Linux内核配置编译与文件系统构建要点
Linux下的软件开发和编译环境配置
Linux下的软件开发和编译环境配置在Linux操作系统中,配置适合软件开发和编译的环境是非常重要的。
正确地设置开发环境,可以提高开发效率,同时确保软件的质量和稳定性。
本文将介绍如何在Linux下配置软件开发和编译环境,以帮助开发人员顺利进行开发工作。
一、安装必要的开发工具在开始配置软件开发环境之前,您需要安装一些必要的开发工具。
在Linux中,常用的开发工具包括GCC编译器、Make工具、调试器(如GDB)、版本控制工具(如Git)等。
您可以通过包管理器(如APT、YUM等)来安装这些工具。
以下是安装这些工具的示例命令(以基于Debian的系统为例):```sudo apt-get updatesudo apt-get install build-essentialsudo apt-get install gdbsudo apt-get install git```通过执行这些命令,您可以安装所需的开发工具,以便后续的配置步骤。
二、配置开发环境要配置软件开发环境,您需要设置一些环境变量和配置文件。
以下是一些常见的配置步骤:1. 配置PATH环境变量在Linux中,PATH环境变量用于指定可执行程序的搜索路径。
为了方便地访问开发工具和编译器,您应该将它们所在的目录添加到PATH环境变量中。
您可以通过编辑`.bashrc`文件来实现这一点。
打开终端,输入以下命令编辑文件:```vi ~/.bashrc```在文件末尾添加以下行(假设开发工具的路径为`/usr/local/bin`):```export PATH=$PATH:/usr/local/bin```保存并退出文件。
然后,使用以下命令使更改生效:```source ~/.bashrc```现在,您可以在任何目录下直接运行开发工具和编译器。
2. 配置编辑器选择一个适合您的编辑器来编写代码是很重要的。
在Linux中有多种编辑器可供选择,如Vim、Emacs、Sublime Text等。
Linux操作系统的内核设计分析
Linux操作系统的内核设计分析Linux操作系统作为开源操作系统的代表,已经在各个领域得到了广泛应用。
而Linux操作系统的内核则是这个系统之所以能够运转的关键所在。
本文将就Linux操作系统的内核设计进行分析,并探讨其优劣之处。
一、Linux内核设计的基础Linux内核的设计基础主要包括以下几个方面:1. 开放源码Linux内核采用的是GPL协议,这意味着它是一个开放源码的项目。
这为世界各地的开发人员提供了极大的便利,方便他们进行开发和修改。
同时,这也确保了Linux内核的透明度,并且鼓励开发者贡献代码的同时,深度参与到Linux开源社区的构建和升级中。
2. 模块化Linux内核的构造采用的是模块化设计。
这种设计方式将内核代码分成独立的模块,每个模块都可以独立编译、加载和卸载。
采用模块化的设计,能够使得开发人员能够更加细致地打包、编译、并部署只包含他们需要的模块的系统。
3. 多任务Linux内核是一个基于多任务设计的系统。
这意味着它能够使得多个程序同时运行,并能够平滑高效地进行任务的切换。
这给开发人员提供了各种各样的自由,使得他们能够更加高效地进行开发。
4. 支持众多处理器架构Linux内核的支持范围非常广泛,它可以适配众多处理器架构。
这意味着一个制造商可以使用不同的处理器架构去生产设备,并且这些设备都能够安装和运行Linux操作系统。
5. 外层调用接口Linux内核支持开放式的外层调用接口。
这使得用户层可以很容易地调用Linux 内核执行某个任务。
这些用户层应用包括网上购物网站、应用程序和各种驱动程序。
6. 子系统Linux内核的子系统主要包括进程管理、内存管理、I/O管理和网络管理等。
二、Linux内核的优点Linux内核具有以下主要优点:1. 开源性Linux内核本身是一个开源的、由社区驱动的项目。
这意味着在它的附加组件和周边产品中,广大的开发者社区都可以为用户提供帮助和支持。
2. 安全性相比其他闭源操作系统,Linux内核在安全性方面更具优势。
Linux课程介绍-第五章(1)
2.进程系统堆栈 每个进程都有一个系统堆栈,用来保存中断现场信息和进 程进入内核模式后执行子程序(函数)嵌套调用的返回现 场信息。 每个进程的系统堆栈和task_struct数据结构之间存在 紧密联系,因而二者物理存储空间也连在一起 系统堆栈的大小静态确定,用户堆栈可在运行时动态扩展
5.2.3 对进程的操作 1.进程的创建 各个进程构成了树形的进程族系 内核在引导并完成了基本的初始化以后,就有 了系统的第一个进程(即初始化进程,实际上 是内核线程)。除此之外,所有其他的进程和 内核线程都由这个原始进程或其子孙进程所创 建。 除初始化进程外,其他进程都是用系统调用 fork( )和clone( )创建的。 fork( )是全部复制 ,而clone( ) 有选择地 复制
●进程控制系统用于进程管理、进程同步、进程通 信、进程调度和内存管理等。 ●内存管理控制内存分配与回收。
●文件系统管理文件、分配文件空间、管理空闲空 间、控制对文件的访问并为用户检索数据。 ●Linux系统支持三种类型的硬件设备:字符设备、 块设备和网络设备。 ●核心底层的硬件控制负责处理中断以及与机器通 信。
• 内核所在的地址空间称作内核空间 • 其他应用程序称为外部管理程序,大部分是对外围设 备进行管理和界面操作,外部管理程序和用户进程所 占据的地址空间成为外部空间
Linux内核概述
Unix内核用C语言写成 单一内核:所有的操作系统功能均被封装 在内核中,与外部程序处于不同的地址空 间。外部程序智能通过功能调用来访问内 核 微内核:内核只提供最基本、最核心的一 部分操作,如创建和删除任务、中断管理、 进程管理、存储器管理、进程间通信等, 而其他功能如文件系统、网络协议栈则在 内核外操作。
3.进程的终止
kernel5.10 编译方法 -回复
kernel5.10 编译方法-回复标题:编译Linux Kernel 5.10的详细步骤在Linux的世界中,编译Kernel是一项基础且重要的技能。
本文将详细介绍如何从源代码编译Linux Kernel 5.10。
以下是一步一步的详细教程。
一、准备工作1. 确保系统环境首先,你需要一个运行中的Linux系统。
本文以Ubuntu 20.04为例,但大部分Linux发行版的步骤应该是类似的。
2. 更新系统确保你的系统已经更新到最新版本,可以使用以下命令:sudo apt-get updatesudo apt-get upgrade3. 安装必要的工具编译Kernel需要一些基本的开发工具和库,可以通过以下命令安装:sudo apt-get install build-essential libncurses5-dev bc flex bison openssl libssl-dev dkms二、下载Kernel源代码1. 创建工作目录在你的主目录下创建一个名为kernel的工作目录:mkdir ~/kernelcd ~/kernel2. 下载Kernel源代码你可以从Kernel官网(5.10的源代码:wget3. 解压源代码使用以下命令解压下载的源代码:tar xvf linux-5.10.tar.xz这将在当前目录下创建一个名为linux-5.10的目录,这是Kernel的源代码目录。
三、配置和编译Kernel1. 进入源代码目录cd linux-5.102. 配置Kernel配置Kernel是编译过程中最重要的一步,你可以根据你的硬件和需求选择要编译的功能。
