操作系统实验之进程管理实验报告
操作系统实验报告进程管理
操作系统实验报告进程管理操作系统实验报告:进程管理引言操作系统是计算机系统中的核心软件,负责管理计算机的硬件资源和提供用户与计算机之间的接口。
进程管理是操作系统的重要功能之一,它负责对计算机中运行的各个进程进行管理和调度,以保证系统的高效运行。
本实验报告将介绍进程管理的基本概念、原理和实验结果。
一、进程管理的基本概念1. 进程与线程进程是计算机中正在运行的程序的实例,它拥有独立的内存空间和执行环境。
线程是进程中的一个执行单元,多个线程可以共享同一个进程的资源。
进程和线程是操作系统中最基本的执行单位。
2. 进程状态进程在运行过程中会经历不同的状态,常见的进程状态包括就绪、运行和阻塞。
就绪状态表示进程已经准备好执行,但还没有得到处理器的分配;运行状态表示进程正在执行;阻塞状态表示进程由于某些原因无法继续执行,需要等待某些事件的发生。
3. 进程调度进程调度是操作系统中的一个重要任务,它决定了哪个进程应该获得处理器的使用权。
常见的调度算法包括先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转等。
二、进程管理的原理1. 进程控制块(PCB)PCB是操作系统中用于管理进程的数据结构,它包含了进程的各种属性和状态信息,如进程标识符、程序计数器、寄存器值等。
通过PCB,操作系统可以对进程进行管理和控制。
2. 进程创建与撤销进程的创建是指操作系统根据用户的请求创建一个新的进程。
进程的撤销是指操作系统根据某种条件或用户的请求终止一个正在运行的进程。
进程的创建和撤销是操作系统中的基本操作之一。
3. 进程同步与通信多个进程之间可能需要进行同步和通信,以实现数据共享和协作。
常见的进程同步与通信机制包括互斥锁、信号量和管道等。
三、实验结果与分析在本次实验中,我们使用了一个简单的进程管理模拟程序,模拟了进程的创建、撤销和调度过程。
通过该程序,我们可以观察到不同调度算法对系统性能的影响。
实验结果显示,先来先服务(FCFS)调度算法在一些情况下可能导致长作业等待时间过长,影响系统的响应速度。
操作系统实验二:进程管理
操作系统实验二:进程管理操作系统实验二:进程管理篇一:操作系统实验报告实验一进程管理一、目的进程调度是处理机管理的核心内容。
本实验要求编写和调试一个简单的进程调度程序。
通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。
二、实验内容及要求1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。
可根据实验的不同,PCB结构的内容可以作适当的增删)。
为了便于处理,程序中的某进程运行时间以时间片为单位计算。
各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。
2、系统资源(r1…rw),共有w类,每类数目为r1…rw。
随机产生n进程Pi(id,s(j,k)t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。
3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。
建立进程就绪队列。
4、编制进程调度算法:时间片轮转调度算法本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。
在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。
三、实验环境操作系统环境:Windows系统。
编程语言:C#。
四、实验思路和设计1、程序流程图2、主要程序代码//PCB结构体struct pcb{public int id; //进程IDpublic int ra; //所需资源A的数量public int rb; //所需资源B的数量public int rc; //所需资源C的数量public int ntime; //所需的时间片个数public int rtime; //已经运行的时间片个数public char state; //进程状态,W(等待)、R(运行)、B(阻塞)//public int next;}ArrayList hready = new ArrayList();ArrayList hblock = new ArrayList();Random random = new Random();//ArrayList p = new ArrayList();int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数//r为可随机产生的进程数(r=m-n)//a,b,c分别为A,B,C三类资源的总量//i为进城计数,i=1…n//h为运行的时间片次数,time1Inteval为时间片大小(毫秒)//对进程进行初始化,建立就绪数组、阻塞数组。
操作系统进程控制实验报告
操作系统进程控制实验报告一、实验目的操作系统进程控制是操作系统中的重要概念和核心功能之一。
本次实验的目的在于深入理解操作系统中进程的概念、状态及其转换,掌握进程创建、终止、阻塞和唤醒等操作的实现原理和方法,通过实际编程和调试,观察进程的行为和特性,从而提高对操作系统原理的理解和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验原理(一)进程的概念进程是操作系统中进行资源分配和调度的基本单位,它包含了程序代码、数据、堆栈等资源。
进程具有独立性、动态性和并发性等特点。
(二)进程的状态进程的状态通常包括就绪态、运行态和阻塞态。
就绪态表示进程已具备运行条件,等待被调度;运行态表示进程正在 CPU 上执行;阻塞态表示进程因等待某个事件而暂停执行。
(三)进程控制的基本操作1、进程创建:通过系统调用创建新的进程,为其分配资源并初始化。
2、进程终止:当进程完成任务或出现异常时,结束其执行并回收资源。
3、进程阻塞:进程在等待某个事件时,主动进入阻塞态。
4、进程唤醒:当等待的事件发生时,将阻塞的进程唤醒,使其进入就绪态。
四、实验内容与步骤(一)进程创建1、编写 C++程序,使用系统提供的函数创建新的进程。
2、在新进程中执行特定的任务,例如打印输出信息。
