播不是媒质质元的传播
(2) “上游”的质元依次带动“下游”的质元振动 (3) 某时刻某质元的振动状态将在较晚时刻 t T /于“下游”某处出现 4 ---波是振动状态的传播
(4) 同相点----质元的振动状态相同
t T / 4 t 5T / 4 t T / 2
x
故
将
p
x
4m
s
D
x y 0.05 cos[3(t ) ](SI ) 2 3
x D 4m 代入波方程,得到 D点的
振动方程:
y D 0.05 cos[3(t 2) ](SI ) 3
(2). 以 S 点左方7m处的 O 点为坐标原点, 取 x 轴正方向向右,写出波方程及 D 点的 振动方程。 u
x / cm
0 0
5 yo cos( t ) 3
5 x y cos[ (t )] 3 10
方法2: 将波形倒退
6
得出 t 0 波形,再写方程! …..
0 0
20.2 解:应用时间落后法,
可得
ξ 0 0.1 x x
x 0.1 y 0.05sin[1.0 4.0(t )] 0.8 0.05sin[(4.0t 5 x 0.5)] 0.05sin[ (4.0t 5 x 0.5)] 0.05sin(4.0t 5 x 2.64)
大学物理波动练习题
![大学物理波动练习题](https://img.taocdn.com/s3/m/251d6d3103768e9951e79b89680203d8ce2f6a03.png)
大学物理波动练习题1、下列哪一种波属于机械波?A.电磁波B.声波C.地震波D.核辐射波2、在机械波的传播过程中,介质中的质点发生的是()A.随波逐流的相对运动B.周期性变化的相对运动C.振幅变化的相对运动D.垂直于波传播方向的相对运动3、下列哪一种说法正确地描述了波动现象的特征?A.波动现象是独立存在的,与振动源无关B.波动现象与振动源无关,只与传播介质有关C.波动现象是振动源和传播介质共同作用的结果D.波动现象只与传播介质有关,与振动源无关4、在波动现象中,下列说法正确的是()A.各质点的起振方向都与振源的起振方向相同B.各质点的振动周期都与振源的振动周期相同C.各质点的振动方向都与振源的振动方向相同D.各质点的振动步调都与振源的振动步调相同二、解答题5.什么是机械波的传播速度?它与介质有关吗?如果有关,是怎样的关系?6.在机械波的形成过程中,介质中的各质点是如何随波迁移的?为什么?1、在以下物理量中,哪个是矢量?A.路程B.速率C.速度D.时间答案:C.速度解释:矢量是具有大小和方向的物理量,而速度是既有大小又有方向的物理量,因此是矢量。
而路程、速率和时间都只有大小,没有方向,因此是标量。
2、下列哪个选项可以表示物体的惯性?A.速度B.质量C.加速度D.动量答案:B.质量解释:惯性是物体抵抗运动状态被改变的性质,是物体的固有属性。
质量是惯性的唯一量度,因此质量可以表示物体的惯性。
速度、加速度和动量都与物体的运动状态有关,但它们都不能直接表示物体的惯性。
3、在以下哪个条件下,物体的运动状态会发生改变?A.受到力的作用B.受到重力C.受到支持力D.受到摩擦力答案:A.受到力的作用解释:物体的运动状态会发生改变,即物体的速度会发生改变,这只有当物体受到力的作用时才会发生。
力是改变物体运动状态的原因。
重力、支持力和摩擦力都是具体的力,但它们并不能独自改变物体的运动状态。
二、填空题4、在物理学中,我们将物体相对于其他物体位置的变化称为______。
大学物理(第四版)课后习题及答案 波动
![大学物理(第四版)课后习题及答案 波动](https://img.taocdn.com/s3/m/ccb408e489eb172ded63b7c7.png)
第十四章波动14-1 一横波再沿绳子传播时得波动方程为。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s时得波形,并指出波峰和波谷。
画出x=1.0m处质点得振动曲线并讨论其与波形图得不同。
14-1分析(1)已知波动方程(又称波函数)求波动的特征量(波速、频率、振幅A及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t值代人已知波动方程,便可以得到不同时刻的波形方程,从而作出波形图。
而将确定的x值代入波动方程,便可以得到该位置处质点的运动方程,从而作出振动图。
解(1)将已知波动方程表示为与一般表达式比较,可得则(2)绳上质点的振动速度则(3) t=1s和 t=2s时的波形方程分别为波形图如图14-1(a)所示。
x=1.0m处质点的运动方程为振动图线如图14-1(b)所示。
波形图与振动图虽在图形上相似,但却有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的时间变化的情况。
14-2 波源作简谐运动,其运动方程为,它所形成得波形以30m/s的速度沿一直线传播。
(1)求波的周期及波长;(2)写出波的方程。
14-2分析 已知彼源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅地角频率及初相,而这三个物理量与波动方程的一般形式中相应的三个物理量是相同的。
大学物理波动习题
![大学物理波动习题](https://img.taocdn.com/s3/m/4364224a1a37f111f1855bfe.png)
y 0.10 cos165 (T / 4)
u=330 m/s
165 (T / 4) / 2 O 1 2 3 4 x (m)
-0.10
21、一驻波表达为 y Acos2x cos1。0位0t
于x1 = 1 /8 m的质元P1与位于x2 = 3 /8 m处的
质元P2的振动相位差为__________.
D 的动SS振方12P动程方为2.2程为,两y1列波((AAB在c))oyPys点2(22发t 生AA12相ccoo消)ss干((2,2涉则t,t若S2S12的1)振)
S2
(2
1 )
P
2
(C)
y2
A c os (2t
1)
2
(D) y2 2Acos(2t 0.1 )
r2 r1
9. 某时刻驻波波形曲线如图所示,则 a ,b两点的 为相差是
S 2连线上,S1外侧各点(例如P点)两波引起的
两谐振动的为相差是
(A) 0
(C) / 2
(B)
(D) 3 / 2
B
/4
P
S1
S2
(1
2)
2
r1
r2
动8 方. 如向图均所垂示直,于S1图和面S,2 发为出两波相长干为波源 ,的它简们谐的波振,
P点是两列波相遇区域中的一点,以知 S1P 2
的振动方程为y=Acos(t+),若波速为u,
求此波的波动方程。
解:波速沿负x方向,则波动方程为
y Acos[(t x 1) ]
u
u
x=-1
18、图为t = T / 4 时一平面简谐波的波形 曲线,则其波的表达式为.
