模拟电路第五章
模拟电子技术电子教案第五章负反馈放大电路教案

5.负反馈放大电路【重点】反馈的基本概念与分类,负反馈的一般表达式。
【难点】负反馈的一般表达式。
5.1 反馈的基本概念与分类5.1.1 反馈的概念反馈是把放大电路输出信号的部分或者全部,通过一定的方式回送到输入端来影响输入量的过程。
有反馈的放大电路称为反馈放大电路。
5.1.2 反馈的分类1.正反馈与负反馈f i ix'f i i x x x -='2.电压反馈与电流反馈电压反馈是指反馈信号取自输出电压。
电流反馈是指反馈信号取自输出电流。
3.并联反馈与串联反馈并联反馈是指输入信号与反馈信号以电流方式叠加(并联)。
串联反馈是指输入信号与反馈信号以电压方式叠加(串联)。
反馈类型分为电压串联反馈、电压并联反馈、电流串联反馈和电流并联反馈四种。
4.交流反馈与直流反馈当反馈信号仅在交流通路中存在,就是交流反馈,它只影响放大电路的交流性能;当反馈信号仅在直正向传输反馈放大电路框图并联反馈与串联反馈类型框图b.串联反馈a.并联反馈U I I流通路中存在,就是直流反馈,它只影响放大电路的直流性能;若反馈信号在交、直流通路中都存在,则称为交直流反馈,它将影响放大电路的交、直流性能。
5.本级反馈与级间反馈只在一级放大电路内部的反馈称为本级反馈。
级与级之间的反馈称为级间反馈。
5.1.3 负反馈的一般表达式反馈系数 ofx x F =净输入信号 f i i x x x -=' 开环放大倍数 i ox x A '=则有反馈放大电路闭环放大倍数为 AF Ax x A x x x A x x A +='+=+''==11i f fi i i o f 令D =1+AF ,则DA A =f D 称为做反馈深度,它是反映反馈强弱的重要物理量。
【重点】放大电路反馈的极性、类型判断。
【难点】放大电路反馈的极性、类型判断。
5.2 负反馈放大电路(1(2(3(4(5 5.2.1 电压串联负反馈5.2.2 电流串联负反馈电流串联负反馈+V CCu u oR L CC+-u u o 集成运放构成的电压串联负反馈R fu o + -集成运放构成的电流串联负反馈u iR fu o5.2.3 电压并联负反馈5.2.4 电流串联负反馈电流并联负反馈+V CCu uo 电压并联负反馈+V CCu u o 集成运放构成的电压并联负反馈u iR fu o + -集成运放构成的电流并联负反馈u iu oR 3【重点】放大电路反馈的极性、类型判断。
《模拟电子技术基础》第三版习题解答第5章 放大电路的频率响应

仅供个人使用,请勿用于商业目的第五章放大电路的频率响应自测题一、选择正确答案填入空内。
(1)测试放大电路输出电压幅值与相位的变化,可以得到它的频率响应,条件是。
A.输入电压幅值不变,改变频率B.输入电压频率不变,改变幅值C.输入电压的幅值与频率同时变化(2)放大电路在高频信号作用时放大倍数数值下降的原因是而低频信号作用时放大倍数数值下降的原因是。
A.耦合电容和旁路电容的存在B.半导体管极间电容和分布电容的存在。
C.半导体管的非线性特性D.放大电路的静态工作点不合适(3)当信号频率等于放大电路的fL 或fH时,放大倍数的值约下降到中频时的。
A.0.5倍B.0.7倍C.0.9倍即增益下降A.3dBB.4dBC.5dB相位关系是。
与U (4)对于单管共射放大电路,当f = fL时,U ioA.+45˚B.-90˚C.-135˚的相位关系是。
与U 当f = fH时,UioA.-45˚B.-135˚C.-225˚解:(1)A (2)B,A (3)B A (4)C C本文档仅供参考第五章题解-1仅供个人使用,请勿用于商业目的二、电路如图T5.2所示。
已知:VCC=12V;晶体管的Cμ=4pF,fT = 50MHz,rbb'==80。
试求解:(1)中频电压放大倍数;(2)C';(3)fH和fL;(4)画出波特图。
图T5.2解:(1)静态及动态的分析估算:br26mVEQ∥RgIEQT本文档仅供参考第五章题解-2 仅供个人使用,请勿用于商业目的' (2)估算:(3)求解上限、下限截止频率:∥∥∥(4)在中频段的增益为频率特性曲线如解图T5.2所示。
解图T5.2本文档仅供参考第五章题解-3 仅供个人使用,请勿用于商业目的三、已知某放大电路的波特图如图T5.3所示,填空:= dB,=。
(1)电路的中频电压增益20lg|Au mu m(2)电路的下限频率fL≈ Hz,上限频率fH≈ kHz.=。
模拟电子技术课后习题答案第五章负反馈放大电路答案