```cppinclude <windowsh>include <iostream>int main(){STARTUPINFO si;PROCESS_INFORMATION pi;ZeroMemory(&si, sizeof(si));sicb = sizeof(si);ZeroMemory(&pi, sizeof(pi));//创建新进程if (!CreateProcess(NULL, //应用程序名称"C:\\Path\\To\\Your\\ChildProcessexe",//命令行参数NULL, NULL, FALSE, 0, NULL, NULL, &si, &pi)){std::cerr <<"CreateProcess failed Error code: "<<GetLastError()<< std::endl;return 1;}//等待子进程结束WaitForSingleObject(pihProcess, INFINITE);//关闭进程和线程句柄CloseHandle(pihProcess);CloseHandle(pihThread);return 0;}```(二)进程终止1、在创建的进程中设置条件,当满足条件时主动终止进程。
电大操作系统实验报告3_ 进程管理实验
电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。
三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。
2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。
3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。
以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。
(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。
进程管理演示实验报告
一、实验目的1. 理解进程的概念及其在操作系统中的作用。
2. 掌握Linux系统中进程的创建、调度、同步和通信方法。
3. 熟悉进程的阻塞、挂起、恢复和终止操作。
4. 学习使用相关命令和工具进行进程管理和调试。
二、实验环境操作系统:Linux开发环境:GCC、Xshell三、实验内容1. 进程创建与调度2. 进程同步与通信3. 进程阻塞与恢复4. 进程终止与调试四、实验步骤1. 进程创建与调度(1)编写一个简单的C程序,使用fork()函数创建一个子进程。
(2)在父进程中,使用getpid()和getppid()函数获取进程ID和父进程ID。
(3)使用ps命令查看当前系统中的进程,观察父进程和子进程的状态。
(4)使用waitpid()函数等待子进程结束。
2. 进程同步与通信(1)编写一个使用管道(pipe)进行进程间通信的C程序。
(2)父进程向管道中写入数据,子进程从管道中读取数据。
(3)使用ps命令查看进程状态,观察管道通信的效果。
(4)编写一个使用信号量(semaphore)进行进程同步的C程序。
(5)使用sem_wait()和sem_post()函数实现进程同步。
3. 进程阻塞与恢复(1)编写一个使用sleep()函数使进程阻塞的C程序。
(2)在父进程中,使用waitpid()函数等待阻塞的子进程结束。
(3)使用kill()函数向阻塞的进程发送SIGCONT信号,使其恢复执行。
4. 进程终止与调试(1)编写一个使用exit()函数终止进程的C程序。
(2)在父进程中,使用waitpid()函数等待终止的子进程。
(3)使用gdb调试器分析程序运行过程中出现的问题。
五、实验结果与分析1. 进程创建与调度实验结果表明,使用fork()函数成功创建了子进程,父进程和子进程的进程ID和父进程ID被正确获取。
通过ps命令,可以观察到父进程和子进程的状态。
2. 进程同步与通信实验结果表明,管道通信可以成功实现父进程和子进程之间的数据传递。
进程管理实验报告源代码(3篇)
第1篇---进程管理实验报告一、实验目的1. 理解进程的概念和进程管理的基本原理。
2. 掌握进程的创建、调度、同步和通信等操作。
3. 通过编程实现简单的进程管理功能。
二、实验环境1. 操作系统:Windows/Linux2. 编程语言:C/C++3. 开发环境:Visual Studio/Code::Blocks三、实验内容1. 进程的创建与终止2. 进程的同步与互斥3. 进程的通信4. 进程调度算法四、实验步骤1. 进程的创建与终止```cinclude <stdio.h>include <sys/types.h>include <unistd.h>int main() {pid_t pid;// 创建子进程pid = fork();if (pid < 0) {// 创建进程失败perror("fork failed");return 1;} else if (pid == 0) {// 子进程printf("Child process, PID: %d\n", getpid()); // 执行子进程的任务...sleep(5); // 子进程暂停5秒_exit(0); // 子进程退出} else {// 父进程printf("Parent process, PID: %d\n", getpid()); wait(NULL); // 等待子进程结束printf("Child process has terminated.\n");}return 0;}```2. 进程的同步与互斥```cinclude <stdio.h>include <pthread.h>pthread_mutex_t mutex;void thread_func(void arg) {pthread_mutex_lock(&mutex); // 加锁printf("Thread %ld is running\n", (long)arg);sleep(1); // 模拟任务执行pthread_mutex_unlock(&mutex); // 解锁return NULL;}int main() {pthread_t thread1, thread2;// 初始化互斥锁pthread_mutex_init(&mutex, NULL);// 创建线程pthread_create(&thread1, NULL, thread_func, (void )1); pthread_create(&thread2, NULL, thread_func, (void )2); // 等待线程结束pthread_join(thread1, NULL);pthread_join(thread2, NULL);// 销毁互斥锁pthread_mutex_destroy(&mutex);return 0;}```3. 