对于大多数用户,使用以下命令进行基本配置应该足够:make menuconfig这将打开一个基于文本的配置界面。
你可以使用方向键和回车键浏览和选择选项。
完成后,保存并退出。
3. 开始编译配置完成后,可以开始编译Kernel了。
这个过程可能需要一些时间,取决于你的计算机性能:make -j(nproc)这里的-j参数表示使用多少个进程进行编译,(nproc)会自动获取你的CPU 核心数。
内核和文件系统编译
内核和文件系统编译【实用版】目录1.编译内核2.编译文件系统3.编译过程中的注意事项正文在内核和文件系统的编译过程中,我们需要遵循一定的步骤和技巧,以确保编译的顺利进行。
下面,我们将详细介绍如何编译内核和文件系统,以及在编译过程中需要注意的事项。
一、编译内核1.获取内核源代码:首先,你需要从内核官方网站上下载最新的内核源代码。
通常情况下,我们使用的是 Linux 内核。
2.配置内核:下载源代码后,需要对其进行配置,以满足你的需求。
这个过程可以通过 make menuconfig 或者 make xconfig 等命令完成。
3.编译内核:配置完成后,就可以使用 make 命令编译内核了。
编译完成后,会生成一个新的内核文件。
4.更新内核:将新的内核文件安装到系统中,替换原有的内核。
这一步通常需要重启系统,以使新内核生效。
二、编译文件系统1.选择文件系统:根据你的需求,选择合适的文件系统。
常见的文件系统有 ext3、ext4、xfs 等。
2.配置文件系统:与编译内核类似,需要对文件系统进行配置。
根据文件系统的不同,配置方法也会有所区别。
3.编译文件系统:配置完成后,使用 make 命令编译文件系统。
编译完成后,会生成一个新的文件系统驱动文件。
4.加载文件系统:将新的文件系统驱动文件加载到系统中,使其生效。
这一步同样需要重启系统。
三、编译过程中的注意事项1.环境准备:在编译之前,确保你的系统环境、编译器和相关工具都处于最新版本。
2.编译选项:根据你的需求和硬件环境,选择合适的编译选项。
例如,你可以选择启用或禁用某些硬件支持、优化编译速度等。
3.错误处理:编译过程中可能会遇到错误,需要仔细阅读错误信息,找出问题所在,并进行解决。
4.编译时间:编译内核和文件系统是一个相对耗时的过程,需要耐心等待。
通过以上步骤,你可以顺利地完成内核和文件系统的编译工作。
Linux操作系统的编译和安装
Linux操作系统的编译和安装在正文规定的字数限制下,为了准确满足标题描述的内容需求,并确保内容排版整洁美观、语句通顺、全文表达流畅且无影响阅读体验的问题,本文将按照以下格式进行写作:一、简介Linux操作系统是一种开源的、自由的Unix-like操作系统,它广泛应用于各种领域,包括服务器、嵌入式设备等。
本文将重点介绍Linux 操作系统的编译和安装过程。
二、编译准备1. 下载源代码在编译Linux操作系统之前,首先需要从官方网站下载Linux内核的源代码包。
2. 安装必要的依赖软件在编译过程中,需要安装一些必要的软件和工具,如编译器、构建工具等。
三、编译步骤1. 解压源代码包使用解压命令将下载的源代码包解压到指定目录。
2. 配置编译选项进入源代码目录,并运行配置命令,根据需要选择不同的编译选项。
3. 执行编译命令运行编译命令开始编译操作系统内核,这个过程可能需要一段时间。
四、安装步骤1. 安装编译生成的内核镜像文件将编译生成的内核镜像文件复制到合适的位置,并修改相关配置文件以引导新编译的内核。
2. 安装相关系统文件运行安装命令,将其他必要的系统文件复制到适当的位置。
五、系统配置1. 修改引导加载程序根据系统的引导加载程序,如GRUB、LILO等,修改引导配置文件以支持新安装的内核。
2. 配置网络和驱动程序根据具体需求,配置网络设置和硬件驱动程序。
六、测试与验证1. 重新启动系统重新启动计算机,并选择新编译的内核进行引导。
2. 验证系统版本和功能运行相应的命令,验证新安装的Linux操作系统版本和功能是否正确。
七、常见问题解决1. 编译错误分析编译过程中出现的错误信息,根据错误提示进行逐步修复。
2. 硬件兼容性问题部分硬件设备可能需要额外的驱动程序或补丁文件才能正常运行,根据具体情况进行相应的处理。
八、总结通过本文的介绍,读者可以了解到Linux操作系统的编译和安装过程,同时了解到在实际操作中会遇到的一些常见问题及解决方法。
Linux 内核配置机制(make menuconfig、Kconfig、makefile)讲解
printk(KERN_WARNING fmt, ##arg) printk(KERN_DEBUG fmt, ##arg)
/* Module Init & Exit function */ static int __init myModule_init(void) {
/* Module init code */ PRINTK("myModule_init\n"); return 0;
图形
工具
前面我们介绍模块编程的时候介绍了驱动进入内核有两种方式:模块和直接编译进内核,并介绍 了模块的一种编译方式——在一个独立的文件夹通过makefile配合内核源码路径完成
那么如何将驱动直接编译进内核呢? 在我们实际内核的移植配置过程中经常听说的内核裁剪又是怎么麽回事呢? 我们在进行linux内核配置的时候经常会执行make menuconfig这个命令,然后屏幕上会出现以下 界面:
首页 业界 移动 云计算 研发 论坛 博客 下载 更多
process的专栏
您还未登录!| 登录 | 注册 | 帮助
个人资料
dianhuiren
访问:71424次 积分:1219分 排名:第8764名 原创:37篇 转载:127篇 译文:0篇 评论:3条
目录视图
摘要视图
订阅
《这些年,我们读过的技术经典图书》主题有奖征文 经理
这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。本文
/dianhuiren/article/details/6917132
1/5
2012年04月 (6) 2012年03月 (15) 2012年02月 (16)
并不是对配置系统本身进行分析,而是介绍如何使用配置系统。所以,除非是配置系统的维护者,一般 的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。
嵌入式Linux内核的配置与编译系统研究
户开 发 的 源代 码加 入 到 Ln x内核 中 ,并 增加 相 应 的 可供 选择 的 配置 菜 单 选项 , iu 可根 据 用 户选择 情 况决 定是 否被 编 译进 Ln x的 内核 映像 文件 v iu iu ml x中。 n
关键 词 Ln x iu ,Mae l,配置 ,依 赖 关 系 ,编译 规 则 , 内核 映像 k fe i
源码的 ,任何人只要遵循 G L P ,就可 以对 内核进行修改并发布 给他人使用 。所有这些特点成为 了嵌入式 系统开发员首选 的操 作 系统 ,开发者 可 以根据 自己特 殊的硬件 系统 及应用 需求 对 Lnx内核 进行配 置 ,并 将 自己开发 的源代码 加入 到 Lnx内 iu iu 核 ,从而满 足不 同的嵌入式 系统 的应用 需求 。本文 以 A M 开 R
m e m n cn g k a euof :显 示 以 e r s 基 础 的 、终 端 式 的配 置 i us 为 e
菜 单 。如 果 .of en g文 件 存 在 ,则 会根 据 该文 件 来 设定 默认 i