y 0.10 cos165 (t x / 330) (SI)
大学物理振动波动例题习题
![大学物理振动波动例题习题](https://img.taocdn.com/s3/m/e81c25d80066f5335b8121b9.png)
振动波动一、例题(一)振动1。
证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3。
已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。
07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4。
沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。
25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。
大学物理(第四版)课后习题及答案 波动(2020年7月整理).pdf
![大学物理(第四版)课后习题及答案 波动(2020年7月整理).pdf](https://img.taocdn.com/s3/m/c1e53b6b43323968011c926b.png)
第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11−−−=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11−−−=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(−−⋅−=s m x t s m y π 与一般表达式()[]0cos ϕω+−=u x t A y 比较,可得0,5.2,20.001=⋅==−ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0−−−⋅−⋅−==s m x t s s m dt dy v ππ 则1max 57.1−⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(−−=ππ()[]x m m y 125cos )20.0(−−=ππ波形图如图14-1(a )所示。
大学物理练习册习题及答案波动学基础
![大学物理练习册习题及答案波动学基础](https://img.taocdn.com/s3/m/9152c200482fb4daa58d4b2e.png)
习题及参考答案第五章 波动学基础参考答案思考题5-1把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A )振动频率越高,波长越长; (B )振动频率越低,波长越长; (C )振动频率越高,波速越大; (D )振动频率越低,波速越大。
5-2在下面几种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上的任二质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 5-3一平面简谐波沿ox 正方向传播,波动方程为010cos 2242t x y ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦. (SI)该波在t =0.5s 时刻的波形图是( )5-4图示为一沿x 轴正向传播的平面简谐波在t =0时刻的波形,若振动以余弦 函数表示,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(B )0点的初位相为φ0=-π/2(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5一平面简谐波沿x 轴负方向传播。
已知x=b 处质点的振动方程为[]0cos y A t ωφ=+,波速为u ,则振动方程为( )(A)()0cos y A t b x ωφ⎡⎤=+++⎣⎦(B)(){}0cos y A t b x ωφ⎡⎤=-++⎣⎦(C)(){}0cos y A t x b ωφ⎡⎤=+-+⎣⎦ (D)(){}0cos y A t b x u ωφ⎡⎤=+-+⎣⎦ 5-6一平面简谐波,波速u =5m·s -1,t =3s 时刻的波形曲线如图所示,则0x =处的振动方程为( )(A )211210cos 22y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) (B )()2210cos y t ππ-=⨯+ (SI) (C )211210cos 22y t ππ-⎛⎫=⨯+ ⎪⎝⎭ (SI) (D )23210cos 2y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) 5-7一平面简谐波沿x 轴正方向传播,t =0的波形曲线如图所示,则P 处质点的振动在t =0时刻的旋转矢量图是( )5-8当一平面简谐机械波在弹性媒质中传播时,下述各结论一哪个是正确的? (A )媒质质元的振动动能增大时,其弹性势能减少,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任一时刻都相同,但两者的数值不相等; (D )媒质质元在其平衡位置处弹性势能最大。
大学物理第10章 习题
![大学物理第10章 习题](https://img.taocdn.com/s3/m/dcb86f1d866fb84ae45c8ddd.png)
r1
第十章 波动
16
物理学
第五版
第十章 习题
17 如图所示, 0 处有一运动方程为 x y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
3 kg m ,求(1)该波的能流密度;(2)
1min内垂直通过4.0×10-4m2的总能量.
第十章 波动
13
物理学
第五版
第十章 习题
14 如图所示,两相干波源分别在P,Q 两点,它们发出频率为ν ,波长为 λ ,初 相相同的两列相干波,设PQ=3λ / 2 , R 为PQ连线上的一点.求:(1)自P、Q发 出的两列波在R处的相位差;(2)两波 在R处干涉时的合振幅.
3 一横波在沿绳子传播时的波动方程 为 y 0.20 cos 2.50t x) 式中y和x的单位 , ( 为 m , t的单位为s.(1) 求波的振幅、波速、 频率及波长;(2)求绳上的质点振动时的最 大速度;(3)分别画出t 1s 和 t 2s 时的波 形,并指出波峰和波谷.画出 x 1.0m 处质点的 振动曲线并讨论其与波形图的不同.
第十章 习题
5 已知一波动方程为 y 0.05 sin( 10t 2 x) 式中y的单位为 m ,t的单位为s. (1)求波长、频 率、波速和周期; (2)说明 x 0 时方程的意义, 并 作图表示.
第十章 波动
5
物理学
第五版
第十章 习题
6 有一平面简谐波在空间传播. 已知在波 线上某点B的运动规律为y A cos(t ) ,就 图(a)(b)(c)给出的三种坐标取法,分 别列出波动方程.并用这三个方程来描述与B相 距为b 的P点的运动规律.