进程的通信```cinclude <stdio.h>include <stdlib.h>include <sys/ipc.h>include <sys/shm.h>int main() {key_t key;int shmid;int data;// 生成共享内存标识符key = ftok("shmfile", 65);// 创建共享内存段shmid = shmget(key, sizeof(int), 0666 | IPC_CREAT); if (shmid == -1) {perror("shmget failed");exit(1);}// 连接到共享内存段data = (int )shmat(shmid, (void )0, 0);if (data == (int )(-1)) {perror("shmat failed");exit(1);}// 使用共享内存data = 100;printf("Data in shared memory: %d\n", data); // 分离共享内存段if (shmdt(data) == -1) {perror("shmdt failed");exit(1);}// 删除共享内存段if (shmctl(shmid, IPC_RMID, NULL) == -1) { perror("shmctl failed");exit(1);}return 0;}```4. 进程调度算法```cinclude <stdio.h>include <stdlib.h>include <sys/time.h>typedef struct {int pid;int arrival_time;int burst_time;int waiting_time;int turnaround_time;} Process;int main() {Process processes[] = {{1, 0, 5, 0, 0},{2, 1, 3, 0, 0},{3, 4, 8, 0, 0}};int n = sizeof(processes) / sizeof(processes[0]);// 计算等待时间和周转时间int total_waiting_time = 0, total_turnaround_time = 0;for (int i = 0; i < n; i++) {if (i == 0) {processes[i].waiting_time = 0;} else {processes[i].waiting_time = processes[i - 1].turnaround_time;}processes[i].turnaround_time = processes[i].burst_time + processes[i].waiting_time;total_waiting_time += processes[i].waiting_time;total_turnaround_time += processes[i].turnaround_time;}printf("Average Waiting Time: %f\n", (float)total_waiting_time / n);printf("Average Turnaround Time: %f\n", (float)total_turnaround_time / n);return 0;}```五、实验结果与分析(此处应填写实验结果,包括运行程序输出、图表等,以及对实验结果的分析。
操作系统-进程管理实验报告
操作系统-进程管理实验报告实验一进程管理1.实验目的:(1)加深对进程概念的理解,明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象,研究解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。
2.实验预备内容(1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件,分析进程的创建过程。
3.实验内容(1)进程的创建:编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果,并分析原因。
源代码如下:#include<XXX>#include<XXX>#include<unistd.h>#include <XXX>#include <XXX>int main(int argc,char* argv[]){pid_t pid1,pid2;pid1 = fork();if(pid1<0){fprintf(stderr,"childprocess1 failed");exit(-1);}else if(pid1 == 0){printf("b\n");}else{pid2 = fork();if(pid2<0){fprintf(stderr,"childprocess1 failed"); exit(-1);}else if(pid2 == 0){printf("c\n");}else{printf("a\n");sleep(2);exit(0);}}return 0;}结果如下:分析原因:pid=fork();操纵体系创建一个新的历程(子历程),而且在历程表中相应为它建立一个新的表项。
进程管理实验报告_共10篇 .doc
★进程管理实验报告_共10篇范文一:_进程管理实验报告进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。
2.学习系统调用fork的使用方法。
3.学习系统调用exec族调用的使用方法。
2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。
#includepid_tfork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork调用返回值。
当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。
对于父进程fork返回子进程ID,而对于fork 子进程返回0,我们就是根据这个返回值来区分父子进程的。
2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。
将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。
而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。