值 。一 般 情 况 下 我 们 会 选 择 该 方 法 进 行 配 置 。 maexof :显 示 以 T k cn g i k为 基 础 的 X Wi o n w配 置 菜 单 。 d 同 样 , 如 果 .of en g文 件 存 在 ,则 会 根 据 该 文 件 来 设 定 默 认 i
( )en g 件 1 of 文 i 该 文 件 被 顶 层 Mae l 含 , R lsm e及 子 目 录 中 的 kfe包 i ue. a k
维普资讯
… … … … … … … … … … … … … … … … … … … … … } t
m n cn g时 ,会 生 成 一 个 新 的 .of eu of i en g文 件 ,原 来 的 文 件 被 更 i 名 为 .of .l 。 en god i
Linux内核编译配置选项详解
Code maturity level options代码成熟度选项Prompt for development and/or incomplete code/drivers 显示尚在开发中或尚未完成的代码与驱动.除非你是测试人员或者开发者,否则请勿选择General setup常规设置Local version - append to kernel release在内核版本后面加上自定义的版本字符串(小于64字符),可以用"uname -a"命令看到Automatically append version information to the version string 自动在版本字符串后面添加版本信息,编译时需要有perl以及git仓库支持Support for paging of anonymous memory (swap)使用交换分区或者交换文件来做为虚拟内存System V IPCSystem V进程间通信(IPC)支持,许多程序需要这个功能.必选,除非你知道自己在做什么IPC NamespacesIPC命名空间支持,不确定可以不选POSIX Message QueuesPOSIX消息队列,这是POSIX IPC中的一部分BSD Process Accounting将进程的统计信息写入文件的用户级系统调用,主要包括进程的创建时间/创建者/内存占用等信息BSD Process Accounting version 3 file format使用新的第三版文件格式,可以包含每个进程的PID和其父进程的PID,但是不兼容老版本的文件格式Export task/process statistics through netlink通过netlink接 口向用户空间导出任务/进程的统计信息,与BSDProcess Accounting的不同之处在于这些统计信息在整个 任务/进程生存期 都是可用的Enable per-task delay accounting在统计信息中包含进程等候系统资源(cpu,IO同步,内存交换等)所花费的时间UTS NamespacesUTS名字空间支持,不确定可以不选Auditing support审计支持,某些内 核模块(例如SELinux)需要它,只有同时选择其子项才能对系统调用进行审 计Enable system-call auditing support支持对系统调用的审计Kernel .config support把内核的配置信息编译进内核中,以后可以通过scripts/extract-ikconfig脚本来提取这些信息Enable access to .config through /proc/config.gz允许通过/proc/config.gz访问内核的配置信息Cpuset support只有含有大量CPU(大于16个)的SMP系统或NUMA(非一致内存访问)系统才需要它Kernel->user space relay support (formerly relayfs)在某些文件系统上(比 如debugfs)提 供从内核空间向用户空间传递大量数据的接口Initramfs source file(s)initrd已经被initramfs取代,如果你不明白这是什么意思,请保持空白Optimize for size (Look out for broken compilers!)编译时优化内核尺寸(使用"-Os"而不是"-O2"参数编译),有时会产生错误的二进制代码Enable extended accounting over taskstats收集额外的进程统计信息并通过taskstats接口发送到用户空间Configure standard kernel features (for small systems)配置标准的内核特性(为小型系统)Enable 16-bit UID system calls允许对UID系统 调用进行过时的16-bit包装Sysctl syscall support不需要重启就能修改内核的某些参数和变量,如果你也选择了支持/proc,将能从/proc/sys存取可以影响内核行为的参数或变量Load all symbols for debugging/kksymoops装载所有的调试符号表信息,仅供调试时选择Include all symbols in kallsyms在kallsyms中 包含内核知道的所有符号,内核将会增大300KDo an extra kallsyms pass除非你在kallsyms中发现了bug并需要报告这个bug才打开该选项Support for hot-pluggable devices支持热插拔设备,如usb与pc卡等,Udev也需要它Enable support for printk允许内核向终端打印字符信息,在需要诊断内核为什么不能运行时选择BUG() support显示故障和失败条件(BUG和WARN),禁用它将可能导致隐含的错误被忽略 Enable ELF core dumps内存转储支持,可 以帮助调试ELF格 式的程序Enable full-sized data structures for core在内核中使用全尺寸的数据结构.禁用它将使得某些内核的数据结构减小以节约内存,但是将会降低性能Enable futex support快速用户空间互斥体可以使线程串行化以避免竞态条件,也提高了响应速度.禁用它将导致内核不能正确的运行基于glibc的程序Enable eventpoll support支持事件轮循的系统调用Use full shmem filesystem完全使用shmem来 代替ramfs.shmem是基于共享内存的文件系统(可能用到swap),在启用TMPFS后可以挂载为tmpfs供用户空间使用,它比简单的ramfs先进许多Use full SLAB allocator使用SLAB完全 取代SLOB进行 内存分配,SLAB是 一种优秀的内存分配管理器,推荐使用Enable VM event counters for /proc/vmstat允许在/proc/vmstat中包含虚拟内存事件记数器Loadable module support可加载模块支持Enable loadable module support打开可加载模块支持,如果打开它则必须通过"make modules_install"把内核模块安装在/lib/modules/中Module unloading允许卸载已经加载的模块Forced module unloading允许强制卸载正在使用中的模块(比较危险)Module versioning support允许使用其他内核版本的模块(可能会出问题)Source checksum for all modules为所有的模块校验源码,如果你不是自己编写内核模块就不需要它Automatic kernel module loading让内核通过运行modprobe来自动加载所需要的模块,比如可以自动解决模块的依赖关系Block layer块设备层Enable the block layer块设备支持,使用 硬盘/USB/SCSI设备者必选Support for Large Block Devices仅在使用大于2TB的 块设备时需要Support for tracing block io actions块队列IO跟踪支 持,它允许用户查 看在一个块设备队列上发生的所有事件,可以通过blktrace程序获得磁盘当前的详细统计数据Support for Large Single Files仅在可能使用大于2TB的文件时需要IO SchedulersIO调度器Anticipatory I/O scheduler假设一个块设备只有一个物理查找磁头(例如一个单独的SATA硬盘),将多个随机的小写入流合并成一个大写入流,用写入延时换取最大的写入吞吐量.