大学物理波动光学综合练习题(含答案)
![大学物理波动光学综合练习题(含答案)](https://img.taocdn.com/s3/m/2756fba4a58da0116c1749f2.png)
《大学物理》综合练习(七)——波动光学教学班级: 序 号: 姓 名: 日 期:一、选择题(把正确答案的序号填入括号内)1.如图,由空气中一单色点光源S 发出的光,一束掠入射到平面反射镜M 上,另一束经折射率为n 、厚度为d 的媒质薄片N 后直接射到屏E 上。
如果l AP SA ==,D SP =, 则两相干光束SP 与SAP 在P 点的光程差为:(A) D l −=2δ; (B) 2/)1(2λδ+−−−=d n D l ;(C) d n D l )1(2−−−=δ; (D) 2/2λδ+−=D l 。
解:2/)1(22/])[(2λλδ+−−−=++−−=d n D l nd d D l[ B ]2.如图,折射率为2n 、厚度为e 的透明媒质薄膜上方和下方的透明介质的折射率分别是1n 和3n ,已知321n n n <<。
如果用波长为λ的单色平行光垂直入射到该薄膜上,则从上下两表面3题1图 题2图反射的光束的光程差是(A) e n 22; (B) 2/22λ−e n ;(C) 2/322λ−e n ; (D) 222/2n e n λ−。
解:两反射面均有半波损失,e n 22=δ。
[ A ]3.设在双缝干涉实验中,屏幕E 上的P 点是亮条纹,如将缝2S 盖住,并在21S S 连线的垂直平分面处放一反射镜M (如图),则此时:(A) P 点处为暗条纹;(B) P 点处仍然是亮条纹;(C)无干涉条纹; (D)无法确定P 点是亮条纹还是暗条纹。
解:光在M 处发射有半波损失,故P 点处为暗条纹。
[ A ]4.用波长为λ的平行单色光垂直照射图示装置观察空气层上下表面反射光形成的等厚干涉条纹。
以下各图画出可能出现的暗条纹的形状和位置。
试判断哪一图是实际观察到的干涉暗条纹。
题3图解:λλλδ42247max =+⨯= 4max =k (明),故图(C )正确。
[ C ]5.在迈克尔耳逊干涉仪的一条光路中,放入一折射率为n 、厚度为d 的透明薄片,放入前后两条光路的光程差的改变量为(A) d n )1(−; (B) nd ; (C) d n )1(2−; (D) nd 2。
大学物理 波动
![大学物理 波动](https://img.taocdn.com/s3/m/842a29465727a5e9856a61da.png)
12. 波动班级 学号 姓名 成绩一、选择题1.在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动频率与波动的频率在数值上是不同的;(B) 波源振动的速度与波速相同;(C) 在波传播方向上的任一质点的振动位相总是比波源的位相滞后;(D) 在波传播方向上的任一质点的振动位相总是比波源的位相超前。
( C ) 解:(A)中,应该为波源的振动频率与波动的频率相同;(B)中,波速与介质有关,波源振动的速度与波速不相同;(C) 在波传播方向上的任一质点的振动位相总是比波源的位相滞后,是正确的;(D)是不对的。
2.一简谐波沿X 轴正方向传播,图中所示为t =T /4时的波形曲线。
若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则:(A) 0点的初位相为 00=φ (B) 1点的初位相为2/π1-=ϕ (C) 2点的初位相为 π2=ϕ (D) 3点的初位相为 2/π3-=ϕ。
( D ) 解:现将整个波形向左平移1/4个周期,如图所示质点O :位于负的最大位移处,根据旋转矢量,初相位为0πϕ=±质点1:位于平衡位置,根据旋转矢量,初相位为1π2ϕ=质点2:位于正的最大位移处,初相位为20ϕ=质点3:位于平衡位置,向+y 方向运动,初相位为3π2ϕ=- 3.一平面简谐波的波动方程为0),SI ()πππ3cos(1.0=+-=t x t y 时的波形曲线如图所示,则:(A) a 点的振幅为-0.1m ; (B) 波长为4m ;(C) a 、b 两点间位相差为2/π (D) 波速为6ms -1。
( C ) 解:将0.1cos(3πππ)(SI)y t x =-+与平面简谐波的标准波动方程⎥⎦⎤⎢⎣⎡+-=ϕλωx t A y π2cos 对比得2π0.13π,π2A m m ωλλ===⇒=,, 根据32π2ωνν=⇒=,波速为s m u /3==λν,从图上知,a 、b 间距为4λ,所以,1π2π42ϕ∆==。
大学物理—波动习题答案
![大学物理—波动习题答案](https://img.taocdn.com/s3/m/83a64b8ccc22bcd126ff0c4a.png)
L2 P2 x
P1 O
2.(3294) ( ) 在截面积为S的圆管中,有一列平面简谐波在传播, 在截面积为 的圆管中,有一列平面简谐波在传播,其波的表达 的圆管中
ω 管中波的平均能量密度是w, 式为y = Acos[ t − 2π( x / λ )],管中波的平均能量密度是 ,则 ωλ 通过截面积S的平均能流 的平均能流____________________. 通过截面积 的平均能流 . Sw 2π
波动习题
1.(3067) ( ) 时的波形曲线如图所示, 一平面简谐波的表达式为 (SI) ,t = 0时的波形曲线如图所示, 时的波形曲线如图所示 则 y (m) (A) O点的振幅为 点的振幅为-0.1 m. 点的振幅为 . u 0.1 (B) 波长为 m. 波长为3 . (C) a、b两点间相位差为 . 、 两点间相位差为 O a b x (m) C ] (D) 波速为 m/s . 波速为9 [ -0.1
7. 解:入射波在 x = 0 处引起的振动方程为 y10 = A cosωt ,由于反射端为固定 端,∴反射波在 x = 0 处的振动方程为 ∴ y20 = A cos(ωt + π) 或 y20 = A cos(ωt − π) 2分 ∴反射波为 或 驻波表达式为
x y2 = A cos(ωt + π − 2π )
(SI)
(SI)
6.解:(1) 与波动的标准表达式 y = A cos 2 π(ν t − x / λ ) 解 得: ν = 4 Hz, λ = 1.50 m, , , u = λν = 6.00 m/s 波速 (2) 节点位置
1 4 πx / 3 = ± ( nπ + π ) 2
1 x = ± 3( n + ) m , 2
大学物理波动练习题
![大学物理波动练习题](https://img.taocdn.com/s3/m/002fd72152ea551810a68764.png)
三、计算题
已知一平面简谐波的表达式为 (SI)
(1)分别求x1=10 m,x2=25 m两点处质点的振动方程;
(2)求x1,x2两点间的振动相位差;
在x= 0至x=10.0 m内波节的位置是_____________________________________
__________________________________;波腹的位置是______________________
__________________________________.
3、图为沿x轴负方向传播的平面简谐波在t= 0时刻的波形.若波的表达式以余弦函数表示,则O点处质点振动的初相为
(A)0.(B) .
(C).(D) .[]
4、频率为100 Hz,传播速度为300 m/s的平面简谐波,波线上距离小于波长的两点振动的相位差为 ,则此两点相距
(A)2.86 m.(B)2.19 m.
答案:
一、
CBDC
二、
(SI)
三、
解:(1) (SI)
(2)t1=T/4 = (1 /8) s,x1=/4 = (10 /4) m处质点的位移
(3)振速 .
s,在x1=/4 = (10 /4) m处质点的振速
m/s
解:(1)振动方程: A=10 cm,
= 2=s-1,=u/= 0.5 Hz
初始条件:y(0, 0) = 0
(1)此波的表达式;
(2)t1=T/4时刻,x1=/4处质点的位移;
(3)t2=T/2时刻,x1=/4处质点的振动速度.