3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。
为了调用系统程序,我们可以使用系统调用exec族调用。
Exec族调用有以下五个函数:intexecl(constchar*path,constchar*arg,?);intexeclp(constchar*file,constchar*arg,?);intexecle(constchar*path,constchar*arg,?);intexecv(constchar*path,constchar*argv[]);intexecvp(constchar*file,constchar*argv[]);exec族调用可以执行给定程序。
进程管理实验报告分析(3篇)
第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
进程通讯管理实验报告(3篇)
第1篇一、实验目的1. 理解进程通信的概念和原理;2. 掌握进程通信的常用机制和方法;3. 能够使用进程通信机制实现进程间的数据交换和同步;4. 增强对操作系统进程管理模块的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C3. 开发环境:GCC三、实验内容1. 进程间通信的管道机制2. 进程间通信的信号量机制3. 进程间通信的共享内存机制4. 进程间通信的消息队列机制四、实验步骤1. 管道机制(1)创建管道:使用pipe()函数创建管道,将管道文件描述符存储在两个变量中,分别用于读和写。
(2)创建进程:使用fork()函数创建子进程,实现父子进程间的通信。
(3)管道读写:在父进程中,使用read()函数读取子进程写入的数据;在子进程中,使用write()函数将数据写入管道。
(4)关闭管道:在管道读写结束后,关闭对应的管道文件描述符。
2. 信号量机制(1)创建信号量:使用sem_open()函数创建信号量,并初始化为1。
(2)获取信号量:使用sem_wait()函数获取信号量,实现进程同步。
(3)释放信号量:使用sem_post()函数释放信号量,实现进程同步。
(4)关闭信号量:使用sem_close()函数关闭信号量。
3. 共享内存机制(1)创建共享内存:使用mmap()函数创建共享内存区域,并初始化数据。
(2)映射共享内存:在父进程和子进程中,使用mmap()函数映射共享内存区域。
(3)读写共享内存:在父进程和子进程中,通过指针访问共享内存区域,实现数据交换。
(4)解除映射:在管道读写结束后,使用munmap()函数解除映射。
4. 消息队列机制(1)创建消息队列:使用msgget()函数创建消息队列,并初始化消息队列属性。
(2)发送消息:使用msgsnd()函数向消息队列发送消息。
(3)接收消息:使用msgrcv()函数从消息队列接收消息。
(4)删除消息队列:使用msgctl()函数删除消息队列。
进程的管理实验报告结论
一、实验背景及目的进程是操作系统中基本的活动单位,进程管理是操作系统核心功能之一。
为了深入理解进程的概念、进程状态转换、进程同步与互斥等知识,我们进行了进程管理实验。
本次实验旨在通过编写程序,模拟进程的创建、调度、同步与互斥等操作,加深对进程管理的理解。
二、实验内容及方法1. 进程创建与状态转换(1)使用系统调用fork()创建子进程,观察父进程和子进程的状态转换过程。
(2)使用系统调用exec()替换子进程的内容,观察子进程状态变化。
2. 进程调度(1)编写进程调度程序,实现最高优先数优先调度算法和先来先服务调度算法。
(2)模拟进程就绪队列,观察调度算法对进程执行顺序的影响。
3. 进程同步与互斥(1)使用信号量实现进程同步,观察进程同步效果。
(2)使用互斥锁实现进程互斥,观察进程互斥效果。
4. 进程通信(1)使用管道实现进程间通信,观察通信效果。
(2)使用共享内存实现进程间通信,观察通信效果。
三、实验结果与分析1. 进程创建与状态转换实验结果显示,使用fork()创建子进程后,父进程和子进程的状态均为运行态。
当父进程调用exec()替换子进程内容后,子进程状态变为僵尸态,父进程状态变为运行态。
这说明进程在创建和替换过程中,其状态发生了相应的变化。
2. 进程调度实验结果显示,最高优先数优先调度算法和先来先服务调度算法均能正确执行。
最高优先数优先调度算法下,优先级高的进程先执行;先来先服务调度算法下,先到达的进程先执行。
这说明两种调度算法均能实现进程的合理调度。
3. 进程同步与互斥实验结果显示,使用信号量实现进程同步时,进程能正确地按照规定的顺序执行;使用互斥锁实现进程互斥时,进程能正确地实现互斥访问共享资源。
这说明信号量和互斥锁在进程同步与互斥方面具有重要作用。
4. 进程通信实验结果显示,使用管道实现进程间通信时,进程能正确地接收和发送数据;使用共享内存实现进程间通信时,进程能正确地访问共享内存中的数据。
进程的管理实验报告
一、实验目的1. 理解进程的基本概念和进程状态转换过程。
2. 掌握进程创建、进程同步和进程通信的方法。
3. 了解进程调度算法的基本原理和实现方法。
4. 通过实验加深对进程管理的理解,提高操作系统实践能力。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:GCC三、实验内容1. 进程创建与状态转换(1)使用fork()函数创建一个子进程,并观察父进程和子进程的进程ID。
(2)使用exec()函数替换子进程的映像,实现进程的创建。
(3)观察进程状态转换过程,如创建、运行、阻塞、就绪、终止等。
2. 进程同步(1)使用互斥锁(mutex)实现进程的互斥访问共享资源。
(2)使用信号量(semaphore)实现进程的同步,如生产者-消费者问题。
(3)观察进程同步的效果,确保进程安全执行。
3. 进程通信(1)使用管道(pipe)实现进程间的单向通信。
(2)使用消息队列(message queue)实现进程间的双向通信。
(3)使用共享内存(shared memory)实现进程间的快速通信。
(4)观察进程通信的效果,确保数据正确传递。
(1)实现基于优先级的进程调度算法,如先来先服务(FCFS)和最高优先级优先(HPF)。
(2)实现基于时间片的轮转调度算法(RR)。
(3)观察进程调度算法的效果,分析不同算法的优缺点。
四、实验步骤1. 编写程序实现进程创建与状态转换,使用fork()和exec()函数。
2. 编写程序实现进程同步,使用互斥锁和信号量。
3. 编写程序实现进程通信,使用管道、消息队列和共享内存。
