光电耦合器原理及应用
光电耦合器作用和原理

光电耦合器作用和原理光电耦合器(Optocoupler)是一种光学器件,具有隔离性、放大性、线性性、稳定性等特点,广泛应用于电子电路中。
它主要由光发射器、光接收器、隔离层和输出级组成。
光电耦合器的作用是将输入信号转换成光脉冲信号,并通过隔离层隔离与输出№级,同时光脉冲信号被接收器转换为输出信号,从而实现输入输出信号的隔离和传输。
光电耦合器可以起到电气隔离和信号转换的作用,为电子电路提供安全可靠的保护。
同时,光电耦合器还可以提高电路的抗干扰能力和共模抑制比。
光电耦合器的原理是光电效应。
当有光照射到半导体材料上时,根据光电效应,半导体中一部分电子被激发,从而电子从价带跃迁至导带,形成空穴和电子对,从而产生光生载流子。
当半导体中有足够的轻子和空穴,光生载流子迅速扩散和漂移,并在光电接收器结构内的pn结区域结合产生电流。
光电接收器的输出信号与输入光发射器的输入信号一致。
光电耦合器的使用步骤如下:1.根据电路的需求选择合适的光电耦合器,包括光电器件类型、隔离电压等参数。
2.接线时应注意输入端和输出端的电极连接,一般采用直插式或SOP引脚式连接。
3.在电路中正确接入光电耦合器,将输入端连接到输入信号源,输出端连接到需要控制的电路中。
4.在电路通电前,应先检查光电器件的极性和隔离性能是否正确,以免引起损坏。
5.对于高频信号输入,需注意进行匹配和阻抗调节,以保证输入和输出信号传输的准确和稳定。
总之,光电耦合器是一种重要的光学器件,在现代电子电路中广泛应用。
它通过光电效应将输入电信号转换为光信号,隔离并放大信号,提高电路的抗干扰能力和共模抑制比,保证了电路的稳定性和可靠性。
同时,使用光电耦合器还可以避免电路中的接地问题和供电噪音问题。
什么是光电耦合器-其原理作用是什么

什么是光电耦合器?其原理作用是什么光电产品是我们现代生活中必不可少的一种设备,它为我们的生活带来了诸多的便利。
光电产品能够正常的使用,是离不开光电器件的。
光电耦合器就是这样一种非常重要的光电器件。
但是,小编相信绝大多数读者朋友都不是很了解光电耦合器的原理和作用,下面小编就为大家详细介绍光电耦合器的相关知识,希望带领大家了解这种器件的原理和作用。
光电耦合器简介什么是光电耦合器呢?它是一种以光为主要媒介的光电转换元件,它能够实现由光到电、再由电到光的转化。
光电耦合器又叫光电隔离器。
它能够对电路中的电信号产生很好的隔离作用,特别是在照明的电路中,它更是能够有效地保护电路和导线,使光信号和电信号互不干扰,各自进行工作,确保了电源和光源各自的正常有序工作,具有较好的电绝缘能力和防干扰能力。
生活中常见的光电耦合器有很多种类,如光电二极管、三极管,光敏电阻、光控型晶闸管,这些都属于很不错的光电耦合器。
光电耦合器原理那么光电耦合器的工作原理是什么呢?要了解光电耦合器的原理,首先就要了解它的组成部分。
光电耦合器主要是由两部分组成,分别是发光源和受光器,这两部分的元件都同时处于一个密闭的空间中,而且彼此之间都是用绝缘的透明壳体隔离。
电流工作的方式是以发光源的接线口为输入端,电流从这里进入。
以受光器的接线口为输出端,电流从这里输出。
当电流进入到发光源中,发光的元件受到电流作用发光,而且光的亮度会因为输入电流的大小而改变。
当光照到受光器上,受光器发生反应,电流从这里输出就会成为光电流。
那么什么是光电流呢?它是同时具有光电特性的信号,当这种信号传播到受光器上,受光器就会根据光电流的光照强度输出对应大小的电流,这些电流再回到电路中,就会形成一。
光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。
型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。
点击进入万联芯城点击进入万联芯城光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。
光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。
目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。
光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。
对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。
但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。
1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。
由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。
图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。
如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。
由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。
光耦典型应用