习题5-1 交流负反馈可以改善电路哪些性能? 解:提高了放大倍数的稳定性、减小非线性失真、展宽频带、变输入和输出电阻 5-2 分析图5-14电路中的反馈: (1)反馈元件是什么? (2)正反馈还是负反馈? (3)直流、交流还是交直流反馈? (4)本级反馈还是极间反馈? 解:a R 1构成反馈网络、负反馈、直流反馈、本级反馈。
b R E 构成反馈网络、负反馈、直流反馈、本级反馈。
c R 3构成反馈网络、负反馈、交直流反馈、本级反馈。
R 6构成反馈网络、负反馈、交直流反馈、本级反馈。
R 7、C 构成反馈网络、负反馈、交流反馈、极间反馈。
5-3 试判断图5-15的反馈类型和极性。
解:a 电流并联负反馈。
b 电流串联正反馈。
au iR 1u oCb +V CCu 图5-14 习题5-2图u iu oc5-4 由集成运放组成的反馈电路如图5-16所示,试判断反馈类型和极性。
解:图5-15 习题5-3图CCu u oabL CC+ -u o cCC+ -u u o d+V CCu u o u io R 2bu iu ocu iu o+ -图5-16 习题5-4图c 电流并联负反馈。
5-5 图5-17中,要达到以下效果,反馈电阻R f 在电路中应如何连接? (1)希望稳定输出电压; (2)希望稳定输出电流; (3)希望增大输入电阻; (4)希望减小输出电阻。
解:(1)如图,引入R f1。
(2)如图,引入R f2。
(3)如图,引入R f1。
(4)如图,引入R f1。
5-6 如图5-18中,希望稳定输出电流、减小输入电阻,试在图中接入相应的反馈。
解: 如图。
图5-17 习题5-5图RL + -u u o 图5-18 习题5-6图2u iRL + -u u o 2u i5-7 有一电压串联负反馈放大电路,放大倍数A =1000,反馈系数F =0.1,求闭环放大倍数,如果放大倍数A 下降了20%,则此时的闭环放大倍数又为多少?解:9.91.010*******1f ≈⨯+=+=AF A AA 下降20%时,闭环放大倍数的相对变化量为A dA AF A dA ⋅+=11f f =%10120%)20(1011-=-⋅ 94.79.9%)101201()1(f f f f ≈⨯-=+='A A dA A 5-8 有一负反馈放大电路,其开环增益A =100,反馈系数F =0.01,求反馈深度和闭环增益各为多少?解: D =1+AF=25001.010011001f =⨯+=+=AF A A5-9 有一负反馈放大电路,当输入电压为0.01V 时,输出电压为2V ,而在开环时,输入电压为0.01V ,输出为4V 。
[模拟电子技术]-第五章自我检测题参考答案
![[模拟电子技术]-第五章自我检测题参考答案](https://img.taocdn.com/s3/m/064811c3370cba1aa8114431b90d6c85ec3a8801.png)
第五章自我检测题参考答案一、填空题1.乙类互补对称功放的效率比甲类功放高得多,其关键是静态工作点低。
2.由于功放电路中功放管常常处于极限工作状态,因此选择功放管时要特别注意P CM , I CM 和U (BR)C EO 三个参数。
3.设计一个输出功率为20W 的扩音机电路,若用乙类OCL 互补对称功放电路,则应选P cm 至少为4W 的功放管两只。
二、判断题1.乙类互补对称功放电路在输出功率最大时,管子的管耗最大。
(×)2.功放电路的效率是拷输出功率与输入功率之比。
(×)3. 乙类互补对称功放电路在输入信号为零时,静态功耗几乎为零。
(√)4只有当两只三极管的类型相同时才能组成复合管。
(×)5.OCL 电路中输入信号越大,交越失真也越大。
(×)6.复合管的β值近似等于组成它的各三极管β值的乘积。
(√)三、选择题1.功率放大器的输出功率大是(C )。
A.电压放大倍数大或电流放大倍数大B.输出电压高且输出电流大C.输出电压变化幅值大且输出电流变化幅值大2.单电源(+12)供电的OTL 功放电路在静态时,输出耦合电容两端的直流电压为(C )。
A.0VB.+6VC.+12V3.复合管的导电类型(NPN 或PNP)与组成它的(A )的类型相同。
A.最前面的管子B.最后面的管子C.不确定4. 互补对称功放电路从放大作用来看,(B )。
A.既有电压放大作用,又有电流放大作用B.只有电流放大作用,没有电压放大作用C.只有电压放大作用,没有电流放大作用5.甲乙类OCL 电路可以克服乙类OCL 电路产生的(A )。
A.交越失真B.饱和失真C. 截止失真D.零点漂移四、一单电源供电的OTL 功放电路,已知V CC =20V ,R L =8Ω,U CE(sat)忽略不计,估算电路的最大输出功率,并指出功率管的极限参数P CM 、 I CM 、U (BR)CEO 应满足什么条件?解:OTL 功放电路W 25.6W 8102121212L 2om =∙=⎪⎭⎫ ⎝⎛∙=R V P CC W 25.1W 25.62.02.0om CM =⨯=≥P PV 20V 20CC (BR)CEO ==V U ≥A 25.1A 82202L CC CM =⨯=≥R V I第五章 习题参考答案5.1判断题1.功率放大倍数A P >1,即A u 和A i 都大于1。
模拟电路5.习题解答

A u
第五章 放大电路的频率响应
5.4
已知某放大电路的幅频特性如图P5.4所示。试问:
(1)该电路的耦合方式;
(2)该电路由几级放大电路组成; (3)当f=104Hz时,附加相移为多少? 当f=105Hz时,附加相移以约为多少?
解: (1)直接耦合; (2)三级; (3)当f=104Hz时, φ’=-135o; 当f=105Hz时, φ ’=-270o 。
第五章 放大电路的频率响应
第五章 放大电路的频率响应
习题解答
第五章 放大电路的频率响应
5.2已知某放大电路的波特图如图P5.2所示,试写出AU的表达式。 解:设电路为基本共射放大电路, 其频率特性表达式如下:
32 (1
10 f )(1 j 5 ) jf 10 3.2j f 或Au f f (1 j )(1 j 5 ) 10 10
1 16 Hz 2 π Rs C s 1 1 1.1MHz ' ' 2 π(Rs ∥ RG )C GS 2 πRs C GS 12 .4 ( j
' ' C GS C GS (1 g m RL )C GD 72 pF
fH
f ) 16 A us f f (1 j )(1 j ) 6 16 1.1 10
(2)波特图如右图
第五章 放大电路的频率响应
5.14 电路如图P5.14所示,已知Cgs=Cgd=5pF, C1=C2=Cs=10μ F, gm=5mS,试求fH、、fL各约为多少,并写出Aus Ri ' ' ( g m RL ) g m RL 12 .4 Rs Ri
第五章 放大电路的频率响应
模拟电路第五章知识点总结