4. 编写程序实现进程调度,使用优先级调度和时间片轮转调度。
5. 编译并运行程序,观察实验结果,分析实验现象。
五、实验结果与分析1. 进程创建与状态转换通过实验,我们成功创建了父进程和子进程,并观察到进程ID的变化。
在进程创建过程中,父进程的进程ID与子进程的进程ID不同,说明子进程是独立于父进程的实体。
操作系统进程管理实验报告
操作系统进程管理实验报告一、引言在现代计算机科学中,操作系统的进程管理是确保系统高效运行的关键环节。
本实验旨在通过观察和分析操作系统的进程管理行为,深入理解进程的创建、运行和终止过程,以及操作系统如何对进程进行调度和资源分配。
二、实验目标1、理解进程的基本概念、进程状态及转换。
2、掌握进程的创建、终止和调度方法。
3、观察和分析进程在运行过程中的资源消耗和调度行为。
4、分析操作系统对进程的资源分配和调度策略对系统性能的影响。
三、实验环境与工具本实验在Linux操作系统上进行,使用GNU/Linux环境下的工具进行进程的创建、监控和调度。
四、实验步骤与记录1、创建进程:使用shell命令“fork”创建一个新的进程。
记录下父进程和子进程的PID,以及它们在内存中的状态。
2、进程状态观察:使用“ps”命令查看当前运行进程的状态,包括进程的PID、运行时间、CPU使用率等。
同时,使用“top”命令实时监控系统的CPU、内存等资源的使用情况。
3、进程调度:在“crontab”中设置定时任务,观察系统如何根据预设的调度策略分配CPU资源给各个进程。
4、资源分配:通过修改进程的优先级(使用“nice”命令),观察系统如何调整资源分配策略。
5、终止进程:使用“kill”命令终止一个进程,并观察系统如何处理该进程占用的资源。
五、实验结果与分析1、创建进程:通过“fork”系统调用,成功创建了一个新的进程,并获取了父进程和子进程的PID。
在内存中,父进程和子进程的状态分别为“running”和“ready”。
2、进程状态观察:使用“ps”命令可以看到父进程和子进程的状态均为“running”,同时显示了它们的CPU使用率和运行时间等信息。
通过“top”命令,可以实时监控系统的CPU、内存等资源的使用情况,为进一步分析提供了数据支持。
3、进程调度:在“crontab”中设置定时任务后,系统会根据预设的调度策略以及各个进程的运行状态,动态地分配CPU资源给各个进程。
操作系统进程管理实验报告
操作系统进程管理实验报告操作系统进程管理实验报告引言:操作系统是计算机系统中最核心的软件之一,它负责管理计算机硬件和软件资源,提供良好的用户体验和高效的计算服务。
其中,进程管理是操作系统的重要功能之一,它负责管理和调度计算机中的各个进程,确保它们能够有序地运行,并且能够合理地利用计算机资源。
本实验旨在通过实际操作,深入了解操作系统的进程管理机制,并通过编写简单的进程管理程序,加深对进程管理的理解。
一、实验目的本实验的主要目的是通过编写简单的进程管理程序,加深对操作系统进程管理机制的理解。
具体来说,我们将实现以下功能:1. 创建进程:能够创建新的进程,并为其分配资源。
2. 进程调度:能够根据进程的优先级和调度算法,合理地调度进程的执行顺序。
3. 进程同步:能够实现进程间的同步与互斥,避免资源竞争和死锁问题。
二、实验环境和工具本实验使用的实验环境和工具如下:1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验过程和结果1. 进程创建在实验中,我们首先实现了进程的创建功能。
通过调用操作系统提供的系统调用接口,我们能够创建新的进程,并为其分配资源。
具体的实现过程涉及到进程控制块(PCB)的创建和初始化,以及资源的分配和管理。
通过编写测试程序,我们成功创建了多个进程,并验证了进程创建功能的正确性。
2. 进程调度进程调度是操作系统中非常重要的功能之一,它决定了进程的执行顺序和时间片的分配。
在实验中,我们实现了简单的进程调度算法,采用了轮转调度算法。
通过设计合适的数据结构和算法,我们能够按照一定的优先级和时间片大小,合理地安排进程的执行顺序。
通过编写测试程序,我们验证了进程调度功能的正确性。
3. 进程同步在多进程环境下,进程间的同步与互斥是非常重要的问题。
在实验中,我们实现了进程同步功能,通过使用信号量和互斥锁,实现了进程间的同步与互斥。
通过编写测试程序,我们验证了进程同步功能的正确性,并且能够避免资源竞争和死锁问题。
进程管理实验报告
进程管理实验报告进程管理实验报告引言:进程管理是操作系统中的重要概念,它负责调度和控制计算机系统中的各个进程,确保它们能够有序地执行。
本实验旨在通过实际操作和观察,深入了解进程管理的原理和方法,并通过实验结果分析其影响因素和优化策略。
实验一:进程创建与终止在本实验中,我们首先进行了进程的创建和终止实验。
通过编写简单的程序,我们能够观察到进程的创建和终止过程,并了解到进程控制块(PCB)在其中的作用。
实验结果显示,当一个进程被创建时,操作系统会为其分配一个唯一的进程ID,并为其分配必要的资源,如内存空间、文件描述符等。
同时,操作系统还会为该进程创建一个PCB,用于存储该进程的相关信息,如进程状态、程序计数器等。
当我们手动终止一个进程时,操作系统会释放该进程所占用的资源,并将其PCB从系统中删除。
这样,其他进程便可以继续使用这些资源,提高系统的效率和资源利用率。
实验二:进程调度算法进程调度算法是决定进程执行顺序的重要因素。
在本实验中,我们通过模拟不同的进程调度算法,比较它们在不同场景下的表现和效果。
我们选择了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR)。
通过设置不同的进程执行时间和优先级,我们观察到不同调度算法对系统吞吐量和响应时间的影响。
实验结果显示,FCFS算法适用于执行时间较短的进程,能够保证公平性,但在执行时间较长的进程出现时,会导致等待时间过长,影响系统的响应速度。
SJF 算法在执行时间较长的进程时表现出色,但对于执行时间较短的进程,可能会导致饥饿现象。
RR算法能够在一定程度上平衡各个进程的执行时间,但对于执行时间过长的进程,仍然会影响系统的响应速度。
实验三:进程同步与互斥在多进程环境中,进程之间的同步和互斥是必不可少的。
在本实验中,我们通过模拟进程间的竞争和互斥关系,观察进程同步与互斥的实现方式和效果。
我们选择了信号量机制和互斥锁机制作为实现进程同步和互斥的方法。
操作系统实验之进程管理实验报告