大学物理第十四章波动光学习题+答案
![大学物理第十四章波动光学习题+答案](https://img.taocdn.com/s3/m/98c260c0ad51f01dc281f1bb.png)
D k 0,1, 2 明纹中心位置
暗纹中心位置
k 1, 2,3
D 相邻两明纹(或暗纹)中心间距离: Δx d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne
2
相邻明纹(暗纹)间的厚度差: e
C R
2n 相邻明纹(暗纹)中心间距离: l 2n
牛顿环
r 2Re
(2) 屏幕上主极大位置由光栅公式决定
(a b)sin k
(3) 缺级现象 (a b)sin k
k 0,1, 2, 3 ——主极大
k 1, 2, 3
k 1, 2, 3
干涉明纹 衍射暗纹
a sin k
ab k k k 1, 2, 3 a (4) 重级现象 k11 k2 2
波 动 光 学 习 题 课
一、基本概念
1、相干光的获得 把由光源上同一点发出的光设法分成两部分,再叠 加起来。
分波阵面法
分振幅法
2、光程与光程差
n2 r2 n1r1
3、半波损失
2 2 (n2 r2 n1r1 )
当光从光疏媒质射向光密媒质时,反射光有位相 的突变,相当于 的附加光程差,叫半波损失。
x tan 5 103 f
a sin 0.2 5 10 mm 1000 nm 4 2
3
a
x
f
暗纹,4个半波带
4-5 某元素的特征光谱中含有波长分别为1=450nm 和2=750nm的光谱线。在光栅光谱中,这两种波长的 谱线有重叠现象,重叠处2的谱线的级数将是 (A) 2,3,4,5…… (C) 2,4,6,8……
大学物理波动光学习题答案
![大学物理波动光学习题答案](https://img.taocdn.com/s3/m/217b4558bf1e650e52ea551810a6f524ccbfcbc0.png)
学习资料收集于网络,仅供参考学习资料收集于网络,仅供参考学习资料学习资料 第七章 波动光学习题答案1.从一光源发出的光线,从一光源发出的光线,通过两平行的狭缝而射在距双缝通过两平行的狭缝而射在距双缝100 cm 的屏上,如两狭缝中心的距离为0.2 mm ,屏上相邻两条暗条纹之间的距离为3 mm ,求光的波长(Å为单位)。
已知已知 D=100cm a=0.2mm D=100cm a=0.2mm d x=3mm求l [解] l =a d x/D=3x/D=3××10-3×0.20.2××10-3/100/100××10-2=0.6=0.6××10-6m=6000 Å2.用波长为7000 Å的红光照射在双缝上,距缝1 m 处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm ,求两缝间距离。
,求两缝间距离。
[解] 明条纹间距明条纹间距 cm a=6.084.用波长为4800 Å的蓝光照射在缝距为0.1 mm 的双缝上,求在离双缝50 cm 处光屏上干涉条纹间距的大小。
涉条纹间距的大小。
[解]=2.4mm 5.什么是光程?在不同的均匀媒质中,在不同的均匀媒质中,单色光通过相等光程时,单色光通过相等光程时,单色光通过相等光程时,其几何路程是否相同其几何路程是否相同? 需要时间是否相同?[解]光程=nx 。
在不同的均匀媒质中,单色光通过相等光程时,其几何路程是不同。
需要时间相同相同6.在两相干光的一条光路上,在两相干光的一条光路上,放入一块玻璃片,其折射率为放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6×103 Å。
求玻璃片厚度。
求玻璃片厚度。
已知已知 n=1.6 n=1.6 l =6.6=6.6××103Å 求 d[解]光程差MP-d+nd-NP=0 ∵ NP-MP=6l∴ (n-1n-1))d=6ld=6l /(n-1)=6.6/(n-1)=6.6××10-6m7.在双缝干涉实验中,用钠光灯作光源(l =5893 Å),屏幕离双缝距离D=500mm ,双缝间距a=1.2mm ,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)已知n 水=1.33 l =5893Å D=500 mm a=1.2mm 比较d x 水和d x 空气 [解] d x 水=D l /na=500/na=500××5893×10-10×10-3/(1.2×10-3×1.33)=1.85×10-4m d x 空气=D l /a=500×5893×10-10×10-3/(1.2×10-3)=2.46×10-4m∴ 干涉条纹变疏干涉条纹变疏8.用白光垂直照射到厚度为4×10-5 cm 的薄膜上,薄膜的折射率为1.5。
大学物理 第十章 波动部分习题
![大学物理 第十章 波动部分习题](https://img.taocdn.com/s3/m/c5f76e1486c24028915f804d2b160b4e767f81f0.png)
第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。
7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。
大学物理学练习题-波动光学(干涉、衍射与偏振)
![大学物理学练习题-波动光学(干涉、衍射与偏振)](https://img.taocdn.com/s3/m/5ce7d562e97101f69e3143323968011ca200f759.png)
专业班级____________ 学号 ____________姓名__________ 序号大学物理练习题波动光学一、选择题1. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹[ ]。
(A)向棱边方向平移,条纹间隔发生变化;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔发生变化;(D)向远离棱的方向平移,条纹间隔不变。
2. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃以棱边为轴缓慢向上旋转,则干涉条纹[ ] 。
(A)向棱边方向平移,条纹间隔变小;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔变大;(D)向远离棱的方向平移,条纹间隔不变。
3. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ]。
(A) 干涉条纹的宽度将发生改变;(B) 产生红光和蓝光的两套彩色干涉条纹;(C) 干涉条纹的亮度将发生改变;(D) 不产生干涉条。
4. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则[ ]。
(A) 干涉条纹的间距变宽;(B) 干涉条纹的间距变窄;(C) 干涉条纹的间距不变,但原极小处的强度不再为零;(D) 不再发生干涉现象。
5. 把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D >>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是[ ](A) λD / (nd);(B) nλD/d;(C) λd / (nD);(D) λD / (2nd)。
6. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]。
(A) 中心暗斑变成亮斑;(B) 变疏;(C) 变密;(D) 间距不变。
大学物理16波动答案
![大学物理16波动答案](https://img.taocdn.com/s3/m/caaedb4a336c1eb91a375de0.png)