第五章 放大电路反馈原理与稳定化基础一、反馈放大器的基本概念 1.反馈极性与反馈形式负反馈:与输入叠加后输入幅值降低。
正反馈:与输入叠加后输入幅值升高。
主反馈:从多级电路的末级向输入级的输入回路的反馈。
局部反馈:多级电路中主反馈之外的反馈环路。
直流反馈:电路中直流电压或直流电流的反馈。
交流反馈:交流或动态信号的反馈。
2.理想反馈方块图和基本反馈方程式表征放大电路的输出量X o 、输入量X i (或X s )和反馈量X f 之间关系的示意图统称方块图。
理想方块图是指:①信号只沿箭头方向传输,即信号从输入端到输出端只通过基本放大电路,而不通过反馈网络;②信号从输出端反馈到输入端只通过反馈网络而不通过基本放大电路。
基本反馈方程式:()()()()1()()o f i X s A s A s X s A s B s ==+3.环路增益和反馈深度开环增益()A s 与反馈系数()B s 的乘积称为环路增益:()()()T s A s B s = 反馈深度:()1()1()()=+=+F s T s A s B s4.负反馈放大器的分类电压并联负反馈:iRF电流串联负反馈:RL 电压串联负反馈:v R LR电流并联负反馈:i LR二、负反馈对放大器性能的影响 1.闭环增益的稳定性闭环增益稳定性比开环增益稳定性提高到(1AB +)倍2.输入电阻串联负反馈能使闭环输入电阻if R 增加到开环输入电阻i R 的1AB +倍; 并联负反馈能使闭环输入电阻R if 减小到开环输入电阻R i 的11AB+。
(或者说减小1AB +倍,注意说法区别)3.输出电阻电压负反馈使闭环输出电阻of R 降低到其开环输出电阻o R 的11so A B+;(或者说减小1AB +倍,注意说法区别)电流负反馈能使闭环(从末级晶体管的输出电极向反馈放大电路看入的等效)输出电阻R of 增大到(1)ss A B +倍。
4.信号源内阻对负反馈放大器性能的影响信号源内阻越小,串联负反馈效果越好;if fs f s ifR A A R R =+信号源内阻越大,并联负反馈效果越好。
电路与模拟电子技术(第二版第五章习题解答

第五章 电路的暂态分析5.1 题5.1图所示各电路在换路前都处于稳态,求换路后电流i 的初始值和稳态值。
解:(a )A i i L L 326)0()0(===-+,换路后瞬间 A i i L 5.1)0(21)0(==++ 稳态时,电感电压为0, A i 326==(b )V u u C C 6)0()0(==-+, 换路后瞬间 02)0(6)0(=-=++C u i 稳态时,电容电流为0, A i 5.1226=+=(c )A i i L L 6)0()0(11==-+,0)0()0(22==-+L L i i 换路后瞬间 A i i i L L 606)0()0()0(21=-=-=+++ 稳态时电感相当于短路,故 0=i(d )2(0)(0)6322C C u u V +-==⨯=+ 换路后瞬间 6(0)63(0)0.75224C u i A ++--===+(a)(b)(d)(c)C2ΩL 2+6V -题5.1图i稳态时电容相当于开路,故 A i 12226=++=5.2 题5.2图所示电路中,S 闭合前电路处于稳态,求u L 、i C 和i R 的初始值。
解:换路后瞬间 A i L 6=,V u C 1863=⨯= 06=-=L R i i031863=-=-=C L C u i i0==+R C L Ri u u ,V u u C L 18-=-=5.3 求题5.3图所示电路换路后u L 和i C 的初始值。
设换路前电路已处于稳态。
解:换路后,0)0()0(==-+L L i i ,4mA 电流全部流过R 2,即(0)4C i mA +=对右边一个网孔有:C C L u i R u R +⋅=+⋅210由于(0)(0)0C C u u +-==,故2(0)(0)3412L C u R i V ++==⨯=5.4 题5.4图所示电路中,换路前电路已处于稳态,求换路后的i 、i L 和 u L 。
模拟电子技术第五章场效应管及其放大电路