适用于大多数环境,特别是写入较多的环境(比如文件服务器)Deadline I/O scheduler使用轮询的调度器,简 洁小巧,提供了最 小的读取延迟和尚佳的吞吐量,特别适合于读取较多的环境(比如数据库)CFQ I/O scheduler使用QoS策略为 所有任务分配等量的带宽,避免进程被饿死并实现了较低的延迟,可以认为是上述两种调度器的折中.适用于有大量进程的多用户系统Default I/O scheduler默认IO调度器Bus options (PCI, PCMCIA, EISA, MCA, ISA)总线选项PCI supportPCI支持,如果使用了PCI或PCI Express设备就必选PCI access modePCI访问模式,强列建议选"Any"(系统将优先使用"MMConfig",然后使用"BIOS",最后使用"Direct"检测PCI设备)PCI Express supportPCI Express支持(目前主要用于显卡和千兆网卡)PCI Express Hotplug driver如果你的主板和设备都支持PCI Express热插拔就可以选上Use polling mechanism for hot-plug events对热插拔事件采用轮询机制,仅用于测试目的Root Port Advanced Error Reporting support由PCI Express AER驱动程序处理发送到Root Port的错误信息Message Signaled Interrupts (MSI and MSI-X)PCI Express支持两类中断:INTx使用传统的IRQ中断,可以与现行的PCI总线的驱动程序和操作系统兼容;MSI则是通过inbound Memory Write触发和发送中断,更适合多CPU系统.可以使用"pci=nomsi"内核引导参数关闭MSIPCI Debugging将PCI调试信息 输出到系统日志里Interrupts on hypertransport devices允许本地的hypertransport设备使用中断ISA support现在基本上没有ISA的设备了,如果你有就选吧MCA support微通道总线,老旧 的IBM的台式机 和笔记本上可能会有这种总线NatSemi SCx200 support在使用AMD Geode处理器的机器上才可能有PCCARD (PCMCIA/CardBus) supportPCMCIA卡(主要用于笔记本)支持Enable PCCARD debugging仅供调试16-bit PCMCIA support一些老的PCMCIA卡使用16位的CardBus32-bit CardBus support当前的PCMCIA卡 基本上都是32位 的CardBusCardBus yenta-compatible bridge support使用PCMCIA卡 的基本上都需要选择这一项,子项请按照自己实际使用的PCMCIA卡选择{省略的部分请按照自己实际使用的PCMCIA卡选择}PCI Hotplug SupportPCI热插拔支持,如果你有这样的设备就到子项中去选吧Cryptographic options加密选项Cryptographic API提供核心的加密API支持.这 里的加密算法被广泛的应用于驱动程序通信协议等机制中.子选项可以全不选,内核中若有其他部分依赖它,会自动选上Cryptographic algorithm manager创建加密模版实例,必 须要选HMAC support为IPSec所必 须,可为PPPoE提供压缩支持XCBC supportKeyed-Hashing with encryption algorithmKeyed-Hashing用加密算法Null algorithmsNULL加密算法(什么也不做),用于IPsec协议的封装安全载荷模块(ESP)MD4 digest algorithm老旧的摘要算法,已 经过时MD5 digest algorithm主流摘要算法,128位(已 被中国山东大学王小云攻破,可以快速找到碰撞)SHA1 digest algorithm主流摘要算法,160位(已 被中国山东大学王小云攻破,可以快速找到碰撞),速度与MD5相当SHA256 digest algorithm更好的摘要算法,256位,速 度较SHA1稍慢SHA384 and SHA512 digest algorithms更好的摘要算法,384/512位,速度大约只有SHA1的40-50%Whirlpool digest algorithms最安全的摘要算法,512位,已 被列入ISO标准,目前最新版本为3.0(2003年发布)Tiger digest algorithms号称最快的摘要算法,192位,专 门为64位CPU进行了优化GF(2^128) multiplication functions吉安卡洛-费斯切拉(2 ^ 128)乘法的功能Efficient table driven implementation of multiplications field GF(2^128). This is needed by some cypher modes. T option will be selected automatically if you select such cipher mode. Only select this option by hand if you exp an external module that requires these functionsECB support电子密码本,最简 单的加密方法CBC support密码块链,IPSec需要使用它PCBC supportPCBC: Propagating Cipher Block Chaining mode . This block cipher algorithm is required for RxRPC.LRW supportLRW: Liskov Rivest Wagner, a tweakable, non malleable, nnarrow block cipher mode for dm-crypt. Use it with ciph specification string aes-lrw-benbi, the key must be 256,The first 128, 192 or 256 bits in the key are used for A rest is used to tie each cipher block to its logical posSoftware async crypto daemonThis is a generic software asynchronous crypto daemon thconverts an arbitrary synchronous software crypto algori into an asynchronous algorithm that executes in a kernel。