操作系统实验之进程管理实验报告一、实验目的本次操作系统实验的主要目的是深入理解进程管理的概念和原理,通过实际操作和观察,掌握进程的创建、调度、同步与互斥等关键机制。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。
三、实验内容1、进程创建使用系统提供的 API 函数创建新的进程。
观察新进程的资源使用情况和运行状态。
2、进程调度编写程序模拟不同的进程调度算法,如先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)。
比较不同调度算法下的平均周转时间、平均等待时间等性能指标。
3、进程同步与互斥利用信号量、互斥锁等机制实现进程之间的同步与互斥。
设计并发程序,解决生产者消费者问题、读写者问题等经典同步问题。
四、实验步骤1、进程创建实验首先,包含所需的头文件,如`<windowsh>`。
然后,定义创建进程的函数,使用`CreateProcess` 函数创建新进程,并获取进程的相关信息,如进程标识符、线程标识符等。
最后,通过查看任务管理器或其他系统工具,观察新创建进程的资源占用情况。
2、进程调度实验设计不同的调度算法函数,如`FCFSSchedule`、`SJFSchedule` 和`RRSchedule`。
在每个调度算法函数中,模拟进程的到达时间、服务时间等参数,并按照相应的算法进行进程调度。
计算每个进程的周转时间和等待时间,并求出平均周转时间和平均等待时间。
3、进程同步与互斥实验定义信号量或互斥锁变量。
在生产者消费者问题中,生产者在生产产品时获取互斥锁,生产完成后释放互斥锁并通知消费者;消费者在消费产品时获取互斥锁,消费完成后释放互斥锁。
在读写者问题中,读者在读取数据时获取共享锁,读完后释放共享锁;写者在写入数据时获取独占锁,写入完成后释放独占锁。
五、实验结果与分析1、进程创建实验结果成功创建新的进程,并能够获取到进程的相关信息。
进程管理实验报告
进程管理实验报告
摘要:
进程管理是操作系统中的重要概念之一,它涉及到进程的创建、调度和终止等方面。
本实验通过使用C语言编写一个简单的进程管
理程序来加深对进程管理原理的理解。
实验分为进程创建、调度和
终止三个部分,通过实验结果可以验证进程管理算法的正确性和效率。
1. 引言
进程是计算机中进行资源分配和调度的基本单位,它代表了一
个正在运行的程序。
进程管理是操作系统中的一个核心功能,负责
分配资源、调度进程和管理进程的状态等。
通过对进程管理的研究
和实验,可以深入了解操作系统的工作原理,并且优化进程管理算法,提高系统性能。
2. 实验目的
本实验的主要目的是通过编写一个进程管理程序,实现进程的创建、调度和终止等功能。
通过实验,验证进程管理算法的正确性和效率,并加深对进程管理原理的理解。
3. 实验环境
本实验使用C语言进行编程,采用Linux操作系统。
4. 实验内容
4.1 进程创建
进程创建是指操作系统为程序创建一个进程,使其能够在系统中运行。
在本实验中,我们使用fork()函数创建一个子进程,并通过exec()函数加载可执行文件。
4.2 进程调度
进程调度是指根据一定的算法选择哪个进程优先执行。
常见的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、优先级调度等。
在本实验中,我们选择简单的先来先服务调度算法。
4.3 进程终止。
实验进程管理实验报告
一、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质,理解进程的创建、调度、同步与通信。
3. 学习使用Linux系统中的进程管理命令,掌握进程的监控、控制与优化。
二、实验环境操作系统:Linux Ubuntu 20.04实验工具:终端(Terminal)、shell命令三、实验内容1. 进程的基本概念与特性2. 进程的创建与调度3. 进程同步与通信4. 进程的监控与优化四、实验步骤1. 进程的基本概念与特性(1)通过阅读相关资料,了解进程的概念、特性和生命周期。
(2)使用shell命令查看当前系统中进程的状态,如ps、top、htop等。
2. 进程的创建与调度(1)使用fork()函数创建进程,观察父子进程之间的关系。
(2)使用exec()函数替换子进程的映像,实现进程的创建。
(3)使用wait()、waitpid()等函数等待子进程结束,控制进程执行顺序。
(4)通过修改进程优先级,观察进程调度策略的变化。
3. 进程同步与通信(1)使用互斥锁(mutex)实现进程同步,防止数据竞争。
(2)使用条件变量(condition variable)实现进程间的条件同步。
(3)使用信号量(semaphore)实现进程间的同步与通信。
(4)通过管道(pipe)、消息队列(message queue)、共享内存(shared memory)等机制实现进程间的通信。
4. 进程的监控与优化(1)使用ps、top、htop等命令监控进程的运行状态。
(2)通过调整进程优先级,优化进程的执行顺序。
(3)使用renice命令调整进程的实时性。
(4)使用nice命令调整进程的调度策略。
五、实验结果与分析1. 进程的基本概念与特性通过实验,我们了解到进程是具有一定独立功能的程序关于某个数据集合的一次运行活动,具有并发性、动态性、独立性、异步性和结构特征等特性。
2. 进程的创建与调度实验过程中,我们成功创建了多个进程,并通过修改进程优先级,观察到调度策略的变化。
操作系统-实验报告-进程管理实验
一、实验目的本实验要求学生编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁的发生。
二、实验题目第一题:用银行家算法实现资源分配。
要求:(1) 设计一个3个并发进程共享10个同类资源的系统,进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。
(2)设计用银行家算法和随机分配算法,实现资源分配的两个资源分配程序,应具有显示或打印各进程依次要求申请的资源数以及依次分配资源的情况。
(3)确定一组各进程依次申请资源数的序列,在相同的情况下分别运行上述两种资源分配程序,观察运行结果。
第二题:用按序分配策略实现资源分配。
要求:(1)设计一个3个进程共享10个资源的系统,进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。
(2)设计用按序分配算法实现资源分配的资源分配程序,应具有显示或打印各进程依次要求申请的资源号以及依次分配资源地情况。
(3)确定两组各进程依次要求申请的资源号,要求其中的一组中各进程按序地申请资源,另一组中各进程申请资源不受序号限制,分别运行上述设计的资源分配程序,观察运行结果。