光耦典型应用光耦典型应用概述光耦(OptoCoupler),也称为光电耦合器或光隔离器,是一种能够通过光信号传递电信号的电子元件。
光耦的基本原理是利用光敏传感器(光电二极管或光敏电阻等)和光控开关(光敏晶体管或光控可控硅等)的组合,将输入端和输出端用光学隔离的方式进行电信号的转换和传递。
应用示例1.电气安全隔离:光耦常用于电气设备中,以实现输入和输出之间的隔离。
例如,将微控制器的输出信号通过光耦传递到高压设备的输入端,可避免因电气干扰等问题而导致设备损坏。
2.模拟隔离:光耦可以实现模拟信号的隔离和传递,在高噪声环境下,通过光电耦合器将信号转换成光信号传递,能有效减小噪声对信号的影响。
3.开关控制:由于光耦具有隔离性能,在一些需要隔离的场合,如高压开关控制、继电器驱动等方面,光耦可以作为信号的转换器,实现安全可靠的开关控制。
4.距离传输:光耦的输出信号可以通过光纤等光学传输介质传输到较远的位置。
因此,在需要远距离传输信号的场合,光耦是一种理想的传输方式。
5.传感器隔离:光耦常被用于传感器隔离电路中,例如光电耦合器能将传感器测量的模拟信号隔离传输,以减少传感器自身电磁干扰或外界干扰对信号的影响。
以上仅是光耦的一些典型应用示例,可以看出光耦作为一种电信号与光信号之间的转换器,在电子电路和通讯领域中起到了重要作用,并且具有良好的隔离和抗干扰性能。
6.医疗设备:在医疗设备中,光耦也被广泛应用。
例如,用于隔离医疗设备中的高电压部分和低电压部分,以保护患者和操作人员的安全。
7.电力电子:在电力电子领域,光耦被用于隔离控制信号和强电信号,以保护电子元件和系统的安全运行。
8.计算机网络:在计算机网络中,光耦也扮演着重要的角色。
例如,用于网络设备之间的隔离和信号传输,保证网络的安全和稳定性。
9.工业自动化:在工业自动化领域,光耦用于实现信号的隔离和传输,以确保设备之间的稳定通信和安全操作。
10.汽车电子:在汽车电子领域,光耦可以用于控制信号的隔离和传输,以保证汽车电子系统的可靠性和安全性。
光电耦合器的工作原理以及应用

光电耦合器的工作原理以及应用1. 工作原理光电耦合器(Optocoupler)是一种能够将输入端和输出端电气信号进行隔离的装置。
它由发光二极管(LED)和光敏三极管(Phototransistor)构成。
当输入端加上电压时,LED发出光信号,该光信号被光敏三极管接收后产生电流。
这种光电耦合的原理实质上是一种光控转换和能量传递的过程。
具体工作原理如下: 1. 输入端的电流通过限流电阻(Rx)流过发光二极管,使其发出一定功率的光信号。
2. 光信号经传输介质到达光敏元件,并激发出光敏元件的电子。
3. 光敏元件将光信号转换为电流信号,并通过输出端引出。
2. 主要构成部分光电耦合器的主要构成部分包括以下几个方面: - 发光二极管(LED):将输入电流转换为光信号。
- 光敏三极管(Phototransistor):将接收到的光信号转换为电流信号。
- 传输介质:用于将光信号从发光二极管传递到光敏三极管。
- 封装结构:提供外部环境下的物理保护和隔离。
3. 应用领域光电耦合器具有隔离、调制和数传等特点,广泛应用于以下领域:3.1 工业自动化控制系统光电耦合器在工业自动化控制系统中起到隔离和信号调制的作用。
它能够将电气信号转换为光信号并进行隔离,防止输入端的噪声、干扰等影响输出端的稳定性。
常见的应用包括: - PLC(可编程逻辑控制器)输入/输出模块 - 隔离式继电器输出模块 - 工业通信接口隔离3.2 通信设备光电耦合器在通信设备中用于隔离输入和输出信号,避免信号干扰和电气故障。
通信设备中常用到的应用包括: - 光纤调制解调器(光猫) - 光电耦合器串并转换器 - 光电耦合器隔离阵列模块3.3 医疗设备光电耦合器在医疗设备中起到信号隔离和电气保护的作用。
它能够将信号从控制电路隔离,确保患者和医护人员的安全。
常见的应用有: - 医疗设备输入/输出模块 - 医疗设备控制系统 - 医疗器械接口隔离3.4 电力电子设备光电耦合器在电力电子设备中用于信号隔离、电气保护和触发控制。
光电耦合器的原理及应用

