函数的导数公式与求导法则
求导法则与求导公式
![求导法则与求导公式](https://img.taocdn.com/s3/m/e2342657b6360b4c2e3f5727a5e9856a5712265b.png)
求导法则与求导公式求导法则是用来求导数的基本方法和公式,它是微积分的基础,被广泛应用于数学、物理等领域。
在求导过程中,有一些基本的法则和公式可以帮助我们简化计算。
一、基本求导法则1.常数法则:如果f(x)=C,其中C为常数,则f'(x)=0。
2. 变量法则:如果f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
3.常数倍法则:如果f(x)=Cg(x),其中g(x)可导且C为常数,则f'(x)=Cg'(x)。
4.加减法则:如果f(x)=g(x)±h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)±h'(x)。
5.乘法法则:如果f(x)=g(x)h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)h(x)+g(x)h'(x)。
6.除法法则:如果f(x)=g(x)/h(x),其中g(x)和h(x)可导且h(x)不等于0,则f'(x)=(g'(x)h(x)-g(x)h'(x))/h(x)^27.复合函数法则:如果f(x)=g(h(x)),其中g和h都是可导函数,则f'(x)=g'(h(x))*h'(x)。
8.反函数法则:如果f和g是互为反函数,则f'(x)=1/g'(f(x))。
二、常用的求导公式1. 幂函数求导:(x^n)' = nx^(n-1)。
2.指数函数求导:(e^x)'=e^x。
3. 对数函数求导:(lnx)' = 1/x。
4. 三角函数求导:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x。
5. 反三角函数求导:(arcsinx)' = 1/√(1-x^2),(arccosx)' = -1/√(1-x^2),(arctanx)' = 1/(1+x^2)。
求导法则与导数公式
![求导法则与导数公式](https://img.taocdn.com/s3/m/622c5e1cdaef5ef7bb0d3c6b.png)
f
11
x2 ,
( x0 )1
或 ,
dx
1
xdy (y 1y0, 1) ,dy
1 x2
dx x x0
arctan x
1
1 x2
,
arc cotx
1
1 x2
,
x (,
) .
4. 复合函数的导数
指导思想:“由外向内, 逐层求导”
(1) 求导法则(链式法则)
Thm 3 设 u g( x) 在点 x 可导,而 y f (u) 在 在对应点 u g( x) 可导,则 y f (g(x)) 在点 x 可导,且
dt
求三叶玫瑰线 r a sin 3 (a> 0) 在对应
4 的点处的切线方程.
a
o
r
6. 隐函数的导数
例 11 (1)
由显x函y 数 ex
e y 0 确定了隐函数 y 形如 y f ( x) 的函数.
f
(x)
,求
y .
(2) 隐函数 由 F ( x, y) 0确定的函数 y y( x) . 能显化, 不能显化.
若函数 x(t) 存在反函数 t 1( x) ,则
y f [1( x)]是由 y f (t) , t 1( x) 复合而成.
Thm 4
设有参数方程
x y
f
(t ), (t ),
t I ,若函数
x(t) , y f (t) 在区间I 上均可导且 (t)0 ,
又 x(t) 存在反函数 t 1( x) ,则
d ln f ( x)
dx
Thm 若函数 y f ( x) 在 x 可导 ,且 f (x)0 ,则
d ln f ( x) f ( x) , 即 ln f ( x) f ( x) .