三、数据结构1)可利用资源向量available具有m个元素的数组,available[j]=k表示系统中第j类资源有k个可用2)最大需求矩阵maxn*m矩阵,max[i,j]=k表示进程i需要第j类资源的最大数目为k3)分配矩阵allocationn*m矩阵,allocation[i,j]=k表示进程i当前已占用的第j类资源的数目为k4)需求矩阵needn*m矩阵,need[i,j]=k表示进程还需要的第j类资源的数目为kneed[i,j] = max[i,j] - allocation[i,j]5)进程pi的请求向量request[i]具有m个元素的数组,说明进程pi对每类资源的请求数目6)工作向量work 系统提供给进程继续运行所需各类资源数目初值:work:=available7)状态标志finish具有n个元素的数据,表示进程是否可在有限时间内获得所有资源执行完,初值为fals#include 〈stdio.h〉#include <stdlib.h>/*————-——----—-------———常量定义-—-—————----—----—--*/#define F 0#define T 1#define n 5 //进程数量#define m 3 //资源种类数量/*——-————-—-——-——--—-—-———--—-—-——---—--———-——-----—*//*—--————----—---—--——数据结构定义-————--————--————-*/。
进程管理_实验报告
一、实验目的1. 理解Linux操作系统中进程的概念,明确进程与程序的区别。
2. 掌握Linux下进程的创建、调度、同步与通信等基本操作。
3. 学会使用Linux命令查看和管理进程。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:gcc、gdb三、实验内容1. 进程创建与调度2. 进程同步与互斥3. 进程通信4. 进程控制四、实验步骤1. 进程创建与调度(1)编写一个C程序,创建一个子进程,并在父进程中打印出子进程的进程标识符(PID)。
```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>int main() {pid_t pid;pid = fork(); // 创建子进程if (pid == 0) { // 子进程printf("子进程的PID:%d\n", getpid());} else if (pid > 0) { // 父进程printf("父进程的PID:%d,子进程的PID:%d\n", getpid(), pid); } else {printf("创建子进程失败\n");}return 0;}```(2)编译并运行程序,观察结果。
2. 进程同步与互斥(1)编写一个C程序,使用互斥锁(mutex)实现两个进程的同步。
```c#include <stdio.h>#include <stdlib.h>#include <pthread.h>pthread_mutex_t mutex;void thread_func(void arg) {pthread_mutex_lock(&mutex); // 获取互斥锁printf("线程 %ld 获取了互斥锁\n", pthread_self());sleep(1);pthread_mutex_unlock(&mutex); // 释放互斥锁return NULL;}int main() {pthread_t thread1, thread2;pthread_mutex_init(&mutex, NULL); // 初始化互斥锁pthread_create(&thread1, NULL, thread_func, (void )1);pthread_create(&thread2, NULL, thread_func, (void )2);pthread_join(thread1, NULL);pthread_join(thread2, NULL);pthread_mutex_destroy(&mutex); // 销毁互斥锁return 0;}```(2)编译并运行程序,观察结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b[(i % 5 + 1) % 5] = philosopher[(i % 5 + 1) % 5].eat(); if (!b[(i % 5 + 4) % 5])
b[(i % 5 + 4) % 5] = philosopher[(i % 5 + 4) % 5].eat();
六、自我评价与总结
本次操作系统实验是模拟进程管理过程,解决哲学家的就餐问题。个人本 次实验还比较顺利,使用了比较熟悉的 c++语言进行算法的编写,比较巧妙的 定义了两个类来定义哲学家和筷子对象的属性以及相应的动作,方便在各种就 餐过程中对筷子的资源进行申请和释放,以及哲学家实现相应的动作。另一个 觉得比较好的地方是解决了死锁问题,通过判断当前哲学家是否可以同时拿起 左右筷子来避免死锁。
left.putdown(); right.putdown(); cout << "The philosopher " << Phi_num << " is thinking." << endl; sleep(1); } void finish() { sleep(1); cout << "The philosopher " << Phi_num << " has finished eating." << endl; think(); } };
}; bool b[5]; int i, j; srand(time(0)); j = rand() % 5; for (i = j; i < j + 5; i++) {
b[i % 5] = philosopher[i % 5].eat(); cout << endl << "********************************************************" << endl; } for (i = j; i < j + 5; i++) { if (b[i % 5]) {
①至多只允许四个哲学家同时进餐,以保证至少有一个哲学家可以进餐,
最终总会释放出他所用过的两只筷子,从而可使更多的哲学家进餐;
②仅当左右两只筷子均可用时,才允许哲学家拿起筷子就餐;
③规定奇数号哲学家先拿起右边筷子,然后再去拿左边筷子,而偶数号哲
学家则相反。
本实验中采取方法 2.
