三角形的稳定性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.1.3 三角形的稳定性

[教学目标] 1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。

[重点难点]三角形稳定性及应用。

[教学过程]

一、情景导入

盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?

二、三角形的稳定性

〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?

(2)

不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?

会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

不会改变。

从上页的实验中,你能得出什么结论?

三角形具有稳定性,而四边形不具有稳定性。

三、三角形稳定性和四边形不稳定的应用

三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:

钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。

你还能举出一些例子吗?

四、课堂练习

1、下列图形中具有稳定性的是()

A正方形B长方形C直角三角形D平行四边形

2、要使下列木架稳定各至少需要多少根木棍?

第2课时含30°角的直角三角形的性质

1.理解并掌握含30°角的直角三角形的性质定理.(重点)

2.能灵活运用含30°角的直角三角形的性质定理解决有关问题.(难点)

一、情境导入 问题:

1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.

二、合作探究

探究点:含30°角的直角三角形的性质

【类型一】 利用含30°角的直角三角形的性质求线段长

如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,

则AB 的长度是( )

A .3cm

B .6cm

C .9cm

D .12cm

解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.

方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.

【类型二】 与角平分线或垂直平分线性质的综合运用

如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD

等于( )

A .3

B .2

C .1.5

D .1

解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =1

2

×3=1.5.∵∠AOP =∠BOP ,

PD ⊥OA ,∴PD =PE =1.5.故选C.

方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.

【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系

如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好

是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.

解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到

CD =12

DB .

解:CD =1

2DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =90°.∵DE 是∠ADB 的平分线,

∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA),∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =1

2∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =90°,∴∠B =∠BAD =∠CAD

=30°.在Rt △ACD 中,∵∠CAD =30°,∴CD =12AD =12BD ,即CD =1

2

DB .

方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如

果问题中出现探究线段倍分关系的结论时,要联想此性质.

【类型四】 利用含30°角的直角三角形解决实际问题

某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以

美化环境,已知AC =50m ,AB =40m ,∠BAC =150°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?

解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.

解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150°,∴∠DAB =30°.∵AB =40m ,∴BD =12AB =20m ,∴S △ABC =12×50×20=500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.

方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,正确的计算出△ABC 的面积.

三、板书设计

含30°角的直角三角形的性质

性质:在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.

相关文档
最新文档