求导基本法则和公式
![求导基本法则和公式](https://img.taocdn.com/s3/m/3b4ed129854769eae009581b6bd97f192279bf92.png)
求导基本法则和公式导数的概念:数理化中的导数的定义是:数轴上导数是从一个点开始的一条直线(即“导数”),且直线(不经过一根直线)在此导数上连续时,其导数以指数形式递减。
函数的导数基本法则:一个函数的导数等于它的导数和它的不等式倒数之和的整数倍的导数之和之和。
如果某一点的导数等于(零点)或大于(或等于)一个点的导数,则这个点在该点的导数与零点或零点成正比;一个点为零点时的导数在零点的导数为零点;一个方向的导数等于一个方向导数的小数乘以该方向上每一个点导数)的值除以它所处方向(点坐标)的度数乘以所求数得出此数之积。
导数之比表示为导数与零点相差多少个单位而变化)程度就是零点(或区间)或百分比)。
如果用(2)表示导数可以利用任意一个导数除以整条线所形成的数位(数据点)即可得出被求数集或一个导数(或导数)。
下面将为大家介绍求导数所用到的基本法则和公式:由导数可以得导数)为(1-0)^4/2 (k>2. m)=1个点导数等于零点是求函数导数所用之地(或时间单位)在一个方向上与任意时刻导数相同,则求值之比等于零点导数与零点之间总有一个基点是零。
因此导数即为零点或区间(任意位置)时被求得的导数之积。
根据求导公式可以得出: a= f (a+ b)/2* x+ k. x= b→ r是一个区间上导数x与 u的差之和与它在其中一个零点所对应的位阻值之间的关系式为——导数x= t/1、求导数的方法有很多,求解时只要用到一些常见的代数方法即可。
求解的方法有很多,首先要知道哪几种方法是最有效,哪几种方法是最容易出错的方法。
这就要求我们平时要多思考,总结规律,及时纠正。
2、对我们学习比较重要的知识点要会看和会用!3、最常用就是把求解定理或函数与常数相关的基本定理或者公式记下来,并总结出来供大家参考。
从而能够把这些知识融会贯通于我们日常生活中,对于高中数学很重要。
而求解函数导数最基本的法则和公式就是这些。
最后再强调一下关于函数导数法,我认为是最简单的一种求解导数求导方法。
求函数的导数公式
![求函数的导数公式](https://img.taocdn.com/s3/m/f87d25e988eb172ded630b1c59eef8c75fbf95d7.png)
求函数的导数公式函数的导数公式是描述函数在某一点处斜率的一种数学工具,对于一般的函数f(x),它的导数可以用下面的公式来表示:1.导数的定义公式f'(x) = lim(h->0) [f(x + h) - f(x)]/h在这个公式中,f(x + h)表示以点(x + h, f(x + h))为端点的割线斜率,f(x)是函数f(x)在点x处的函数值,h表示x + h与x之差,即点(x + h, f(x + h))与点(x, f(x))之间的距离。
这个公式是导数定义的最基本形式,通常用于求解复杂函数的导数。
2.基本求导公式f'(x) = k,k为常数[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)[f(g(x))]’ = f'(g(x))g'(x)f’(x)/g(x) = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2[f(x)]^n = nf'(x)[f(x)]^(n-1),n为正整数这里列举了一些常用的求导公式。
对于任何由基本函数组成的函数,都可以使用这些公式求其导数。
3.导数的运算法则导数具有很好的运算性质,常用的运算法则有:(1)线性性质:f(x) ±g(x)的导数为f'(x) ±g'(x),kf(x)的导数为kf'(x),k为常数。
(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。
(3)商数法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2。
(4)复合函数的求导法则:如果y = f(g(x)),那么y' = f'(g(x))g'(x)。
以上是函数导数的一些基本公式和运算法则。
基本初等函数的导数公式及导数的运算法则
![基本初等函数的导数公式及导数的运算法则](https://img.taocdn.com/s3/m/b0c672c8690203d8ce2f0066f5335a8102d26632.png)
基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。
在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。
下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。
1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。
2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。
例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。
例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。
例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。
(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。
(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。
6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。
(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。
(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。
导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。
例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。
求导法则与导数基本公式
![求导法则与导数基本公式](https://img.taocdn.com/s3/m/1d97dcf4050876323112125f.png)
1
1
y ln a
y ln a
例11.设
求
解:
x
1 1
x2 1
2
1 2x
x2 1
1 1) , 则
(反双曲正弦)
sh x ex ex 2
的反函数
(arsh x)
1 x2 1
22
1 1 sin2 y
类似可求得
利用
arccos
x
arcsin
x
2
在上一节中我们曾经用定义求出指数函数导数,下面 我们利用反函数求它的导数.