buildroot 编译流程
buildroot 编译流程Buildroot是一个开源的嵌入式Linux系统构建工具,可以帮助开发者自动构建定制化的Linux系统。
本文将介绍Buildroot的编译流程,以帮助读者了解如何使用Buildroot构建自己的嵌入式Linux系统。
Buildroot的编译流程可以分为以下几个步骤:1. 配置Buildroot在开始编译之前,需要对Buildroot进行配置。
配置文件位于`buildroot.config`,可以通过命令`make menuconfig`或`make xconfig`打开配置界面。
在配置界面中,可以选择目标平台的硬件架构、选择需要的软件包、配置内核参数等。
配置完成后,保存配置文件并退出。
2. 下载源码在进行编译之前,需要下载所需的软件包源码。
Buildroot会根据配置文件中设置的软件包列表自动下载源码。
下载的源码位于`dl`目录下。
3. 构建文件系统在下载完成源码后,可以开始构建文件系统。
执行`make`命令即可开始构建。
Buildroot会自动根据配置文件中选择的软件包,下载、编译和安装软件包,生成最终的文件系统。
4. 生成内核镜像在构建文件系统的同时,Buildroot还会下载、编译和安装内核源码,并生成内核镜像。
生成的内核镜像位于`output/images`目录下,可以通过烧录到目标平台进行启动。
5. 生成根文件系统构建完成后,Buildroot会生成根文件系统,包括文件系统映像文件和根文件系统目录。
文件系统映像文件通常以`.ext2`、`.ext4`等格式存储,根文件系统目录存储在`output/target`目录下。
6. 生成目标设备固件除了生成文件系统和内核镜像外,Buildroot还可以生成目标设备的固件。
固件文件通常包括文件系统映像文件、内核镜像以及引导加载程序等。
7. 安装固件到目标设备生成固件后,可以将固件烧录到目标设备进行启动。
具体的烧录方法可以根据目标设备的不同而不同,可以参考设备的相关文档或使用烧录工具进行烧录。
一、嵌入式Linux内核裁剪与系统构建实验
嵌入式Linux内核裁剪与系统构建实验一、实验目的1、了解linux内核裁减过程,掌握内核的编译方法及在开发板下如何运行一个内核。
2、学会基于busybox的根文件系统的制作。
3、熟悉开发板及uboot的使用。
二、实验条件✓IBM-PC兼容机✓Redhat9.0或其他兼容的Linux操作系统✓OMAP3730开发板三、实验原理1、linux内核裁减编译://见教材6.3.2 (第一版p126-p130,第二版p143-p147)2、基于busybox根文件系统制作:见教材6.3.3 (第一版p131-p136,第二版p148-p154)3、Uboot使用:参照附录一4、内核裁剪编译参考步骤:参照附录二5、根文件系统制作参考步骤:参照附录三6、在开发板OMAP3730下运行内核参考步骤:参照附录四7、OMAP3730开发板:四、实验内容与实验步骤1、内核裁减编译。
2、基于busybox,制作根文件系统。
3、在开发板上运行自己裁减过的内核和文件系统。
备注:本实验默认在ubuntu下进行,在其他版本的linux中操作基本类似。
实验中用到的软件包均可在xmu_omap3730_lib1.tar.gz中找到。
输入命令$ tar zxvf xmu_omap3730_lib1.tar.gz。
注:这里的$,包括下文的#均表示一种系统用户权限,前者表示普通用户,后者表示超级用户;在ubuntu下可在命令前追加sudo命令来使用超级用户权限,在fedora下可输入su命令后,按提示输入密码即可切换超级用户。
一般来说普通用户能做的超级用户均有权限做。
五、实验报告要求实验报告中要包含以下几个部分:1、实验目的2、实验条件3、实验原理4、实验步骤分析5、实验结果与总结实验步骤要详细,关键步骤要有截图,运行结果也要有截图。
内核配置要求列出选择的内核配置选项,并说明它的功能。
说明编译出来的内核文件uImage大小附录一u-boot命令简介:printenv 用来打印u-boot中正在使用的所有环境变量(包括未保存的),可不带参数setenv 用来设置一个环境变量,参数用空格隔开。
Linux的内核编译和内核模块的管理
Linux的内核编译和内核模块的管理一、内核的介绍内核室操作系统的最重要的组件,用来管理计算机的所有软硬件资源,以及提供操作系统的基本能力,RED hatenterpriselinux的许多功能,比如软磁盘整列,lvm,磁盘配额等都是由内核来提供。
1.1内核的版本与软件一样内核也会定义版本的信息,以便让用户可以清楚的辨认你用得是哪个内核的一个版本,linux内核以以下的的语法定义版本的信息MAJOR.MINOR.RELEASE[-CUSTOME]MAJOR:主要的版本号MINOR:内核的次版本号,如果是奇数,表示正在开发中的版本,如果是偶数,表示稳定的版本RELEASE:修正号,代表这个事第几次修正的内核CUSTOME 这个是由linux产品商做定义的版本编号。
如果想要查看内核的版本使用uname 来查看语法#uname [选项]-r --kernel-release 只查看目前的内核版本号码-s --kernel-name 支持看内核名称、-n --nodename 查看当前主机名字-v --kernel-version 查看当前内核的版本编译时间-m --machine 查看内核机器平台名称-p --processor 查看处理器信息-I --hard-platform 查看硬件平台信息-o --operating-system 查看操作系统的名称-a 查看所有1.2内核的组件内核通常会以镜像文件的类型来存储在REDHAT ENTERPRISE LINUX 中,当你启动装有REDHAT ENTERPRISE linux的系统的计算机时,启动加载器bootloader 程序会将内核镜像文件直接加载到程序当中,已启动内核与整个操作系统一般来说,REDHAT ENTERPRISE LINUX 会把内核镜像文件存储在/boot/目录中,文件名称vmlinuz-version或者vmlinux-version 其中version就是内的版本号内核模块组成linux内核的第二部分是内核模块,或者单独成为内核模块。
Linux内核配置
Linux内核配置系统1.配置系统的基本结构Linux内核的配置系统由三个部分组成,分别是:1.Makefile:分布在 Linux 内核源代码中的 Makefile,定义 Linux 内核的编译规则;2.配置文件(config.in):给用户提供配置选择的功能;3.配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于Xwindows 图形界面的用户配置界面,各自对应于 Make config、Makemenuconfig 和 make xconfig)。
这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。
本文并不是对配置系统本身进行分析,而是介绍如何使用配置系统。
所以,除非是配置系统的维护者,一般的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。