况,称为预夹断。源区 而未夹断沟道部分为低阻,因
的自由电子在VDS电场力 的作用下,仍能沿着沟
此,VDS增加的部分基本上降落 在该夹断区内,而沟道中的电
道向漏端漂移,一旦到 场力基本不变,漂移电流基本
达预夹断区的边界处, 不变,所以,从漏端沟道出现
就能被预夹断区内的电 场力扫至漏区,形成漏
预夹断点开始, ID基本不随VDS
VDS = VD - VS =VDD-IDRD- VS
二、小信号模型
iD Kn vGS VT 2
Kn VGSQ vgs VT 2
漏极信号 电流
Kn VGSQ VT 2 2Kn VGSQ VT vgs Knvg2s
Kn
VGSQ
VT
2 gmvgs
K
nv
2 gs
IDQ id
3. 最大漏源电压V(BR)DS
指发生雪崩击穿时,漏极电流iD急剧上升时的vDS。与vGS有关。
4. 最大栅源电压 V(BR)GS
指PN结电流开始急剧增大时的vGS。
5.2 MOSFET放大电路
5.2.1 MOSFET放大电路
1. 直流偏置及静态工作点的计算 2. 小信号模型分析 3. MOSFET 三种基本放大电路比较
产生谐波或 非线性失真
λ= 0
λ≠ 0
共源极放大电路
例题5.2.4:
电路如图所示,设VDD=5V, Rd=3.9kΩ, VGS=2V, VT=1V, Kn=0.8mA/V2,λ=0.02V-1。试当管工作在饱和区时,试确定电路 的小信号电压增益。
例题5.2.5:
电路如图所示,设Rg1=150kΩ,Rg2=47kΩ,VT=1V,Kn=500μA/V2,λ=0, VDD=5V,-VSS=-5V, Rd=10kΩ, R=0.5kΩ, Rs=4kΩ。求电路的电压增益和 源电压增益、输入电阻和输出电阻。
电子电工学——模拟电子技术 第五章 场效应管放大电路

场效应管正常工作时漏极电流的上限值。
2. 最大耗散功率PDM
由场效应管允许的温升决定。
3. 最大漏源电压V(BR)DS 当漏极电流ID 急剧上升产生雪崩击穿时的vDS值。
4. 最大栅源电压V(BR)GS
是指栅源间反向电流开始急剧上升时的vGS值。
5.2 MOSFET放大电路
场效应管是电压控制器件,改变栅源电压vGS的大小,就可以控制漏极 电流iD,因此,场效应管和BJT一样能实现信号的控制用场效应管也 可以组成放大电路。
场效应管放大电路也有三种组态,即共源极、共栅极和共漏极电路。
由于场效应管具有输入阻抗高等特点,其电路的某些性能指标优于三极 管放大电路。最后我们可以通过比较来总结如何根据需要来选择BJT还
vGS<0沟道变窄,在vDS作用下,iD 减小。vGS=VP(夹断电压,截止电 压)时,iD=0 。
可以在正或负的栅源电压下工作,
基本无栅流。
2.特性曲线与特性方程
在可变电阻区 iD
Kn
2vGS
VP vDS
v
2 DS
在饱和区iD
I DSS 1
vGS VP
2
I DSS KnVP2称为饱和漏极电流
4. 直流输入电阻RGS
输入电阻很高。一般在107以上。
二、交流参数
1. 低频互导gm 用以描述栅源电压VGS对漏极电流ID的控制作用。
gm
iD vGS
VDS 常数
2. 输出电阻 rds 说明VDS对ID的影响。
rds
vDS iD
VGS 常数
3. 极间电容
极间电容愈小,则管子的高频性能愈好。
三、极限参数
D iD = 0
模电课程设计题目

6.教学反馈:收集学生反馈,评估教学效果,调整教学方法
-通过问卷调查、个别谈话等方式了解学生的学习体验
-根据学生反馈调整教学内容和教学策略,以提高教学质量
本节教学内容通过知识梳理、案例研究、设计挑战、实验探究、技术研讨和教学反馈等环节,全方位提升学生对放大电路设计与分析的理解,培养学生在实际工程问题中的解决能力和团队协作能力。
-梳理三极管、场效应晶体管放大电路的设计步骤与关键参数
-强调频率响应、稳定性、线性度等性能指标的重要性
2.案例研究:分析典型放大电路在实际工程中的应用
-研究放大电路在音频、测量、通信等领域的应用案例
-探讨不同应用场景下放大电路设计的特殊要求与解决方案
3.设计挑战:开展小组合作,完成特定要求的放大电路设计任务
-根据给定的技术指标,设计并搭建放大电路
-解决设计过程中遇到的技术难题,优化电路性能
4.实验探究ห้องสมุดไป่ตู้进行放大电路的对比实验,分析不同设计方案的优劣
-对比不同类型放大电路的性能,如A类与AB类功率放大器
-实验观察负反馈对放大电路性能的具体影响
5.技术研讨:组织学生参与放大电路技术研讨会
-邀请行业专家分享放大电路设计经验和最新技术动态
2.技能训练:深入学习负反馈放大电路的设计技巧
-分析不同负反馈类型的优缺点及适用条件
-练习如何通过调整反馈网络来优化放大电路性能
3.实践提高:开展功率放大电路的综合性实验
-结合理论,设计具有过载保护功能的功率放大电路
-实验测试电路的输出功率、效率、失真等性能参数
4.创新思维:鼓励学生探索新型放大电路设计与优化
本节课将围绕以上内容展开,结合教材实例,使学生掌握放大电路的基本原理与分析方法,培养实际设计与应用能力。
模拟电子技术基础 第五章 频率响应PPT课件

第5章 频率响应
UCRUCRUCRsississisCrCrRbCrRbbRbebsebseesee((rr(RCrrbRbCrrbRbCbbSbeMbSeMbSeMrrrrbbrrbCbbeCbbCebebb)Ub)Ub)Ueeesss((1(1R1RRssrgsrbgrbgbmemermeRrbrRbRebeLeLUL)U)UC)CsCsbsbbeee
U1 -
Z1
Z
N
A(jω) =
U2 U1
(a)
I2 +
U2 -
Z2
图5–7 (a)原电路;
(b)等效后的电路
I1 +
U1 -
N
Z1
A(jω) =
U2 U1
第5章 频率响应
I2 +
Z2
U2
-
(b)
图5–7 (a)原电路;
(b)等效后的电路
第5章 频率响应
Z1Z1ZU11IU1I1 11UUII1111 UU 1U1UUZZ1U11ZU1UUZ1U12U2221111ZUUZ2ZZUU2UU12U2U2121212 111Z1ZAZAuZAu Au u
(5–1) (5–2a) (5–2b)
第5章 频率响应
图5–2给出了不产生线性失真的振幅频率响应和相 位频率响应,称之为理想频率响应。
|Au(jω)|
(jω)
K
0
0
ω
ω
∞ω
(a)
(b)
图5–2 (a)理想振幅频率响应;(b)理想相位频率响应
第5章 频率响应
5–1–2实际的频率特性及通频带定义 实际的振幅频率特性一般如图5–3所示。在低频和
三、高频增益表达式及上限频率
第5章 频率响应
2012年模拟电子技术第五章 集成运算放大电路及其应用练习题(含答案)