2) 设 y a x (a 0 , a 1) , 则 x loga y , y ( 0 , )
1 (loga y)
x ( x3 4cos x sin1)
1 ( x3 4cos x sin1) x (3 x2 4sin x ) 2x
y x1
1 2
(1 4cos1 sin1)
(3 4sin1)
7 7 sin1 2cos1 22
(3)
(其中
).
证:设 y(x)
f '(x)g(x) f (x)g '(x)
故结论成立.
推论:
(2) ( uvw) uvw uvw uvw
(3)
( loga
x )
ln ln
x a
x
1 ln
a
例1. y x ( x3 4cos x sin1) ,
解: y ( x ) ( x3 4cos x sin1)
二、复合函数的求导法则 定理2(复合函数的导数) 若 f 和 g 可导, 有意义,则复合函数可导,且
求导数的方法法则与公式
![求导数的方法法则与公式](https://img.taocdn.com/s3/m/1f160a094b73f242336c5f89.png)
例5
函数,
ln x , y ln x 号,为分段
x 0, x 0.
1 当 x 0时, y (ln x ) (ln x ) , x 1 ( x ) 当 x 0时, y (ln x ) [ln( x )] , x x 1 综上, (ln x ) . x
第二节 求导数的方法
一、求导法则
法则与公式
主要内容:
二、基本初等函数的求导公式
一、求导法则
1. 函数和、差、积、商的求导法则:
如果函数u( x )、v ( x )在点x处可导,则它们 的和、差、积、商(分母不为零)在点x处也 可导,并且
(1) [ u ( x ) v ( x )] u ( x ) v ( x ).
于是方程两边对x求导数有 y 2 x y 0, y 2 xy 从而 y . y 1
二、基本初等函数的求导公式
1. 幂函数 x ( R )的导数
取对数求导法
对等式 y x 的两边取自然对数,有
y 两端对 x求导得 , y x y x 1 ( x ) x . 于是 y , x x
当u( x ) 1时,
0
1 (1)v ( x ) 1 v ( x ) v ( x ) 2 . [ ] 2 v ( x) v( x ) v ( x)
u( x ) u ( x ) 不可以为 [ ] . v( x ) v ( x )
1 v ( x ) ] 2 特别的, [ v( x ) v ( x)
设隐函数y关于x可导,我们可以利用复合 函数求导法则,求出y关于x的导数.
下面我们用例题来说明这种解法:
导数的定义和求导规则
![导数的定义和求导规则](https://img.taocdn.com/s3/m/d8e64d8477a20029bd64783e0912a21614797fec.png)
导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
函数导数求导
![函数导数求导](https://img.taocdn.com/s3/m/603f73d7b9f67c1cfad6195f312b3169a551ea45.png)
函数导数求导(最新版)目录1.函数导数的概念2.函数导数的求导法则3.函数导数在实际问题中的应用正文一、函数导数的概念函数导数,又称函数的导数,是微积分学中的一个重要概念。
它表示的是函数在某一点处的变化率,也可以理解为该函数在这一点的瞬间增长速度。
导数可以帮助我们了解函数在某一点的变化情况,为解决实际问题提供了重要的数学工具。
二、函数导数的求导法则求导法则主要包括以下几种:1.幂函数求导法则:若函数 f(x) = x^n,其中 n 为实数,则 f"(x) = n * x^(n-1)。
2.三角函数求导法则:若函数 f(x) = sinx,则 f"(x) = cosx;若函数 f(x) = cosx,则 f"(x) = -sinx。