所以,在本文中,我们只对Makefile 和配置文件进行讨论。
另外,凡是涉及到与具体 CPU 体系结构相关的内容,我们都以 ARM 为例,这样不仅可以将讨论的问题明确化,而且对内容本身不产生影响。
2. Makefile2.1 Makefile 概述Makefile 的作用是根据配置的情况,构造出需要编译的源文件列表,然后分别编译,并把目标代码链接到一起,最终形成 Linux 内核二进制文件。
由于 Linux 内核源代码是按照树形结构组织的,所以 Makefile 也被分布在目录树中。
Linux 内核中的 Makefile 以及与 Makefile 直接相关的文件有:1.Makefile:顶层 Makefile,是整个内核配置、编译的总体控制文件。
2..config:内核配置文件,包含由用户选择的配置选项,用来存放内核配置后的结果(如 make config)。
3.arch/*/Makefile:位于各种 CPU 体系目录下的 Makefile,如arch/arm/Makefile,是针对特定平台的 Makefile。
2 linux内核裁减和文件系统编译
==========一、以下是虚拟机配置过程==============――――――1、以下是生成zImage内核文件――――――――cd /opt/cvtech/linux-2.6.30.4make menuconfig //配置内核裁减make zImage //生成zImage内核文件将zImage文件复制到/mnt/hgfs/share共享目录――――――2、以下是生成映像文件ramdisk.gz――――――――cd /opt/cvtech/rootfsls –lmkdir rdgz //创建文件夹,如果文件夹已经存在,则不再创建gunzip ramdisk.gz //解压文件系统mount -o loop ramdisk rdgz/ //挂载文件系统cd rdgz //进入rdgz文件夹ls //检查文件系统并进行修改操作cd .. //返回上一级目录umount rdgz //卸载rdgzgzip ramdisk ramdisk.gz //压缩生成新的文件系统映像文件ramdisk.gz将ramdisk.gz文件复制到/mnt/hgfs/share共享目录====================二、以下实现WINDOWS与linux的文件共享============= 1、打开虚拟机软件vmware的菜单,在虚拟机菜单选项中找到“设置(s)……”2、在设置界面中,配置文件夹共享,记住这里的共享文件夹路径,在下面的TFTP中会使用到这个路径。
3、进入linux虚拟机cd /mnt/hgfs/share //进入共享目录cp -a /tftp/* /mnt/hgfs/share/ //复制/tftpboot目录下的所有文件到当前文件夹ls //列出所有文件4、复制完成后,在windows机中的共享路径中,应该能看到所复制过来的文件。
==========三、以下是windowsXP系统配置过程===========打开桌面上的TFTP工具,配置tftp的目录,这个目录就是刚才设置的虚拟机共享目录,目录如下:在目录中已经存放了zImage和ramdisk.gz文件。
linux内核编译过程解释
linux内核编译过程解释
Linux内核是操作系统的核心部分,它控制着系统的资源管理、任务调度、驱动程序等重要功能。
编译Linux内核是一项非常重要的任务,因为它决定了系统的性能、稳定性和可靠性。
下面我们来了解一下Linux内核的编译过程。
1. 下载内核源代码:首先,我们需要从官方网站上下载Linux
内核的源代码。
这里我们可以选择下载最新的稳定版本或者是开发版,具体取决于我们的需求。
2. 配置内核选项:下载完源代码后,我们需要对内核进行配置。
这一步通常需要使用make menuconfig命令来完成。
在配置过程中,我们需要选择系统所需的各种驱动程序和功能选项,以及定制化内核参数等。
3. 编译内核:配置完成后,我们可以使用make命令开始编译内核。
编译过程中会生成一些中间文件和可执行文件,同时也会编译各种驱动程序和功能选项。
4. 安装内核:编译完成后,我们可以使用make install命令将内核安装到系统中。
这一步通常需要将内核文件复制到/boot目录下,并更新系统的引导程序以便正确加载新内核。
5. 重启系统:安装完成后,我们需要重启系统以使新内核生效。
如果新内核配置正确,系统应该能顺利地启动并正常工作。
总的来说,Linux内核的编译过程是一个相对复杂的过程,需要一定的技术和操作经验。
但是,通过了解和掌握相关的编译技巧和命
令,我们可以轻松地完成内核编译工作,并为系统的性能和稳定性做出贡献。
嵌入式Linux内核模块的配置与编译
嵌入式Linux内核模块的配置与编译一、简介随着 Linux操作系统在嵌入式领域的快速发展,越来越多的人开始投身到这方面的开发中来。
但是,面对庞大的Linux内核源代码,开发者如何开始自己的开发工作,在完成自己的代码后,该如何编译测试,以及如何将自己的代码编译进内核中,所有的这些问题都直接和Linux的驱动的编译以及Linux的内核配置系统相关。
内核模块是一些在操作系统内核需要时载入和执行的代码,它们扩展了操作系统内核的功能却不需要重新启动系统,在不需要时可以被操作系统卸载,又节约了系统的资源占用。
设备驱动程序模块就是一种内核模块,它们可以用来让操作系统正确识别和使用使用安装在系统上的硬件设备。
Linux内核是由分布在全球的Linux爱好者共同开发的,为了方便开发者修改内核,Linux的内核采用了模块化的内核配置系统,从而保证内核扩展的简单与方便。
本文通过一个简单的示例,首先介绍了如何在Linux下编译出一个内核模块,然后介绍了Linux内核中的配置系统,讲述了如何将一个自定义的模块作为系统源码的一部分编译出新的操作系统,注意,在这里我们介绍的内容均在内核2.6.13.2(也是笔者的开发平台的版本)上编译运行通过,在2.6.*的版本上基本上是可以通用的。
二、单独编译内核模块首先,我们先来写一个最简单的内核模块:#include <linux/module.h>#include <linux/kernel.h>#include <linux/errno.h>#define DRIVER_VERSION "v1.0"#define DRIVER_AUTHOR "RF"#define DRIVER_DESC "just for test"MODULE_AUTHOR(DRIVER_AUTHOR);MODULE_DESCRIPTION(DRIVER_DESC);MODULE_LICENSE("GPL");staticintrfmodule_init(void){printk("hello,world:modele_init");return 0;}static void rfmodule_exit(void){printk("hello,world:modele_exit");}module_init (rfmodule_init);module_exit (rfmodule_exit);这个内核模块除了在载入和卸载的时候打印2条信息之外,没有任何其他功能,不过,对于我们这个编译的例子来讲,已经足够了。
操作系统实验---配置和编译Linux内核
实验题目
姓名:
学号:
课程名称:
操作系统
所在学院:
信息科学与工程学院
专业班级:
计算机
任课教师:
实验项目名称
在Ubuntu16.04上配置和编译Linux内核
一、实验目的与要求:
1.按照提供的连接认真准备实验。
2.提前了解Linux内核的特点以及编译方法。