第五章集成运算放大电路及其应用【教学要求】本章主要叙述了集成运放内部电路的组成及作用;讨论了电流源电路、差分放大器等单元电路;同时介绍了集成运放的理想化条件及它的三种基本电路和运算、集成运放的应用电路及其特点和集成运放的非线性应用;教学内容、要求和重点如表5.1。
表5.1 教学内容、要求和重点【例题分析与解答】【例题5-1】差动放大器如图5-1所示。
已知三极管的β1=β2=50,β3=80,r bb’=100Ω,U BE1=U BE2=0.7V,U BE3=-0.2V,V CC=12V。
当输入信号U i=0时,测得输出U o=0。
1:估算T1、T2管的工作电流I c1、I c2和电阻R e的大小。
2:当U i=10mV时,估算输出U o的值图5-1解:1:由电路可知,当U i =0时,要保证U o =0V ,则电阻R e3上压降应为12V ,,由此可求得3c I :mA R U U I e cc o c 11212)(33==--=,T 3管的设计电流3E I 为:33c E I I ≈,而T 2管集电极电阻R c2上的压降2C R U 可近似为:V U R I U EB e E R C 2.32.0313332=+⨯=+⋅≈。
于是T 1、T 2管的集电极电流1C I 、2C I 为:)(32.0102.32212mA R U I I C RR C C C ====。
射极电阻R e 上的电流e R I 为:)(64.021mA I I I C C R e=+=。
若设T 1管基极电位U B1=0V ,则U E1=-0.7V ,射极电阻R e 为:)(7.1764.0127.0)(1Ω=+-=--=K I U U R e R CC E e2:U i =10mA 时,U o 的大小:由于电路的结构为单入、单出型,故将T 3管构成的后级电路输入电阻R i2作为差放级的负载考虑,其电压放大倍数A u1为:)(2)//(12211be b i c u r R R R A +=β;其中: )(24.432.026)501(1001Ω=⨯++=K r be ,3332)1(e be i R r R β++=; 而3be r 为: )(2.2126)801(1003Ω=⨯++=K r be ; 所以: )(2453)801(2.22Ω=⨯++=K R i电压放大倍数为:8.45)24.41(2)245//10(501=+⨯⨯=u AT3管构成的后级放大电路的电压放大倍数2u A 为:9.33812.21280)1(333332-=⨯=⨯-=++-=e be c u R r R A ββ当输入U i =10mA 时,电路输出电压U o 为:)(8.110)9.3(8.4521V U A A U i u u o -=⨯-⨯=⋅⋅=【例5-2】图5-2给出了采用两级运放电路实现的差分比例运算电路。
模拟电路场效应管及其基本放大电路

UGS(off)
信息技术学院
3. 特性
(1)转移特性
在恒流区
uGS 2 iD I DSS (1 ) U GS(off)
漏极饱 和电流
(U GS (off ) uGS 0)
夹断 电压
信息技术学院
(2)输出特性
iD f (uDS ) U GS 常量
IDSS g-s电压 控制d-s的 等效电阻
信息技术学院
P 沟道场效应管 D
P 沟道场效应管是在 P 型 硅棒的两侧做成高掺杂的 N 型区(N+),导电沟道为 P 型, 多数载流子为空穴。 d
P G
N+ 型 沟 道 N+
g
S
s 符号
信息技术学院
2. 工作原理
(1)栅-源电压对导电沟道宽度的控制作用
uDS=0
UGS(off)
沟道最宽 (a)uGS = 0
2)耗尽型MOS管
夹断 电压
信息技术学院
各类场效应管的符号和特性曲线
种类 结型 N 沟 道 符号 D 转移特性 ID /mA IDSS 漏极特性 UGS= 0V
ID
-
G
S D
UGS(off) O
UGS
O + + + ID O
o
UDS
ID
结型
P 沟 道
O UGS(off) UGS
G
IDSS
S D B
iD f (uGS ) U DS 常量
当场效应管工作在恒流区时,由于输出特性曲线可近似为横轴的一组平行 线,所以可用一条转移特性曲线代替恒流区的所有曲线。输出特性曲线的 恒流区中做横轴的垂线,读出垂线与各曲线交点的坐标值,建立uGS,iD坐 标系,连接各点所得的曲线就是转移特性曲线。
模拟电子技术课程习题第五章放大电路的频率响应