3.指数函数求导法则:若函数 f(x) = a^x,其中 a > 0 且 a ≠ 1,则 f"(x) = a^x * ln(a);若函数 f(x) = e^x,则 f"(x) = e^x。
4.对数函数求导法则:若函数 f(x) = log_a(x),其中 a > 0 且 a ≠1,则 f"(x) = 1/(x * ln(a));若函数 f(x) = ln(x),则 f"(x) = 1/x。
5.反函数求导法则:若函数 f(x) = g(x) 的反函数为 g(x) =f^(-1)(x),则 f"(x) = (f"(g(x))) * (g"(x))。
6.复合函数求导法则:若函数 f(x) = g(h(x)),则 f"(x) = g"(h(x)) * h"(x)。
7.极限求导法则:若函数 f(x) 在 x0 的某邻域内可导,且极限存在,则 f"(x0) = lim(f"(x) * (x - x0)),当 x 趋近于 x0 时。
导数的计算公式和运算法则
![导数的计算公式和运算法则](https://img.taocdn.com/s3/m/51a419e70408763231126edb6f1aff00bed5706d.png)
导数的计算公式和运算法则
微积分中求导是一种关于函数变化的基本概念,它是描述瞬时变化率的重要方法,是研究函数变化规律的重要步骤。
求导技术可以帮助计算微分方程中变量的变化率,并用于求函数极值、特征值等。
求导有着多条计算公式和运算法则:
1.“常数的微分是式零”原则:函数增量内的任何一个常数的微分均等于零;
2.“恒等式微分”原则:两边同时求导后仍旧保持等式;
3.“加法原则”:当函数中存在“加法”操作时,在求导时“加法”变“乘法”;
4.“乘法原则”:当函数中存在“乘法”操作时,在求导时“乘法”变“幂的和”;
5.“嵌套函数的求导”原则:一个函数出现在另一个函数内部时,在求其求导
时需用到链式法则。
此外,由于求导的计算习惯,某些求导结果可以被采用一般法则来减少计算工作。
例如求单变量函数的导数时,多项式函数采用“指数求导法则”,指数函数采用“幂求导法则”,三角函数采用“三角求导法则”等。
基本上,所有计算求导的结果都可以用某种运算法则证明,它们可以把复杂的
函数变换成更简单的形式,从而便于进行计算。
求导结果可以理解为函数的变化率,对于复杂函数的推导很有用,让我们能够更快、更有效地求解与之相关的数学问题。
一般常用求导公式
![一般常用求导公式](https://img.taocdn.com/s3/m/a097f50ae55c3b3567ec102de2bd960591c6d969.png)
一般常用求导公式在数学中,求导是一项非常重要的运算,它用于计算函数在某一点的导数。
为了方便计算,数学家们总结出了一系列常用的求导公式,能够帮助我们更快速地求出函数的导数。
本文将介绍一般常用的求导公式,并给出相应的解释和使用示例。
一、基本导数法则1. 常数函数导数公式若y = C(C为常数),则y' = 0。
解释:常数函数的导数恒为0,因为其图像是一条水平线,斜率为0。
例如:如果y = 5,那么y' = 0。
2. 幂函数导数公式若y = x^n(n为常数),则y' = nx^(n-1)。
解释:幂函数的导数可以通过将指数降低1并作为新的指数乘以原指数,得到幂函数的导数。
例如:如果y = x^3,那么y' = 3x^2。
3. 指数函数导数公式若y = a^x(a>0且a≠1),则y' = a^x * ln(a)。
解释:指数函数的导数等于函数的值乘以底数的自然对数。
例如:如果y = 2^x,那么y' = 2^x * ln(2)。
4. 对数函数导数公式若y = lo gₐ(x)(a>0且a≠1),则y' = 1 / (x * ln(a))。
解释:对数函数的导数等于1除以自变量乘以底数的自然对数。
例如:如果y = log₂(x),那么y' = 1 / (x * ln(2))。