波动一、单选题:1、(3058A10)C2、(3066A05)B3、(3067A15)C4、(3068A15)D5、(3147B25)B6、(3151B25)B7、(3407A20)D8、(3411A15)C9、(3413A15)A 10、(3479A15)A 11、(3483B35)C 12、(3841A10)B 13、(3842A10)A 14、(3847A20)D 15、(5193A15)B 16、(5204B25)D 17、(5317A10)C 18、(5513A10)C 19、(3069C45)C 20、(3070B30)D 21、(3071C45)D 22、(3072B30)A 23、(3073B35)C 24、(3145B30)C 25、(3149B30)A 26、(3150B25)A 27、(3152C45)C 28、(3338B30)D 29、(3339B30)D 30、(3340B25)A 31、(3341B30)A 32、(3408B30)B 33、(3409B40)D 34、(3412B30)A 35、(3415B30)D 36、(3573B25)C 37、(3574A20)B 38、(3575B25)A 39、(3603A15)A 40、(5203B25)D 41、(3087B30)A 42、(3088B30)A 43、(3089B35)D 44、(3090B35)C 45、(3286A10)C 46、(3287B30)D 47、(3288B25)C 48、(3289B35)B 49、(5320B30)B 50、(3295B25)D 51、(3433A15)D 52、(3434B25)C 53、(5321B30)D 54、(3101B30)B 55、(3308A10)B 56、(3309A10)C 57、(3310B25)C 58、(3311B25)D 59、(3312B25)C 60、(3591A20)D 61、(3592A20)D 62、(3593A20)C 63、(5194A10)C 64、(3457A05)B 65、(3458A15)C 66、(3459A15)C 67、(3598A05)C 68、(5523B25)A 69、(3112A15)B 70、(3113B25)C 71、(3321A10)A 72、(3322A10)B 参考解 21、(3071C45) 解:由图 b 2=λ, bu u2==λν令波的表达式为 ])(2c o s [φλν+-π=x t a y 在 t = t ', ])(2c o s [φλν+-'π=xt a y由图,这时x = 0处 初相 22π-=+'πφνt可得 t 'π-π-=νφ22故x = 0处 ]2c o s [φν+π=t a y ]2)(c o s [π-'-π=t t bu a二、填空题:1、(3059A10) 向下 ; 向上 ; 向上2、(3061A15) 503 m/s3、(3062A15) π4、(3063A15) 0.8 m ; 0.2 m ; 125 Hz5、(3065A10) 0.233 m6、(3074A15) 波从坐标原点传至x 处所需时间 ;x 处质点比原点处质点滞后的振动相位;t 时刻x 处质点的振动位移7、(3075A10) 125 rad/s ; 338 m/s ; 17.0 m 8、(3153B35) φλ+π-/2L ; λk L ± ( k = 1,2,3,…) ;λ)12(21+±k L ( k = 0, 1,2,…)9、(3342A10) )23c o s (2.02x t a π+ππ-= (SI)10、(3417A05) 17 m 到1.7³10-2 m 11、(3418A05) 2π /5 12、(3420A20) 0 13、(3421A15) aE 14、(3423B30) )2121200c o s (1023π-π-π⨯=-x t y (SI)15、(3425A10) 2.4 m ; 6.0 m/s 16、(3426A10) 5.0 ³104 Hz ; 2.86³10-2 m ; 1.43³103 m/s17、(3441B25) ]42c o s [λλωLxt A π-π+18、(3442B25) )]22()(2cos[λφλL xTt A π-π+++π或)]22()(2cos[λφλLxTt A π-π-++π19、(3445B30) )2(2c o s λλνL xt A +-π 20、(3446B35) )22c o s (π±-π+λωxL t A21、(3571A10) u x x /)(12-ω 注:(x 1和x 2写反了扣1分) 22、(3572A10) )24c o s (1.0x t π-π 23、(3576A10) a /b 24、(3578A15) π /3 25、(3580A10) b / 2π ; 2π / d 26、(3850A15) 0.1cos(4πt - π) (SI) ; -1.26 m/s 27、(3852A10) 2 cm ; 2.5 cm ; 100Hz ; 250 cm/s 28、(3853A10) 0.6 m ; 0.25 m 29、(3862A10) 30 ; 30 30、(3863A15) 2π /C ; B /C ; Cd31、(5318B25) 答案见右图32、(5514A05) 0.533、(5515A10) 3 ; 300 34、(3076B30) ])330/(165cos[10.0π--π=x t y (SI) 35、(3077B25) }]/)1([cos{φω+++=u x t A y (SI)36、(3132A20) ]4/)/(c o s [11π+-=u L t A y ω; uL L )(21+ω图(1)图(2)37、(3133B25) ])(2c o s [212φλν++-π=L L t A y ; λk L x +-=1 ( k = ± 1,± 2,…)38、(3134B35) ]2)(2c o s [π+++π=λνLx t A y;νλνkLt ++1,k = 0,±1,±2, … [注:只写 )/(1λνL t + 也可以]39、(3135B30) ]2)2(2c o s [π-+-π=u xt u A y λ; ]2)2(2c o s [π+-π=t uA y P λ40、(3136B30) ]/2c o s [1φ+π=T t A y ; ])//(2c o s [2φλ++π=x T t A y41、(3330C45) )2121c o s (2.0π-π=t y P42、(3337B25) 答案见右图43、(3343B30))22c o s (1π-π=t T A y x或 )/2sin(1T t A y x π=44、(3344B30) )c o s (04.02π+π=t y P (SI) 45、(3424B40) ]21)(2c o s [0π+-π=t t A y ν46、(3607B40) 3T /4 47、(3608B40) π2348、(3609B40)λ21 49、(3610B40) 3λ/ 450、(3856A15) )4521s i n (06.0π-π=t y51、(5195C55))/2c o s (λωx t A y π-π+=;)/2/4cos(λλωx L t A y π+π-'='52、(5205C45) 答案见图 注:根据波动的相位传播规律,考虑下列三个相位的传播:1)x = 0点t = 0时刻的相位,在t = T 时刻传到x = λ处.2)x = 0点在t = T / 4时刻的相位,在t = T 时刻传到x = (3 /4)λ 点.3)x = 0点在t = (3 /4)T 时刻的相位,在t = T 时刻传到x = λ /4点. 53、(5524B35) 答案见右图54、(3091A15) 2122/R R55、(3092B25) 答案见图(子波源、波阵面、波线各1分)56、(3291A15) 5 J 57、(3292A10) 4 58、(3293A20) I S cos θ 59、(3294B25)Swπ2ωλ60、(3431A20) DC 为 t + τ 时刻波在介质2中的波前61、(3859A10) 0.08 W/m 2参考解:∵ P r S =π⋅24∴ 08.04/2=π=r P S W/m 262、(5196A10) 7.96³10-2 W/m 2 63、(3093B25) 相同 ; 2π/3 64、(3094B25) S 1的相位比S 2的相位超前π/2 65、(3301B25))22c o s (2212221λπrL A A A A -++66、(3587A15) 2A 67、(3588A10) 0 68、(3589A10) 0 69、(3857A15) 1.7³103 Hz参考解:两路声波干涉减弱条件是: λδ)12(21+=-=k EBA ECA ①当C 管移动x = 10 cm = 0.1 m 时,再次出现减弱,波程差为 λδδ]1)1(2[212++=+='k x ②②-①得 x 2=λ 故 ===)2/(/x u u λν 1.7³103 Hz 70、(5517B30) 2k π + π /2,k = 0,±1,±2,… ;2k π +3 π /2,k = 0,±1,±2,… 71、(3105B35) tx y ππ⨯=-20cos )21cos(100.122 (SI) ;)12(+=n x m , 即 x = 1 m ,3 m ,5 m ,7 m ,9 m ; n x 2= m ,即 x = 0 m ,2 m ,4 m ,6 m ,8 m ,10 m 72、(3106C45) ])/(2c o s [π++πλνx t A ; )212cos()21/2cos(2π+ππ+πt x A νλ73、(3107C45) )(2c o s λx T t A -π; A74、(3154A20) t A y ωc o s 21-= 或 )c o s (21π±=t A y ω ; t A ωs i n 2=v75、(3156C50) 答案见右图 76、(3314B30) )212c o s (]212c o s [2π+ππ-π=t xA y νλ或)212cos(]212cos[2π-ππ+π=t xA y νλ或 )2cos(]212cos[2t x A y νλππ+π=77、(3315A20) )21100c o s ()21c o s (30.0π+ππ=t x y(SI)78、(3316A15) λ21)21(+=k x ,k = 0,1,2,3,… 79、(3317A15) λ21)21(-=k x ,k = 1,2,3,…80、(3317A15) 2 m ; 45 Hz 81、(3318A20) 100 m/s 82、(3487B25) π 83、(3488B25) 0 84、(3594A10) π 85、(3595A10) λ21 86、(3597A10)λ2187、(5198B25) 答案见右图88、(2196A10) 三者相互垂直, 成右手关系,即H E⨯的方向为波传播的方向. 89、(2197A10) 紫外 ; X 射线 ; γ 射线. 90、(2748A10) 2.00³108 m/s 91、(3125A10) 垂直 ; 相同 92、(3126A15) )6/2c o s (39.2π+π=t H y ν A/m 93、(3127A15) )3/2c o s (796.0π+π-=t H y ν A/m ;如图 94、(3456A05) 介电常数ε 和磁导率μ 95、(3460A05) 4.69³102 m 96、(3461A05) ν = 108 Hz 97、(3462A10) 3 m 98、(3463A15) )312c o s (452π+πt ν(SI)99、(3464A15) )/(2c o s 59.1c x t H z -π=ν (SI) 100、(3465A15) )/(2cos 12.2c x t H z +π-=ν (SI)101、(3466A15) ])/(c o s [754π+--=c z t E y ω (SI) 102、(3467A15) )/(2c o s 565λνz t +π (SI)103、(3468A20) 1.91³10-7 W ²m -2zyxcx EyHO104、(3469A15) 4.0³1026 J105、(3470A15) 1.59³10-5 W ²m -2 106、(3600A05) 3.00³108 107、(5197A05) 6 ; 4 108、(3115A10) 637.5 Hz ; 566.7 Hz 109、(3116B25) 1065 Hz ; 935 Hz 110、(5877A20) S Ruu νv -111、(5878A20) S Su uνv -三、计算题:1、(3083B30) 解:由题 λ = 24 cm, u = λν = 24³25 cm/s =600 cm/s 2分 A = 3.0 cm , ω = 2πν = 50 π/s 2分y 0 = A cos φ = 0, 0s i n 0>-=φωA yπ-=21φ2分]21)6/(50cos[100.32π--π⨯=-x t y(SI) 2分2、(3085C45)解:反射波在x 点引起的振动相位为 π+π--+π-=+21)55(4x t t φωπ-π+π+=10214x t 3分反射波表达式为)10214cos(01.0π-π+π+=x t y(SI) 2分或 )214c o s (01.0π+π+=x t y (SI)3、(3086C65)解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成)/27cos(1.0φλ+π-π=x t y (SI) 2分t = 1 s 时 0])/1.0(27c o s [1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有 05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分)由①、②两式联立得 λ = 0.24 m 1分3/17π-=φ 1分∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y(SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)4、(3335B25)解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π=(SI) 3分(2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4c o s 1.0=-π= 2分(3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v .)4/1(212==T ts ,在 x 1 = λ /4 = (10 /4) m 处质点的振速26.1)21sin(4.02-=π-ππ-=v m/s 3分5、(3410A20)解:(1) 已知波的表达式为)2100cos(05.0x t y π-π= 与标准形式)/22c o s (λνx t A y π-π= 比较得A = 0.05 m , ν = 50 Hz , λ = 1.0 m 各1分 u = λν = 50 m/s 1分 (2) 7.152)/(max max =π=∂∂=A t y νv m /s 2分322m a x 22m a x 1093.44)/(⨯=π=∂∂=A t y a ν m/s 2 2分(3) π=-π=∆λφ/)(212x x ,二振动反相 2分6、(3860A15)解: 5.0/==λνu Hz νωπ=2= π s -1 1分x = 0处的初相 π=210φ,角波数 π=π=λ/2k m -1 ,波动表达式为 2分(A = 0.1 m) )21c o s (1.0π+π-π=x t y 1分)s i n (),(0φωω+--=∂∂=kx t A ty t x v速度最大值为: v max = 0.314 m/s 1分7、(3861A15)解:(1) 振动方程: )c o s (0φω+=t A y A = 10 cm , ω = 2πν = π s -1,ν = u / λ = 0.5 Hz 初始条件: y (0, 0) = 00)0,0(>y得 π-=210φ故得原点振动方程: )21c o s (10.0π-π=t y (SI) 2分(2) x = 150 cm 处相位比原点落后π23, 所以)2321c o s (10.0π-π-π=t y )2c o s (10.0π-π=t(SI) 3分也可写成ty π=c o s 10.0 (SI)8、(3864A15)解: A = 0.01 m ,λ = u /ν = 1 m ,T = 1 s 1分x = 0处, φ 0 = 0 2分波表达式为 )//(2c o s 01.0λx T t y +π=)(2c o s 01.0x t +π= (SI) 2分 9、(5199B30)解:该波波长 λ = u /ν = 0.8 m (1) x 2点与x 1点的相位差为λφφ/)(2)(1212x x -π=--λφφ/)(21212x x -π-=- 3分 当=-12x x 0.12 m 时 π-=-3.012φφ rad 1分 (2) 同一点x ,时间差12t t -,相应的相位差T t t /)(21212-π='-'φφ)(212t t -π=ν 3分 当 31210-=-t t s 时, π='-'12φφ rad 1分 10、(5319B40)解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 1分 由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 1分 波速 u = νλ = 2 m/s 1分 (2) 波峰的位置,即y = A 的位置. 