3.熟悉相关的指令代码并知道其作用。
4.编译完成可使用的内核,内核以姓名和学号命名,请勿直接拷贝其他同学的内核。
二、实验设备及软件:
计算机一台
Linux操作系统
三、实验方法(原理、流程图)
1、构建内核源码树
1)下载安装包
2)解压到内核源码目录下
2、编译内核
1)安装基本工具软件
2)在终端进入你的解压的内核源码的目录
3)依次执行相对应的命令
七、教师批阅意见:
成绩评定:
教师签字:
年月日
八、备注:
(4)依次执行以下命令
$ cd linux-3.19.0
$ cp /boot/config-$(uname -r) .config
$ make menuconfig
$ kg clean
$ fakeroot make-kpkg--initrd--revision166003566.001--append-to-version--20160906 kernel_image kernel_headers
3.编译完成可使用的内核
得到最终文件
四、实验过程、步骤及内容
五、编译内核
(1)安装基本的工具软件。
(2)我是在这里下载的源码包:https:///pub/linux/kernel/v3.x/,我下载的源码包是linux-3.19.0.tar.xz
Linux内核移植与根文件系统构建
Linux内核移植
10、SCSI device support
如果有SCSI 设备(SCSI 控制卡,硬盘或光驱等)则选上这项。目前SCSI 设备类型已经比较多,要具体区分它们你得先了解他们所使用的控制 芯片类型。2.6.X 内核中对各类型SCSI设备已经有更具体详细的支持。 <*> scsi support; <*>scsi disk support;
Linux内核移植
5、Networking option
网络选项,它主要是关于一些网络协议的选项。Linux 功能也就是在于 对网络功能的灵活支持。这部分内容相当多,根据不同情况,一般我 们把以下几项选上。 5.1、 packet socket 包协议支持,有些应用程序使用Packet 协议直接同网络设备通讯, 而不通过内核中的其它中介协议。同时它可以让你在TCP 不能用时找 到一个通讯方法。 5.2、 unix domain socket 对基本UNIX socket 的支持 5.3、 TCP/IP networking 对TCP/IP 协议栈的支持,当然要。如果你的内核很在意大小,而且 没有什么网络要就,也不使用类似X Window 之类基于Unix Socket 的应用那你可以不选,可节省大约144K 空间。
二、内核与根文件系统实验
• • • • 安装完成后依次执行以下命令: [root# root] Make dep [root# root] Make [root# root] Make PREFIX=./root install
由于根文件系统是内核启动时挂载的第一个文件系统那么根文件系统就要包括linux启动时所必须的目录和关键性的文件例如linux启动时都需要有init目录下的相关文件在linux挂载分区时linux一定会找etcfstab这个挂载文件等根文件系统中还包括了许多的应用程序bin目录等任何包括这些linux系统启动所必须的文件都可以成为根文件系统
buildroot编译详解
Buildroot 是一个用于编译嵌入式Linux系统的工具,它可以帮助你构建一个完整的Linux系统,包括内核、根文件系统、应用程序等。
下面是Buildroot 编译的详细步骤:
1.下载Buildroot
可以从官网下载Buildroot的最新版本,下载后解压到本地目录。
2.配置Buildroot
进入Buildroot的顶层目录,执行以下命令进行配置:
make menuconfig
这个命令会打开一个文本界面,你可以在这个界面中进行配置。
具体的配置选项可以根据自己的需求进行选择,配置完成后记得保存退出。
3.选择目标板和内核版本
在配置Buildroot时,需要选择目标板和内核版本。
目标板可以根据自己的硬件平台进行选择,而内核版本则可以根据需要选择对应的版本。
4.编译应用程序和工具链
在配置完成后,可以执行以下命令开始编译:
make all
这个命令会编译Buildroot中的所有应用程序和工具链。
如果编译成功,会在output目录下生成相应的文件。
5.构建根文件系统和内核映像
在编译完成后,可以执行以下命令构建根文件系统和内核映像:
make rootfs_tar # 构建根文件系统
make zImage # 构建内核映像
这两个命令会分别构建根文件系统和内核映像,并存储在output目录下。
6.将内核映像和根文件系统复制到目标板中
最后,将生成的内核映像和根文件系统复制到目标板中,即可完成整个系统的构建。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Linux内核配置编译与文件系统构建南京大学黄开成1011800462012.11.11一:实验目的1.了解嵌入式系统的开发环境,内核与文件系统的下载和启动;2.了解Linux内核源代码的目录结构及各自目录的相关内容,了解Linux内核各配置选项内容和作用,掌握Linux内核的编译过程;3.了解嵌入式操作系统中文件系统的类型和应用、了解JFFS2文件系统的优点及其在嵌入式系统中的作用、掌握利用Busybox软件制作嵌入式文件系统的方法,并且掌握嵌入式Linux文件系统的挂载过程。
二:实验环境说明1.PC机使用openSUSE 14 Enterprise 系统。
2.开发板使用深圳市武耀博德信息技术有限公司生产的基于Inter 的PXA270处理器的多功能嵌入式开发平台EELIOD。
3.PC机通过RS-232串口与开发板相连,在PC机终端上运行minicom 程序构造一个开发板上的终端,用于对开发板的控制。
4.PC机与开发板通过ethernet网络相连接,并可在开发板上通过加载网络文件系统(NFS)与PC机通信。
5.Bootloader可以通过tftp协议从PC机上下载内核镜像和根文件系统镜像。
下载目录为/tftpboot 。
6.用于开发板的Linux内核源码为linux-2.4.21-51Board_EDR,busybox版本为busybox-1.00-pre5。
7.交叉编译器的路径为/usr/local/arm-linux/bin/arm-linux。
三:实验操作过程和分析记录1.嵌入式系统的开发环境和开发流程:1.1启动minicom和开发板在PC机上打开一个终端,输入:>minicom按Ctrl+A-o进入minicom的configuration界面。
对串行通信接口进行配置,串口设置为:/dev/ttyS0(串口线接在PC机的串口1上)、bps=115200、8位数据、无校验、无流控制。
然后打开开发板电源,看到屏幕有反应之后,按任意键进入配置界面,如果长时间没有按下任何键,bootloader将会自动从flash中读取内核和根文件系统并启动开发板上的Linux系统。
分析:嵌入式系统中,通常并没有像PC机中BIOS 那样的固件程序,因此整个系统的加载启动任务完全由bootloader来完成。
bootloader的主要作用是:初始化硬件设备;建立内存空间的映射图;完成内核的加载,为内核设置启动参数。
按0进入命令行模式,出现51board>,可以设置开发板和PC机的IP 地址:51board> set myipaddr 192.168.208.133(设置开发板的IP地址) 51board> set destipaddr 192.168.208.33(设置PC机的IP地址)注意IP地址的设置:使其处于同一网段,并且避免和其他系统的IP发生冲突。