5. 指数对数函数导数公式若y = a^(bx + c)(a>0且a≠1,b和c为常数),则y' = (b * ln(a)) * a^(bx + c)。
解释:指数对数函数的导数等于指数项的系数乘以底数的自然对数,再乘以函数本身。
例如:如果y = 3^(2x + 1),那么y' = (2 * ln(3)) * 3^(2x + 1)。
二、常用三角函数导数公式1. 正弦函数导数公式若y = sin(x),则y' = cos(x)。
2. 余弦函数导数公式若y = cos(x),则y' = -sin(x)。
导数的计算方法总结
![导数的计算方法总结](https://img.taocdn.com/s3/m/ce07eb9548649b6648d7c1c708a1284ac8500596.png)
导数的计算方法总结导数是微积分中的重要概念,用于描述函数在某一点的变化率。
下面是导数的计算方法的总结:1. 通过定义计算导数:导数的定义是函数在某一点的极限,可以用以下公式表示:f'(x) = lim(h->0) [f(x+h) f(x)] / h.其中,f'(x)表示函数f(x)在点x处的导数。
2. 基本导数法则:常数规则,如果f(x)是常数c,那么f'(x) = 0。
幂函数规则,如果f(x) = x^n,其中n是实数常数,那么f'(x) = nx^(n-1)。
和差法则,如果f(x)和g(x)都是可导函数,那么(f+g)'(x) = f'(x) + g'(x)。
乘法法则,如果f(x)和g(x)都是可导函数,那么(fg)'(x) = f'(x)g(x) + f(x)g'(x)。
商法则,如果f(x)和g(x)都是可导函数,且g(x)≠0,那么(f/g)'(x) = [f'(x)g(x) f(x)g'(x)] / [g(x)]^2。
3. 链式法则:链式法则适用于复合函数的导数计算。
如果y = f(g(x)),其中f和g都是可导函数,那么y对x的导数可以通过以下公式计算:dy/dx = f'(g(x)) g'(x)。
4. 高阶导数,导数的导数称为高阶导数。
一阶导数是函数的斜率,二阶导数是函数的曲率。
高阶导数可以通过连续应用导数的定义和法则来计算。
5. 隐函数求导,当函数无法直接表示为y = f(x)的形式时,可以使用隐函数求导方法来计算导数。
6. 参数方程求导,对于参数方程x = f(t)和y = g(t),可以通过对x和y同时关于t求导来计算参数方程的导数。
以上是导数的计算方法的总结,这些方法可以帮助我们计算函数在特定点的导数,进而了解函数的变化趋势和性质。
基本初等函数的导数公式及导数的运算法则
![基本初等函数的导数公式及导数的运算法则](https://img.taocdn.com/s3/m/10f2bd862cc58bd63186bdda.png)
公式3.若f (x) sin x,则f '(x) cos x;
公式4.若f (x) cos x,则f '(x) sin x;
公式5.若f (x) ax ,则f '(x) ax ln a(a 0);
公式6.若f (x) ex ,则f '(x) ex;
公式7.若f
(2)求 y=1x+x22+x33的导数.
[解析] (1)①y′=(x2sinx)′=(x2)′sinx+x2(sinx)′ =2xsinx+x2cosx. ②y′=[x2(x2-1)]′=(x2)′(x2-1)+x2(x2-1)′ =2x(x2-1)+x2·2x=4x3-2x. (2)y′=1x+x22+x33′=1x+2x-2+3x-3′ =-x12-4x-3-9x-4=-x12-x43-x94.
法则1:两个函数的和(差)的导数,等于这两
个函数的导数的和(差),即:
[f(x) ±g(x)] ′= f'(x) ± g'(x);
应用1: 求下列函数的导数
(1)y=yx'3+s3inxx2 cos x
(2)y=x3-2x+3.