由 1)24(c o s =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m . 2分所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4 的波峰离坐标原点最近. 2分 (3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s 1分 ∴ 该波峰经过原点的时刻 t = 4 s 2分 11、(3078B40)解:(1) 设x = 0 处质点的振动方程为 )2c o s (φν+π=t A y由图可知,t = t '时 0)2c o s (=+'π=φνt A y 1分 0)2s i n (2d /d <+'ππ-=φννt A t y 1分所以 2/2π=+'πφνt , t 'π-π=νφ2212分x = 0处的振动方程为 ]21)(2c o s [π+'-π=t t A y ν 1分(2) 该波的表达式为 ]21)/(2c o s [π+-'-π=u x t t A y ν3分12、(3079B30)解:(1) 原点O 处质元的振动方程为)2121c o s (1022π-π⨯=-t y , (SI) 2分波的表达式为 )21)5/(21c o s (1022π--π⨯=-x t y ,(SI) 2分x = 25 m 处质元的振动方程为)321c o s (1022π-π⨯=-t y , (SI)振动曲线见图 (a) 2分 (2) t = 3 s 时的波形曲线方程)10/cos(1022x y π-π⨯=-, (SI) 2分 波形曲线见图 2分13、(3080A15)解:(1) x 1 = 10 m 的振动方程为)7.3125cos(25.010-==t y x (SI) 1分x 2 = 25 m 的振动方程为)25.9125cos(25.025-==t y x (SI) 1分 (2) x 2与x 1两点间相位差∆φ = φ2 - φ1 = -5.55 rad 1分 (3) x 1点在t = 4 s 时的振动位移y = 0.25cos(125³4-3.7) m= 0.249 m 2分 14、(3081A15) 解: λxu t A y -π=2c o s = -0.01 m 1分1.0,2d d ===t x ty v 0)2s i n (2=-ππ-=λλxut uA 2分22d d ty a =)2c o s ()2(2λλxut uA -ππ-== 6.17³103 m/s 2 2分15、(3082B35)解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分t (s)O -2³10-21y (m )234(a)2³波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分 (2) 以B 点为坐标原点,则坐标为x 点的振动相位为]205[4-+π='+x t t φω(SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-xt y(SI) 2分16、(3084B30)解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为 0c o s 0==φA y , 0s i n 0<-=φωA v 所以 π=21φ波的表达式为 ]21)/(c o s [π+-=u x t A y ωω4分(2) 8/λ=x 处振动方程为]21)8/2(c o s [π+π-=λλωt A y )4/c o s (π+=t A ω 1分8/3λ=x 的振动方程为]218/32c o s [π+-=λλπωt A y )4/c o s (π-=t A ω 1分(3) )21/2s i n (/d d π+π--=λωωx t A t yt = 0,8/λ=x 处质点振动速度]21)8/2s i n [(/d d π+π--=λλωA t y 2/2ωA -= 1分t = 0,8/3λ=x 处质点振动速度]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =1分17、(3137A20)解:(1) 振动方程 }]/)([2c o s {φλν+--π=L t A y P])/(2c o s [φλν++π=L t A 2分 (2) 速度表达式 ])/(2sin[2φλνπν++π-=L t A P v 2分加速度表达式 ])/(2c o s [422φλνν++ππ-=L t A a P 1分 18、(3138B35) 解:(1) 振动方程 )22c o s (06.00π+π=ty )c o s (06.0π+π=t(SI) 3分(2) 波动表达式])/(c o s [06.0π+-π=u x t y3分])21(c o s [06.0π+-π=x t(SI)(3) 波长 4==uT λ m 2分19、(3139B30)解:(1) O 处质点的振动方程为 ])(c o s [0φω++=u L t A y2分(2) 波动表达式为 ])(c o s [φω+++=uL x t A y 2分(3) x = -L ± k ωuπ2 ( k = 1,2,3,…) 1分20、(3140B30)解:(1) O 处质点振动方程 ])(c o s [0φω++=uL t A y 2分(2) 波动表达式 ])(cos[φω+--=uL x t A y2分(3) ωukL x L x π±=±=2 (k = 0,1,2,3,…) 1分21、(3141B30)解:(1) O 处质点,t = 0 时 0c o s 0==φA y , 0sin 0>-=φωA v所以 π-=21φ2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分 故波动表达式为 ]2)4.05(2c o s [04.0π--π=x ty(SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=ty P )234.0c o s (04.0π-π=t(SI) 2分22、(3142B35) 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点 φc o s 0A =, φωs i n00A -=<v , 故 π-=21φ2分又t = 2 s ,O 处质点位移为 )214c o s (2/π-π=νA A所以 π-π=π-21441ν,ν = 1/16 Hz 2分振动方程为 )218/c o s (0π-π=t A y (SI) 1分(2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式 ]21)16016(2c o s [π-+π=xt A y (SI) 3分23、(3143B35)解:(1) 由P 点的运动方向,可判定该波向左传播.