第五章 放大电路的频率响应5.1具有相同参数的两级放大电路在组成它的各个单管的截止频率处,幅值下降[ ]A. 3dBB. 6dBC. 10dBD. 20dB5.2在出现频率失真时,若u i 为正弦波,则u o 为 [ ] A. 正弦波 B. 三角波 C. 矩形波 D. 方波5.3 多级放大电路放大倍数的波特图是 [ ] A. 各级波特图的叠加 B. 各级波特图的乘积C. 各级波特图中通频带最窄者D. 各级波特图中通频带最宽者 5.4 当输入信号频率为f L 或f H 时,放大倍数的幅值约为中频时的 [ ]倍。
A.0.7 B.0.5 C.0.9 D.0.15.5 在阻容耦合放大器中,下列哪种方法能够降低放大器的下限频率?[ ]A .增大耦合电容B .减小耦合电容C .选用极间电容小的晶体管D .选用极间电容大的晶体管5.6 当我们将两个带宽均为BW 的放大器级联后,级联放大器的带宽 [ ] A 小于BW B 等于BW C 大于BW D 不能确定 5.7 填空:已知某放大电路电压放大倍数的频率特性为6100010(1)(1)1010u fjA f f j j =++ (式中f 单位:Hz )表明其下限频率为 ,上限频率为 ,中频电压增益为 dB ,输出电压与输入电压在中频段的相位差为 。
5.8 选择正确的答案填空。
幅度失真和相位失真统称为 失真(a.交越b.频率),它属于 失真(a.线性b.非线性),在出现这类失真时,若u i 为正弦波,则u o 为 波(a.正弦b.非正弦),若u i 为非正弦波,则u o 与u i 的频率成分 (a.相同b.不同)。
饱和失真、截止失真、交越失真都属于 失真(a.线性b.非线性),在出现这类失真时,若u i为非正弦波,则u o为波(a.正弦b.非正弦),u o与u i的频率成分(a.相同b.不同)。
5.9 选择正确的答案填空。
晶体管主要频率参数之间的关系是。
a.f a<fβ<f Tb.f T<fβ<f ac.f a<f T <fβd.fβ<f T <f ae.fβ<f a <f T5.10 选择正确的答案填空。
《模拟电子电路及技术基础(第二版)》教、学指导书(孙肖子)1-23章 (3)

第五章 基本放大电路 图5-4 图5-2的交流通路
第五章 基本放大电路
3. 放大器直流(静态)工作点的计算
首先明确: 放大器的直流分析要在其直流通路上进行。
由于集电极总是位于放大器的输出回路, 因此所谓直流工作
3.7V
UECQ=UCC-I(CRQC+RUE)RIBC2RQ=E102-.7 (1.35.7+12..503.)7×22=4m.A4 V
UCEQ=-UECQ=-4.4 V
第五章 基本放大电路 图5-5 例5-4电路图及直流通路
第五章 基本放大电路
4. 放大器的图解法分析 图解法的要点是在晶体管的输出特性上分别作直流负载线 和交流负载线。 按“先直流, 后交流”的分析原则, 其中 直流负载线是截距为集电极电源电压而斜率为集电极回路直流 总电阻的负倒数的一条直线。 直流负载线与由基极回路确定
Au
Uo Ui
rbe
RC (1 )RE
100 2 2 101 2
1
(4) 因为共基放大器的输入电阻最小, 所以电路必须 接成共基组态, 即①端接地, ③端接输入电压, ②端接输 出。 此时
Ri
RE
// rbe
1
2 // 2 101
0.02k
第五章 基本放大电路
(5) 由于共集放大器的输出电阻最小, 因此只能接成共 集组态, 即②端接地或开路, ①端接输入电压, ③端接输 出。 此时
其动态电阻极小, 因而将输入信号对地短路。 修改办法是选 用一电阻代替稳压二极管。
电路(c)不能正常放大, 原因是集电极输出端被电源-
UCC短路, 所以要在集电极和CC相接点与电源之间串接一电阻
模拟电路第05章 放大电路的频率响应图

图5.1.1 高通电路及频率响应
返回
图5.1.2 低频电路及其频率响应
返回
图5.1.3 高通电路与低通电路的波特图
返回
5.2 晶体管的高频等效模型
• 图5.2.1 晶体管结构示意图及混合π模型 • 图5.2.2 混合π模型的简化 • 图5.2.3 的分析 • 图5.2.4 的波特图
返回
C1
RS +
VS -
VCC
大 RB
RC
C2 + RL VO -
b rbb b’cBiblioteka RS+ VS
-
e
rbe gmvbe
RL Vo
e
中频增益:
Am
VO VS
Vbe VS
VO Vbe
rbe
gm Vbe RL
RS rbb rbe
Vbe
RS
rbe rbb
rbe
gm RL
O RL rbe O RL
5、查手册得:rbb、cbc、fT (已知条件);
6、
e
结电容:cbe
gm
2 fT
cbc
Miller 定理
I1
Z
Z in + V1 ~ -
Ii I +
ri AV1 -
I2
单向化
Z in
+
+ I1
V2 -
V1 ~ -
Z1
Ii II +
ri AV1 -
I2
+ Z2 V2
-
加 V1 产生 V2 :
Z1 IIV 1 I
返回
图5.6.1 未加频率补偿的集成运放的频率响应
模拟电路第5章功率放大器