光电耦合器原理及应用随着半导体技术和光电子学的发展,一种能有效地隔离噪音和抑制干扰的新型半导体器件——光电耦合器于1966年问世了。
光电耦合器的优点是体积小、寿命长、无触点、抗干扰能力强、能隔离噪音、工作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。
光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。
把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。
其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。
工作原理在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。
基本工作特性(以光敏三极管为例)A、共模抑制比很高在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。
B、输出特性光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。
当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。
IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。
C、光电耦合器可作为线性耦合器使用。
在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。
光电耦合器也可工作于开关状态,传输脉冲信号。
光电耦合器工作原理

光电耦合器工作原理光电耦合器(Optocoupler)是一种能够实现电-光转换和光-电转换的电子器件。
它由一个发光二极管(LED)和一个光敏二极管(光控电阻)组成,通过光线的传输来实现电信号的隔离和传输。
光电耦合器广泛应用于电气隔离、信号传输、噪声抑制等领域。
光电耦合器的工作原理如下:1. 发光二极管(LED)发光:当外部电流通过发光二极管时,LED会发出光线。
发光二极管内部的材料被激发,产生光子能量。
2. 光子传输:发光二极管发出的光线经过一个透明的隔离区域,传输到光敏二极管的光敏区域。
这个透明的隔离区域通常由空气或透明的塑料材料构成。
3. 光敏二极管(光控电阻)光电转换:光线到达光敏二极管后,光敏二极管中的光敏材料会吸收光子能量,并产生电子-空穴对。
这些电子-空穴对会在二极管中产生电流。
4. 电流转换:光敏二极管中产生的电流会通过外部电路进行放大和处理。
光敏二极管的电流可以用来控制另一个电路或设备的工作状态。
通过以上的工作原理,光电耦合器实现了电信号和光信号之间的隔离和转换。
它可以将输入电路与输出电路完全隔离,从而实现电气隔离和信号传输的目的。
光电耦合器在工业控制、通信设备、医疗设备等领域得到广泛应用。
光电耦合器的特点和优势包括:1. 高隔离性能:光电耦合器能够实现高达数千伏的电气隔离,有效地防止电流、电压和信号的干扰和传递。
2. 宽工作温度范围:光电耦合器能够在较宽的温度范围内正常工作,适应各种环境条件。
3. 快速响应速度:光电耦合器的光电转换速度快,能够实现高速信号传输和响应。
4. 低功耗:光电耦合器的功耗较低,能够节省能源和减少发热。
5. 可靠性高:光电耦合器采用固态器件,没有机械部件,寿命长,可靠性高。
总结起来,光电耦合器通过光信号的转换和隔离,实现了电气隔离和信号传输的功能。
它在电子设备中起到了重要的作用,广泛应用于各个领域。
随着技术的不断发展,光电耦合器的性能和应用领域将会得到进一步的拓展和提升。
光电耦合器的作用和工作原理