原点O 处质点,t = 0 时φc o s2/2A A =, 0sin 0<-=φωA v 所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y(SI) 3分由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y(SI) 2分(2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分振动速度表达式是 )45500cos(500π+ππ-=t A v(SI) 2分24、(3144B35)解:(1) 由振动曲线可知,P 处质点振动方程为])4/2c o s [(π+π=t A y P )21c o s (π+π=t A (SI) 3分(2) 波动表达式为 ])4(2c o s [π+-+π=λdx t A y (SI) 3分(3) O 处质点的振动方程 )21c o s (0t A y π= 2分25、(3146C50)解:(1)波的周期T = λ / u =( 40/20) s= 2 s . 2分P 处Q 处质点振动周期与波的周期相等,故P 处质点的振动曲线如图(a) 振动方程为: 2分)21c o s (20.0π-π=t y P (SI) 2分(2) Q 处质点的振动曲线如图(b),振动方程为)cos(20.0π+π=t y Q (SI) 2分 或 )cos(20.0π-π=t y Q (SI) 2分 26、(3331C50)解:用旋转矢量解此题,如图可得A为代表P 点振动的旋转矢量. 210)cos sin 3(21-⨯-=t t y P ωω210)]cos()21cos(3(21-⨯π++π-=t t ωω)3/4c o s (1012π+⨯=-t ω (SI). 3分 波的表达式为:]2/234c o s [1012λλω-π-π+⨯=-x t y)312c o s (1012π+π-⨯=-λωxt (SI) 2分27、(3332B30) 解:(1) 2m )250/500(/===νλu m波的表达式]/2)1(21500cos[03.0),(λπ--π-π=x t t x y]2/2)1(21500cos[03.0π--π-π=x t))21500cos(03.0x t π-π+π= (SI) 3分(2) t = 0时刻的波形曲线x x x y π=π-π=s i n 03.0)21cos(03.0)0,( (SI) 2分28、(3333B35) 解:(1) )3121cos(10220π+π⨯=-t y (SI)3分(2)]31)4141(2cos[1022π+-π⨯=-x t y(SI)2分(3) t = 1 s 时,波形表达式: )6521c o s (1022π-π⨯=-x y(SI)故有如图的曲线. 3分29、(5200B30) 解:(1) 如图A ,取波线上任一点P ,其坐标设为x ,由波的传播特性,P 点的振动落后于λ /4处质点的振动. 2分该波的表达式为 )]4(22cos[x utA y -π-π=λλλ)222c o s (x u t A λλπ+π-π= (SI) 3分(2) t = T 时的波形和 t = 0时波形一样. t = 0时)22c o s (x A y λπ+π-=)22c o s (π-π=x A λ 2分按上述方程画的波形图见图B . 3分30、(5201C50) 解:该波波速u = 20 m/s ,角频率 ω = 4π s -1则 k = 2π /λ = ω / u = π /5 m -1. (1) 任取一点P (图A ),可得波的表达式为 )4c o s (3.0kx t y +π-π= )5/4c o s (3.0x t y π+π-π= (SI) 3分 以x D = -9 m 代入上式有 )5/94c o s (3.0π-π-π=t y )5/144cos(3.0π-π=t (SI) 1分 (2) 任取一点P (图B ),可得波的表达式为 ]5/)(4c o s [3.0l x t y -π-π-π=以l = 5 m 代入, 有 )5/4c o s (3.0x t y π-π= 3分 以x D = 14 m 代入上式, 有 )5/144cos(3.0π-π=t y D (SI) 1分 此式与(1) 结果相同. 31、(5206C50)-2- x P x λ/4u图A解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121c o s (5.0π+π=t y(SI) 3分32、(5516B30)解:设x = 0处质点振动的表达式为 )c o s (0φω+=t A y , 已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ∴ )2c o s (0φν+π=t A y )21100c o s (1022π-π⨯=-t(SI) 2分由波的传播概念,可得该平面简谐波的表达式为)/22c o s (0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) 2分x = 4 m 处的质点在t 时刻的位移)21100c o s (1022π-π⨯=-t y(SI) 1分该质点在t = 2 s 时的振动速度为 )21200s i n (1001022π-π⨯⨯-=-πv2分= 6.28 m/s 1分33、(3428A20)解:(1) ==t W P / 2.70³10-3 J/s 1分(2) ==S P I /9.00³10-2 J /(s ²m 2) 2分(3) u w I ⋅===u I w / 2.65³10-4 J/m 3 2分34、(0347B35)解:据题意作下图,S 和OP 分别表示船和悬崖,S ′为船上天线.考虑由S ′发出的S ´P 波①与经海平面反射的S ´MP ②两列波在P 点的干涉.当发生相消干涉时接收站收不到讯号,注意到反射波②在反射时有相位突变π ,整个情况和光学的洛埃镜类似.当不计相移π 时,两波的波程差 20001502522sin 2⨯⨯=≈≈SOOP aa θ∆ m= 3.75 m 5分计入相移π ,则当 ∆ = k λ时,接收信号最弱。
大学物理题库-振动与波动
![大学物理题库-振动与波动](https://img.taocdn.com/s3/m/b6990010647d27284b735149.png)
一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( )(A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ω=2πu/λ=2π(s-1)
设O点的振动表达式为
y=0.1cos(ωt+)
=0.1cos(2πt+)
则v=-0.2πsin(2πt+)
t=0.25s时, O点的振动为y=0.1cos(π/2+)=0 ,速度为
v=-0.2πsin(π/2+)<0 ,
即cos(π/2+)=0 , sin(π/2+)>0 ,
2π/T=B 2π/λ=C φ=0
振幅为A , T=2π/B , λ=2π/C , u=λ/ T=B/C
Δφ=2π(x2-x1)/ λ=2πD/λ=CD
5.如图所示是一平面余弦波在t=0.25s时刻的波形图,波速为u=40m/s,沿X的正方向传播,写出此波的波动方程.
解: ห้องสมุดไป่ตู้=0.1m , u=40m/s
波动(一)
1.位于原点的波源产生的平面波以u=10m/s的波速沿X轴正向传播,使得X=10m处的P点振动规律为Y=0.05COS(2πt-π/2)(m),该平面波的波动方程为
2.如图表示t=0时刻正行波的波形图, O点的振动位相是(C)
(A)-π/2 (B) 0 (C)π/2 (D)π
设O点的振动表达式为
得π/2+=π/2 ,=0
O点的振动表达式y=0.1cos2πt
波动表达式y=0.1cos2π(t-x/40)
x=6×2=12(rad)
4.已知波源在原点(X=0)的平面谐波的方程为Y=A COS(Bt-CX),式中A、B、C为正值恒量,则此波的振幅为A,波速为B/C,周期为2π/B,波长为2π/C,在任何时刻,在波传播方向上相距为D的两点的周相差为CD.
解:由Y=Acos(2πt/T+2πx/λ+φ)=Acos(Bt-Cx)得
y=Acos(ωt+)
则O点的速度表达式为
v=-ωAsin(ωt+)
t=0时
y0=Acos=0
v0=-ωAsin<0则有cos=0 , sin>0
3.已知一平面谐波的波动方程为Y=0.1COS(3t-6x)m,则周期是(2π/3)s,波线上相距2m的两点间相差是12rad
解: ω=3s-1T=2π/ω=2π/3(s) 2π/λ=6λ=π/3 ,