功率放大器
5.1 功率放大电路的一般特点 功率放大器:以向负载提供所需要的足够大的功率为 目的的放大器。 1、功率放大电路的特点及主要研究对象 ①输出功率大。 ②输出波形基本不失真。 ③效率要高,功率、效率、非线性失真为主要指标。 ④必须考虑管子的极限参数,并增加散热措施和保护 电路。 ⑤由于信号幅值大,在分析时不能用小信号模型,而 用图解法。
-VCC
5.3.2 甲乙类单电源互补电路 (OTL OTL) OTL 静态时 1 、基本电路
RC3 D1 vi R2 D2 T3 R1 VK VCC VCC/2 t Re Ce VCC K C T2 RL T1 vo 调节R2使:VK=VCC/2 电容C上的电压 Vc =VCC/2 输入信号时: 输入信号时 Vi为负半周,T1导通, T2截止, Vo为正半周。 Vi为正半周,T1截止,T2导通, 电容C放电,相当于电源, 电容C放电,相当于电源 因为电容C很大,其上电压可 认为不变。 Vo为负半周。
VCCVom V PT 1 = π RL 4 RL
PT = V CC = PV Po 2 V om V π RL 2 RL
2 om
2 om
dPT 1 =0 最大管耗: dVom
PT 1(max)
Vom =
2
π
VCC
2 1 VCC 2 = 2 = 2 Po (max) = 0.2 Po (max) π RL π
输出功率最大时的管耗
Vom ≈ VCC
2 VCC 4 π P1 = = 0.137Po(max) T 2RL 2π
1 T /2 PT 1 = ∫ vCE iC dt T 0 2 VCC 4 π 1 T /2 Vom sin ωt = ∫ (VCC Vom sin ωt ) dt P = T 0 RL 2π T RL
模拟电子技术5

1
(
2
π
C
' π
)
A u A u m ( 1 jffL )(1 1 j j 3 ff3 fL f) L (2 f L 1 1 j f f L 2fL 3)(3 1 jffH )
n个放大管
m
fL 1.1
f
2 Lk
k1
1 1.1
fH
n1 f2
k1 Hk
1.1为修正 系数
结论:1. 放大电路的级数越多,频带越窄; 2. 若 fLk 远高于其它各级,则 fL≈fLk; 3. 若fHk远低于其它各级,则 fH≈fHk;
例5-2:某电路各级均为共射电路,求:fL, fH, Au。
例5-1:
Au
(1j
10jf f )(1j
f
)
10 105
试求解:
(1)Aum=?fL=?fH =?
(2)画出波特图。
100 j f
A u
(1
j
f
10 )( 1 j
f
)
10
10 5
A u m 100
f L 10 Hz
f H 10 5 Hz
5.4.3 放大电路频率响应的改善 和增益带宽积
若R : brbe Ri Rb//rberbe RbRs Rb//Rs Rs C' (1gmRL ' )CC,gmRL ' 1 C' CC' gmRL ' C
| Ausmfbw|2r1bb'C
| Ausmfbw|2r1bb'C
因 rbb’ 和 Cμ由晶体管决定,故管子选定后, 放大电路增益带宽积就大体确定。即:增益 增大多少倍,带宽几乎就变窄多少倍。
电子技术基础-模拟电路 (康华光)第五章习题