三、数据结构及功能设计
//放下筷子 void putdown() {
available = true; } };
//Philosopher 类
class Philosopher { private:
ChopStick &left, &right; int Phi_num; public: Philosopher(int num, ChopStick &c1, ChopStick &c2): left(c1), right(c2) {
学生学号
实验课成绩
武汉理工大学
学生实验报告书
实验课程名称
计算机操作系统
开 课 学 院 计算机科学与技术学院
指导老师姓名
学生姓名
学生专业班级
2016 — 2017 学年 第一学期
实验二 进程管理
一、设计目的、功能与要求
1、实验目的
掌握进程管理的相关内容,对进程的同步和互斥,及信号量机制有深入的 理解。
2、功能设计
通过 philosopher 类定义五个哲学家对象,通过 Chopstick 类定义五只筷
子对象。生成一个 0-4 的随机数,对应首先开始就餐的哲学家。该哲学家开始
就餐,拿起左右手筷子,然后顺时针或者逆时针对其他四个哲学家依次进行吃
饭动作,吃饭之前判断是否可以拿起筷子,不能拿起则进行等待,若拿起了一
int id; bool available; //是否可以拿起筷子 public: ChopStick(int i = 0) {
id = i; available = true; } //拿起筷子 bool takeup() { while (!available)
return false; available = false; return true; }
1、数据结构
定义筷子类 Chopstick 和哲学家类 Philosopher,Chopstick 中包含筷子编
号 id,筷子的状态 available(表示筷子是否可用)。包含 takeup 拿起筷子函
数和 putdown 放下筷子函数,相当于申请筷子资源和释放筷子资源。
Philosopher 类中包含哲学家左右手的两只筷子 left、right 以及哲学家的
不足之处为,在本次实验中没有使用多线程的方法,与同学讨论发现使用 c++中多线程操作可以节约很多代码和空间,算法实现简单。而且其中带有了 p 操作和 v 操作不用自己重新定义。提高了代码的可读性。
本次实验通过解决哲学家就餐问题算法实现,对这进程管理的理解更加深 刻了,也通过实验结果的比较,掌握了死锁问题的解决方法。通过这样一个一 个小实验,也一定程度上锻炼了我的编程能力。
五、测试用例及运行结果、分析
测试结果截图:
分析:产生了一个随机数 0,并依次加 1 对每个哲学家进行分析。分析时首先看 左筷子是否可用,然后看右筷子,若有一个不可用则放下手中的另一只筷子,并 说明 need waiting。然后再下一时间段对每个哲学家再次分析,直到每个哲学 家都吃上饭,程序结束。 通过实验结果可得,程序正确运行,且解决了死锁问题。
Phi_num = num; } bool eat() {
bool br, bl; bl = left.takeup(); if (!bl) {
cout << "The Philosopher " << Phi_num << " is waiting the left chopstick." << endl;
} else {
b[i % 5] = philosopher[i % 5].eat(); if (b[i % 5])
continue; else
cout << "The philosopher " << i % 5 << "need waiting" << endl; } cout << endl << "********************************************************" << endl; } return 0; }
①只有拿到两只筷子时,哲学家才能吃饭; ②如果筷子已经在他人手上,则该哲学家必须等到他人吃完之后才能拿到 筷子; ③任何一个哲学家在自己没有拿到两只筷子吃饭之前,决不放下自己手中 的筷子。 (3)可能出现死锁问题,因为当五个哲学家都饥饿时,都拿着一支筷子,这样 就可能五个哲学家都用不上餐。 (4)死锁解决方案:
编号 Phi_num。包含 eat 就餐动作,think 思考动作,finish 完成就餐三种动
作。在 eat 动作中通过判断是否左右手的筷子可以同时拿起来避免程序出现死
锁问题,若可以同时拿起,进行 eat 动作,否则将另一只手中的筷子放下。
//Chopstick 类
class ChopStick { private:
{ Philosopher(0, chopstick[4], chopstick[0]), Philosopher(1, chopstick[0], chopstick[1]), Philosopher(2, chopstick[1], chopstick[2]), Philosopher(3, chopstick[2], chopstick[3]), Philosopher(4, chopstick[3], chopstick[4])
2、实现功能
模拟实现用信号量机制解决经典同步问题
3、具体要求
任选一种计算机高级语言编程实现; 实现 5 个哲学家(5 只筷子)的顺利就餐 需要避免出现死锁 使用信号量、及信号量的等待队列 使用 p 操作、v 操作
二、问题描述
(1)有五个哲学家围坐在一圆桌旁,桌中央有一盘通心粉,每人面前有一只空 盘子,每两人之间放一只筷子,即共 5 只筷子。每个哲学家的行为是思考和进 餐。为了进餐,每个哲学家必须拿到两只筷子,并且每个人只能直接从自己的 左边或右边去取筷子。思考时则同时将两支筷子放回原处。 (2)规则:
只筷子但另一只筷子不能拿起,需要放下另一只手中的筷子继续等待。程序直
到所有哲学家都完成就餐才结束。
四、开发工具及主要源代码
1、开发工具
SublimeText 3 文本编辑器,采用 g++编译。
2、主要源码
//主函数
int main() {
ChopStick chopstick[5] = {
ChopStick(0k(3), ChopStick(4), }; Philosopher philosopher[5] =
sleep(1); return false; } br = right.takeup(); if (!br) { cout << "The Philosopher " << Phi_num << " is waiting the right chopstick." << endl; //右筷子不能拿起时放下左筷子 left.putdown(); sleep(1); return false; } cout << "The philosopher " << Phi_num << " is having dinner." << endl; sleep(1); return true; } void think() {