光电耦合器的作用和工作原理光电耦合器用于数模之间的转换。
光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。
它由发光源和受光器两部分组成。
把发光源和受光器组装在同一密闭的壳体内,彼此间用透亮绝缘体隔离。
发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管其工作原理时:在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照耀到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就可以实现电一光一电的转换。
光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰力量强,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年月进展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调整掌握端电流来转变占空比,达到精密稳压目的。
在光耦电路设计中,有两个参数经常被人忽视,需要非常留意,一个是反向电压Vr(Reverse Voltage ),是指原边发光二极管所能承受的最大反向电压,超过此反向电压,可能会损坏LED。
而一般光耦中,这个参数只有5V左右,在存在反压或振荡的条件下使用时,要特殊留意不要超过反向电压。
如,在使用沟通脉冲驱动LED时,需要增加爱护电路。
另外一个参数是光耦的电流传输比(current transfer ratio,简称CTR),是指在直流工作条件下,光耦的输出电流与输入电流之间的比值。
光耦的CTR类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同打算了光耦工作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电耦合器原理及应用
光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。
它由发光源和受光器两部分组成。
把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。
发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。
光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。
如下图1(外形有金属圆壳封装,塑封双列直插等)。
工作原理
在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。
基本工作特性(以光敏三极管为例)
1、共模抑制比很高
在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。
2、输出特性
光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。
当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。
IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。
其测试连线如图2,图中D、C、E三根线分别对应B、C、E极,接在仪器插座上。
3、光电耦合器可作为线性耦合器使用。
在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。
光电耦合器也可工作于开关状态,传输脉冲信号。
在传输脉冲信号时,输入信号和输出信号之间存在一定的延迟时间,不同结构的光电耦合器输入、输出延迟时间相差很大。
光电耦合器的测试
1、用万用表判断好坏,如图3,断开输入端电源,用R×1k档测1、2脚电阻,正向电阻为几百欧,反向电阻几十千欧,3、4脚间电阻应为无限大。
1、2脚与3、4脚间任意一组,阻值为无限大,输入端接通电源后,3、4脚的电阻很小。
调节RP,3、4间脚电阻发生变化,说明该器件是好的。
注:不能用R×10k档,否则导致发射管击穿。
2、简易测试电路,如图(4),当接通电源后,LED不发光,按下SB,LED会发光,调节RP、LED的发光强度会发生变化,说明被测光电耦合器是好的。
光电耦合器具体应用
1.组成开关电路
图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态.2.组成逻辑电路
图3电路为“与门”逻辑电路。
其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路.
3.组成隔离耦合电路
电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。
4.组成高压稳压电路
电略如图5所示.驱动管需采用耐压较高的晶体管(图中驱动管为3DG27)。
当输出电压增大时,V55
的偏压增加,B5中发光二极管的正向电流增大,使光敏管极间电压减小,调整管be结偏压降低而内阻增大,使输出电压降低,而保持输出电压的稳定.
5.组成门厅照明灯自动控制电路
电路如图6所示。
A是四组模拟电子开关(S1~S4):S1,S2,S3并联(可增加驱动功率及抗干扰能力)用于延时电路,当其接通电源后经R4,B6驱动双向可控硅VT,VT直接控制门厅照明灯H;S4与外接光敏电阻Rl等构成环境光线检测电路。
当门关闭时,安装在门框上的常闭型干簧管KD受到门上磁铁作用,
其触点断开,S1,S2,S3处于数据开状态。
晚间主人回家打开门,磁铁远离KD,KD触点闭合。
此时9V 电源整流后经R1向C1充电,C1两端电压很快上升到9V,整流电压经S1,S2,S3和R4使B6内发光管发光从而触发双向可控硅导通,VT亦导通,H点亮,实现自动照明控制作用。
房门关闭后,磁铁控制KD,触点断开,9V电源停止对C1充电,电路进入延时状态。
C1开始对R3放电,经一段时间延迟后,C1两端电压逐渐下降到S1,S2,S3的开启电压(1.5v)以下,S1,S2,S3恢复断开状态,导致B6截止,VT亦截止,H熄来,实现延时关灯功能。
文章出自《电子文摘报》
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。