电子技术基础-模拟电路 (康华光)第五章习题.doc P220—222 5.5.1:在输入正弦信号的一个周期中,通过三极管的集电极电流C i 不出现截止状态(即导通角=θπ2)的称为“甲类”;在输入正弦信号的一个周期中,三极管只有半个周期导通(=θπ)的称为“乙类”;在输入正弦信号的一个周期中,三极管的导通时间大于半周而小于全周(πθπ2 )的称为“甲乙类”。
其中,工作于“乙类”放大电路的效率最高,在双电源互补对称电路中,理想情况下的最高效率为78.5%。
5.2.2:解:该电路属于“双电源乙类互补对称放大电路(OCL )”。
(1)输出功率:CC om L V P .W R ==2452(2)每管允许的功耗:CM om P .P .W ≥=0209(3)每管的耐压:(BR )CEO CC V V V ≥=2245.2.4:解:(1)Vi=10 V 时。
im i v om v im V V A V A V V ===∴==14114输出功率:om cem o L L V V P .W R R ===⨯=22211412252228每管的管耗;CC om om T T L V V V P P ().W R π==-≈21215024两管的管耗:T T T P =P P =.W =12221004电源的供给功率:V o T P P P =12.25+10.04=22.29W =+效率:oVP =%.%P η⨯≈1005496(2)Vim=Vcc=20V 时。
v om v im A V A V V=∴==120输出功率:om CC o om cem L L V V P WV V R R ===⨯==222120252228每管的管耗;CC om om CC CC T T L L V V V V V P P ()().W R R ππ==-=-≈222121134344两管的管耗:T T T P =P P .W =≈1222685电源的供给功率:V o T P P P =25+6.85=31.85W =+效率:oVP =%.%P η⨯≈100785 5.3.1:解:由CC AB CC om L L LCC V V V P ,R R R V V===≥2222222824()()()(OTL)5.3.3:解:(1)静态时,电容C 2两端电压应为:C CC V V V ==2162,调整R 1、R 3可满族这一要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.2 N沟道耗尽型MOSFET
2. V-I 特性曲线及大信号特性方程
iD IDS(S1vVGPS)2
iD IDO(vVGTS1)2 (N沟道增强型)
5.1.3 P沟道MOSFET
5.1.4 沟道长度调制效应
实际上饱和区的曲线并不是平坦的
修正后 iD K n (v G S V T )2(1v D)S IDO (vVG TS1)2(1vDS)
② 可变电阻区 vDS≤(vGS-VT)
iD2 K n(v G S V T )v DS
rdso
dvDS diD
1 vGS常数 2Kn(vGSVT)
rdso是一个受vGS控制的可变电阻
3. V-I 特性曲线及大信号特性方程
(1)输出特性及大信号特性方程 ③ 饱和区 (恒流区又称放大区)
vGS >VT ,且vDS≥(vGS-VT) V-I 特性:
IDK n(VG SVT)2 V D SV DD ID R d
验证是否满足 V D S(V G SV T) 如果不满足,则说明假设错误
再假设工作在可变电阻区 即 V D S(V G SV T)
ID 2 K n(v G S V T )v DS
V D SV DD ID R d
例:设Rg1=60k,Rg2=40k,Rd=15k, VDD=5V, VT=1V, Kn0.2mA /V2 试计算电路的静态漏极电流IDQ和漏源 电压VDSQ 。 解: V G S Q R gR 1gR 2g 2V DD 64 040 05V 2V 假设工作在饱和区
2K n(vG SV T) 2 KniD
其中
Kn
nCox 2
W L
各类绝缘栅场效应三极管的特性曲线
N
沟
道
增绝ຫໍສະໝຸດ 强 型缘栅场P
效
沟 道
应增
管
强 型
Sect
N 沟 道 耗 尽
绝型
缘
栅
场P
效沟 道
应耗
管
尽 型
Sect
5.2 MOSFET放大电路
5.2.1 MOSFET放大电路
1. 直流偏置及静态工作点的计算
0.1 V1 L
L的单位为m
当不考虑沟道调制效应时,=0,曲线是平坦的。
5.1.5 MOSFET的主要参数
一、直流参数
1. 开启电压VT (增强型参数) 2. 夹断电压VP (耗尽型参数) 3. 饱和漏电流IDSS (耗尽型参数) 4. 直流输入电阻RGS (109Ω~1015Ω )
二、交流参数
5 场效应管放大电路
5.1 -氧化物-半导体(MOS)场效应管 5.2 MOSFET放大电路 5.3 结型场效应管(JFET)
场效应管的分类:
FET 场效应管
MOSFET (IGFET) 绝缘栅型
JFET 结型
增强型
耗尽型 N沟道 P沟道
N沟道 P沟道 N沟道 P沟道
耗尽型:场效应管没有加偏置电压时,就有导电沟道存在 增强型:场效应管没有加偏置电压时,没有导电沟道
2. 小信号模型分析
5.2.1 MOSFET放大电路
1. 直流偏置及静态工作点的计算 (1)简单的共源极放大电路(N沟道)
共源极放大电路
直流通路
5.2.1 MOSFET放大电路
1. 直流偏置及静态工作点的计算
(1)简单的共源极放大电路(N沟道)
VGS Rg1Rg2Rg2VDD
须满足VGS > VT ,否则工作在截止区 假设工作在饱和区,即 V D S(V G SV T)
当vDS增加到使vGD=VT 时,
在紧靠漏极处出现预夹断。
在预夹断处:vGD=vGS-vDS
=VT
2. 工作原理
(2)vDS对沟道的控制作用 预夹断后,vDS 夹断区延长
沟道电阻 ID基本不变
2. 工作原理 (3) vDS和vGS同时作用时
给定一个vGS ,就有一条不同 的 iD – vDS 曲线。
3. V-I 特性曲线及大信号特性方程
(1)输出特性及大信号特性方程
iD f(vDS) vG Scon s t.
① 截止区 当vGS<VT时,导电沟道尚 未形成,iD=0,为截止工 作状态。
3. V-I 特性曲线及大信号特性方程 (1)输出特性及大信号特性方程
iD f(vDS) vG Scon s t.
1. 输出电阻rds
rds
vDS iD
VG S
NMOS增强型rds[Kn(vGS VT)2]11 iD
当不考虑沟道调制效应时,=0,rds→∞
5.1.5 MOSFET的主要参数
二、交流参数
2. 低频互导gm
gm
iD vGS
VDS
考虑到 iDKn(vGS VT)2
(vGSVT)
iD Kn
则 gmviG DSVDS[Kn(v G vG S S VT)2]VDS
当vGS≤0时
无导电沟道, d、s间加 电压时,也无电流产生。
当0<vGS <VT 时
产生电场,但未形成导电沟 道(感生沟道),d、s间加电压 后,没有电流产生。
5.1.1 N沟道增强型MOSFET
2. 工作原理 (1)vGS对沟道的控制作用
当vGS >VT 时
在电场作用下产生导电沟道,d、 s间加电压后,将有电流产生。
vGS越大,导电沟道越厚
VT 称为开启电压
2. 工作原理
(2)vDS对沟道的控制作用
当vGS一定(vGS >VT )时, vDSID 沟道电位梯度
靠近漏极d处的电位升高 电场强度减小 沟道变薄
整个沟道呈楔形分布
2. 工作原理
(2)vDS对沟道的控制作用
当vGS一定(vGS >VT )时, vDSID 沟道电位梯度
5.1 金属-氧化物-半导体 (MOS)场效应管
5.1.1 N沟道增强型MOSFET 5.1.2 N沟道耗尽型MOSFET 5.1.3 P沟道MOSFET 5.1.4 沟道长度调制效应 5.1.5 MOSFET的主要参数
5.1.1 N沟道增强型MOSFET
剖面图
S GD
耗尽层
N+
N+
P 型衬底 (掺杂浓度低)
B
在硅绝片缘用表层金扩面上属散生喷铝的一金引方层属出法薄铝 S引iO出源2栅制绝极极作缘S两层G和个漏N极区D
符号
S — 源极 Source G — 栅极 Gate D — 漏极 Drain
D
B G
S
通常衬底与源极接在一起使用。
5.1.1 N沟道增强型MOSFET
2. 工作原理 (1)vGS对沟道的控制作用
iDKn(vGS VT)2
3. V-I 特性曲线及大信号特性方程
(2)转移特性
iD f(vGS) vDScon s t.
iD
v
IDO(
GS
VT
1)2
5.1.2 N沟道耗尽型MOSFET
1. 结构和工作原理(N沟道)
二氧化硅绝缘层中掺有大量的正离子 可以在正或负的栅源电压下工作,而且基本上无栅流