通过bootloader的主菜单可以完成很多功能,3——下载内核,4——将内核烧进flash,5——下载文件系统,6——将文件系统烧进flash,7——启动嵌入式操作系统等。
51board> tftp zImage kernel (下载内核)51board> tftp ramdisk.gz ramdisk (下载文件系统)51board> boot (启动系统,进入目标机终端)1.2 NFS服务器架设NFS是在不同机器不同操作系统之间进行网络共享文件的服务系统。
在嵌入式系统中目标机可以将宿主机的共享文档挂载在自己的系统中,从而,目标机使用宿主机上的远端文件就像是使用自己本地的文件一样,有利于嵌入式开发。
# ifconfig eth0 192.168.208.133 (配置网络)上面的eth0为接口名,eth0表示第一个以太网接口,如果使用其他网络接口,应做相应修改。
# mount 192.168.208.133:/exp /test -o nolock -o proto=tcp (将主机上的exp目录挂载到目标机的test目录上)此时可以对主机上/exp目录下的文件进行操作,就像已经在制作的文件系统里面一样,便于以后开发程序的调试,不必每次都重新烧写文件系统。
1.3编写应用程序并在目标机上运行编写简单的c程序hello.c:#include <stdio.h>int main(){printf(“hello,world\n”);return 0;}然后在主机上用交叉编译器进行编译。
>/usr/local/arm-linux/bin/arm-linux-gcc-o hello hello.c此外也可以设置好PATH环境变量以方便使用。
>export PATH=/usr/local/arm-linux/bin:$PATH>gcc -o hello hello.c将可执行文件hello复制到共享目录/exp,在目标机上运行hello #./hello显示hello,world1.4归纳总结嵌入式系统下软件开发的一般流程PC机上编写软件代码并用交叉编译环器编译——制作内核和文件系统并通过串口完成下载——启动内核并借助于NFS文件系统进行程序测试——完成调试后,将可执行文件加入文件系统并运行。
2.Linux内核配置与编译本实验中用的内核源码是linux-2.4.21-51Board_EDR,在目录/usr/src/linux下。
源代码树下有如下目录:arch(支持的微处理器体系结构),include(头文件),init(初始化代码),mm(内存管理代码),kernel(主要的内核代码),drives(所有的设备驱动程序),lib(库文件代码),net(网络相关代码)等。
将目标板的开机画面换成自己设定的画面的做法是:将/usr/src/linux目录下的内核源代码拷贝到自己的目录下,进入这个目录,在arch/arm下找到开发板启动画面的文件,将其删除,用自己的图画替换。
有两个小的注意事项是目标板只是别.ppm文件,所以需要改变原来图画的文件格式,可直接改文件后缀名,或者在终端中用命令convert。
且图画的文件名必须为linux_logo。
>convert linux_logo.jpg linux_logo.ppm2.1内核配置编译的基本流程在文件夹linux-2.4.21-51Board_EDR打开终端。
>make menuconfig (进入内核配置菜单)根据需要对内核配置项进行选择。
配置变量有四种选择:y——静态编译进内核,m——内核代码被编译成模块,n——表示不编译进内核,[ ]——表示配置变量的值为空。
按空格键可以切换着几种选择。
下面针对一些比较重要的内核配置项进行说明:1.Loadable module support,将不常用的设备模块化,动态地加载。
这样能更加有效利用内存。
所以最好选中。
2.System type,处理器种类。
本实验选中“PXA270/210-based”—>“XSBase270-EDR”。
3.在Network device support,网络设备驱动。
选择对应的网卡。
本实验箱的网卡是“Ethernet 10M or 100Mbit”“SMSC LAN91C111”。
4.Console drivers,终端设备驱动配置。
为了以后实验中要用到的支持图像的功能,要选择“support for framebuffer devices”和“PXA LCD support”。
5.在“General setup ->Default kernel command string”中设定内核启动时的一些参数,在使用ramdisk文件系统时该选项的值为root=/dev/ram0 rw console=ttyS0,115200 mem=64M其中root=/dev/ram0 表明使用的是randisk,rw表明可读可写,console=ttyS0,115200表明使用串行终端,波特率为115200,mem=64M指定内存大小。
6.由于使用randisk的情况需要内核的支持,故需要将“Block devices->RAM disk support”编入内核,此外将“Block devices->Default RAM disk size (kbytes)”改为8192,因为后续的ramdisk根文件系统将使用8MB大小。
7.在“Multimedia capabilities port drivers->UCB 1400 Touchscreen support on the xsBase 270 Board->GUI to be supported”选中“Qtopia”。
这是因为在使用LCD时将能使屏幕持续亮大约十分钟而不睡眠。
上面的这些配置很重要,其余的配置见讲义P20。
配置完之后选择保存,执行完之后会生成.config文件。
然后执行>make clean(清除以前构核过程中生成的目标文件、模块文件、核心和一些临时文件)>make dep(建立依赖关系)>make(将生成核心vmlinux)>make zImage生成的压缩内核映像文件zImage在arch/arm/boot目录中。
将生成的内核映像文件拷贝到/tftpboot下,以便开发板下载。
在反复地编译启动过程中还需要掌握一些小技巧来帮助加快开发进程,比如在配置选项结束的时候可以“Save Configuration to an Alternate File”,此时可以方便在下一次修改的时候可以“Load an Alternate Configuration File”来读取上一次的配置,避免一些错误的修改。
2.2总结内核映像文件的生成方法及其对操作系统的作用。
make menuconfig——make clean——make dep——make——make zImage内核文件是操作系统的核心,负责系统的进程管理,内存管理,设备和文件管理等,决定着系统的性能和稳定性。
2.3内核配置中哪些选项对操作系统的正常启动是必须的。
System type (系列选型);Character devices(字符设备驱动)中的Virtual terminal,support for console on serial support,support for console on virtual terminal;文件系统(File System)。
3.嵌入式文件系统的构建3.1 根文件系统概述根文件系统是内核启动时所mount的第一个文件系统,内核代码映像文件保存在跟文件系统中,而系统引导程序会在根文件系统挂载之后从中把一些基本的初始化脚本和服务加载到内存中运行。