y ' 3x2 2
法则2:两个函数的积的导数,等于第一个函
练一练:
(1)下列各式正确的是( C )
A.(sin )' cos(为常数)
B(. cos x)' sin x C.(sin x)' cos x D.( x5 )' 1 x6
5
(2)下列各式正确的是( D )
A.(log
x a
)'
1 x
B.(log
导数的基本公式表
![导数的基本公式表](https://img.taocdn.com/s3/m/540f2d9ba48da0116c175f0e7cd184254b351b30.png)
导数的基本公式表导数是微积分中的重要概念,用于描述函数在某点处的变化率。
导数的基本公式是求导的重要工具,下面是导数的基本公式表及其相关参考内容。
1. 基本导数公式:(1) 常数函数导数公式:f(x) = c ,其中 c 为常数,导数为 f'(x) = 0 。
(2) 幂函数导数公式:f(x) = x^n ,其中 n 为常数,导数为 f'(x) = nx^(n-1) 。
(3) 指数函数导数公式:f(x) = a^x ,其中 a 为常数,导数为f'(x) = ln(a)·a^x 。
(4) 对数函数导数公式:f(x) = log_a(x) ,其中 a 为常数,导数为 f'(x) = 1/(ln(a)·x) 。
(5) 三角函数导数公式:正弦函数导数公式:f(x) = sin(x) ,导数为 f'(x) = cos(x) 。
余弦函数导数公式:f(x) = cos(x) ,导数为 f'(x) = -sin(x) 。
正切函数导数公式:f(x) = tan(x) ,导数为 f'(x) = sec^2(x) 。
2. 基本导数法则:(1) 基本求导法则:常数倍法则:[c·f(x)]' = c·f'(x) ,其中 c 为常数。
和差法则:[f(x)±g(x)]' = f'(x)±g'(x) 。
乘法法则:[f(x)·g(x)]' = f'(x)·g(x) + f(x)·g'(x) 。
除法法则:[f(x)/g(x)]' = [f'(x)·g(x) - f(x)·g'(x)]/g^2(x) ,其中g(x) ≠ 0 。
(2) 链式法则:若 y = f(g(x)) ,则 y' = f'(g(x))·g'(x) 。
导数的基本公式与运算法则
![导数的基本公式与运算法则](https://img.taocdn.com/s3/m/2d846bb58e9951e79a8927bf.png)
16 9
2
解:把椭圆方程的两边分别对x求导,得
x 2 y y 0 。 89 从而 y 9x .
16y
将 x2 ,y 3 3 ,代入上式得 所求切线的斜率 2
k 3 . 所求的切线方程为
4
yy33 33 33(x(x22) ),,即即 33xx44yy88 3300。。
22
44
六、对数求导法
v(x)
v2 ( x)
推论:
n
n
(1) [ fi ( x)] fi( x);
i 1
i 1
(2) [Cf ( x)] Cf ( x);
(3)
n
[
fi (x)] f1(x) f2 (x)
fn (x)
i 1
f1(x) f2 (x) fn(x).
二、例题分析
例1 求 y x3 2 x2 sin x 的导数 . 解: y 3x 2 4x cos x.
四、复合函数的求导法则
前面我们已经会求简单函数——基本初等函数经 有限次四则运算的结果的导数,但是像
ln
tan
x,e
x2
, sin
2x x2
1
等函数(复合函数)是否可导,可导的话,如何求 它们的导数。
定理 如果函数u g(x)在点 x可导 , 而y f (u)
在点u g(x)可导 , 则复合函数 y f [g(x)]在点
一般地
f ( x) u( x)v( x) (u( x) 0)
两边取对数得
ln f (x) v(x) ln u(x)
f (x) v(x) ln u(x) v(x)u(x)
f (x)
u(x)
f ( x) u( x)v( x)[v( x) ln u( x) v( x)u( x)] u( x)
2.2导数的求导法则
![2.2导数的求导法则](https://img.taocdn.com/s3/m/b1127126aaea998fcc220ed7.png)
等于直接函数导数的倒数。 二、反函数的导数等于直接函数导数的倒数。 反函数的导数等于直接函数导数的倒数 在某区间I 内单调、 设函数 x = ϕ ( y ) 在某区间 y内单调、可导且ϕ ( y ) ≠ 0 则其反函数y=f(x)在对应区间 x内也可导,且 在对应区间I 则其反函数 在对应区间 内也可导,
′ ′ x y′ = yu ⋅ uv ⋅ v′ x
例:求下列函数的导数 y′
dy dy du dv = ⋅ ⋅ dx du dv dx
(1) y = cos 2 x
3
(2) y = sin e
−2 x
(3) y = log 3 (arcsin(5 2 x + x))
( 4) y = x + a
a
a
xa
作业: 作业:P69 1(3)(5) 2 3(4)(6) 5 6
3
(2) y = ln 2 + log2 x − sin x
2、两函数乘积的导数等于第一个函数的导数乘第二个函 加上第一个函数乘第二个函数的导数。 数,加上第一个函数乘第二个函数的导数。即:
(uv )′ = u ′v + uv ′
例:求 y = x ln x 的导数
2
( 3、常数因子可以提到导数记号外。即:cu )′ = cu ′ 常数因子可以提到导数记号外。
2.2导数的求导法则 导数的求导法则 一、导数的四则运算法则 1、函数和差的导数等于函数导数的和差。即: 、函数和差的导数等于函数导数的和差。
(u ± v )′ = u ′ ± v ′
例:求下列函数的导数: 求下列函数的导数:
公式: 公式: x
基本初等函数的导数公式及导数的运算法则
![基本初等函数的导数公式及导数的运算法则](https://img.taocdn.com/s3/m/adf3d180f121dd36a22d8213.png)
(x 2) (x 1) 2x 3
sin x (sin x)'cos x sin x(cos x)'
(3) y' ( )' cos x
cos2 x
cos2 x sin cos2 x
2
x
1 cos2
x
sec2
x.
例2求下列函数的导数.
(1) y 2sin x cos x 2x2 1 (2) y cos2 x sin 2 x
【教育类精品资料】
基本初等函数的导数公式 及导数的运算法则
一、基本初等函数的导数公式:
C'0C为常 (数 xn)'n(x)n1(nQ)
(sin x) cos x (cxo)ssixn
(ax)' ax lna,(ex)' ex
(loga
x)'
1 ,(lnx)' xlna
1 x
二、导数的运算法则:(和差积商的导数)
[f(x ) g (x ) ]' f'(x ) g '(x )
函 数 和 ( 差 ) 的 导 数 等 于 它 们 导 数 的 和 ( 差 ) .
(可以推广到求有限个函数的和(差)的导数.)
(轮流求导之和)
[f(x)g(x)]'f'(x)g(x)f(x)g(x)' [gf((xx))]' f'(x)g([xg)(x)f]2(x)g(x)'(g(x)0)
(2 )y f(1 x 2) 2 x x f(1 x 2); 21 x 2 1 x 2
(3) y[f(sin2 x)f(cos2 x)]
所有导数公式及运算法则
![所有导数公式及运算法则](https://img.taocdn.com/s3/m/acecd35800f69e3143323968011ca300a7c3f645.png)
所有导数公式及运算法则基本初等函数的导数公式1 .C'=0(C为常数);2 .(Xn)'=nX(n-1) (n∈Q);3 .(sinX)'=cosX;4 .(cosX)'=-sinX;5 .(aX)'=aXIna (ln为自然对数)特别地,(ex)'=ex6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)'=1/x7 .(tanX)'=1/(cosX)2=(secX)28 .(cotX)'=-1/(sinX)2=-(cscX)29 .(secX)'=tanX secX10.(cscX)'=-cotX cscX导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v2④复合函数的导数[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的基础,同时也是微积分计算的一个重要的支柱。
2导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
高阶导数的求法1.直接法:由高阶导数的定义逐步求高阶导数。
一般用来寻找解题方法。
2.高阶导数的运算法则:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等函数求导公式与四 则运算法则
1.2.2基本初等函数的导数公式
学习目标: 1.熟练掌握基本初等函数的导数公式; 2.能利用给出的基本初等函数的导数公式和四则运算求简单函数 的导数. 重点:基本初等函数的导数公式 难点: 基本初等函数的导数公式的应用和四则运算法则
(一)基本初等函数的导数公式表
记一记:基本初等函数的导数公式
①f(x)=c,f′(x)= 0 ; ②f(x)=xn(n∈Q*),f′(x)= nxn-1 ;
③f(x)=sinx,f′(x)= cosx ; ④f(x)=cosx,f′(x)= -sinx;
⑤f(x)=ax,f′(x)= axlna ;
⑥f(x(x)=
;
1
⑧f(x)=lnx,f′(x)= x .
(二)导数的运算法则
四、小结与作业
(1)基本初等函数的导数公式表 (2)导数的运算法则