小学数学奥数题分类及解题思路
[全]小学奥数18个解题方法解析(含例题)
![[全]小学奥数18个解题方法解析(含例题)](https://img.taocdn.com/s3/m/46e592e859eef8c75ebfb37e.png)
[全]小学奥数18个解题方法解析(含例题)解题方法1--分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。
例1:可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。
一共有线段4+3+2+1=10(条)。
还可以把图中的线段按它们所包含基本线段的条数来分类。
(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。
例2:有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。
如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形?提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。
设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。
1、11 ;一种2、11 ;2、10;二种3、11;3、10;3、9 ;三种4、11;4、10;4、9;4、8 ;四种5、11;5、10;5、9;5、8;5、7 ;五种6、11;6、10;6、9;6、8;6、7;6、6;六种7、11;7、10;7、9;7、8;7、7;五种8、11;8、10;8、9;8、8;四种9、11;9、10;9、9;三种10、11;10、10;二种11、11;一种总计:1+2+3+4+5+6+5+4+3+2+1=36种解题方法2--化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。
重点小学奥数数学问题十大类

重点小学奥数数学问题十大类1. 算术运算算术运算是数学的基础,重点小学奥数中常见的算术运算包括加法、减法、乘法和除法。
学生需要掌握运算的基本规则和技巧,包括进位、退位、借位、乘法口诀等。
2. 数列与数型数列与数型是数学中常见的问题,也是奥数竞赛中的热门题型。
学生需要理解数列的规律、求和公式和递推公式等,并能够运用这些知识解决问题。
3. 几何问题几何问题是数学中的重要部分,也是奥数竞赛中的一大类题目。
学生需要了解几何图形的基本性质、计算面积和周长的方法,以及判断图形相似性和合同性的条件。
4. 分数与小数分数与小数是学生常常遇到的问题,也是奥数竞赛中的常见题型。
学生需要掌握分数和小数的相互转换、比较大小、加减乘除等运算规则,以及解决相关问题的方法。
5. 排列与组合排列与组合是一类有趣且具有挑战性的数学问题。
学生需要了解排列和组合的概念、计算公式和应用场景,以及解决相关问题的思路和方法。
6. 方程与不等式方程与不等式是数学中的重要内容,也是奥数竞赛中的一类题目。
学生需要研究解一元一次方程和一元一次不等式的方法,掌握方程和不等式的基本性质和解题技巧。
7. 概率与统计概率与统计是与生活密切相关的数学问题,也是奥数竞赛中的重要部分。
学生需要理解概率和统计的基本概念、计算方法和应用场景,能够分析和解决与概率和统计有关的问题。
8. 逻辑推理逻辑推理问题是奥数竞赛中的一类思维训练题目。
学生需要通过分析、推理和判断,找出问题中的规律和答案,培养逻辑思维和解决问题的能力。
9. 数论问题数论是数学中的一门重要分支,也是奥数竞赛中的一类题目。
学生需要了解质数、因数分解、最大公约数和最小公倍数等数论概念和定理,能够解决与数论有关的问题。
10. 解决实际问题奥数竞赛中的题目往往与实际问题紧密相关。
学生需要掌握抽象思维和解决实际问题的能力,将数学知识应用于实际情境中,解决各种生活中的数学问题。
以上是重点小学奥数中的十大问题类别,学生在备战奥数竞赛时需要加强对这些问题的理解和掌握,提高解题能力和应用能力。
三年级数学奥数题大全

三年级数学奥数题大全
(实用版)
目录
1.三年级数学奥数题的特点
2.三年级数学奥数题的类型
3.三年级数学奥数题的解题方法
4.三年级数学奥数题对学生的好处
正文
一、三年级数学奥数题的特点
三年级数学奥数题是针对小学生设计的一种具有挑战性的数学题目,它要求学生运用基本的数学知识和技巧,解决一些生活中常见的实际问题。
这类题目具有以下特点:
1.题目灵活,涉及的知识点广泛
2.题目难度适中,能够激发学生的学习兴趣
3.强调学生的逻辑思维和解决问题的能力
二、三年级数学奥数题的类型
三年级数学奥数题主要分为以下几类:
1.算术题:如速算、巧算等
2.几何题:如面积、周长、体积等计算
3.应用题:如行程问题、购物问题、年龄问题等
4.逻辑思维题:如智力题、脑筋急转弯等
5.组合题:如数独、八皇后等
三、三年级数学奥数题的解题方法
1.仔细审题,理解题意
2.运用基本的数学知识和技巧进行分析
3.采用适当的解题方法,如画图、列表、假设等
4.注意检查,确保答案正确
四、三年级数学奥数题对学生的好处
1.提高学生的数学成绩
2.培养学生的逻辑思维能力
3.增强学生的问题解决能力
4.提高学生的学习兴趣和自信心
总之,三年级数学奥数题对于学生的数学学习和能力培养具有很好的促进作用。
小学奥数典型50道经典题型

小学奥数典型50道经典题型(附解题思路)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2.3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
小学奥数分类型讲解(60种)

小学奥数类型集锦1、最值问题【最小值问题】例1 外宾由甲地经乙地、丙地去丁地参观。
甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。
为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。
现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。
(《中华电力杯》少年数学竞赛决赛第一试试题)讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。
他们将上面的线段分为了2个2500米,2个4000米,2个2000米。
现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。
由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。
例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。
若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。
我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。
这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。
所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。
故,O点即为三只蚂蚁会面之处。
【最大值问题】例1 有三条线段a、b、c,并且a<b<c。
判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)讲析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。
小学数学奥数题与解题方法

小学数学奥数题与解题方法在小学数学的学习中,奥数题常常是让同学们感到既有趣又具有挑战性的部分。
奥数题不仅能够锻炼我们的思维能力,还能培养我们解决问题的技巧和方法。
接下来,让我们一起探讨一些常见的小学数学奥数题以及它们的解题方法。
一、行程问题行程问题是奥数中常见的题型之一。
例如:小明和小红同时从学校和家出发相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过10 分钟两人相遇,求学校到家的距离。
解题方法:行程问题的关键在于理解速度、时间和路程之间的关系,即路程=速度×时间。
对于相向而行的情况,两人走过的路程之和就是总路程。
在这个例子中,小明的速度是每分钟60 米,走了10 分钟,所以小明走的路程是 60×10 = 600 米;小红的速度是每分钟 50 米,走了 10 分钟,小红走的路程是 50×10 = 500 米。
那么学校到家的距离就是 600 + 500 = 1100 米。
二、工程问题工程问题也是经常出现的一类奥数题。
比如:一项工程,甲单独做需要15 天完成,乙单独做需要20 天完成,两人合作需要多少天完成?解题方法:工程问题中,通常把工作总量看作单位“1”。
甲单独做需要 15 天完成,那么甲每天的工作效率就是 1÷15 = 1/15;乙单独做需要 20 天完成,乙每天的工作效率就是 1÷20 = 1/20。
两人合作每天的工作效率就是 1/15 + 1/20 = 7/60,所以两人合作完成这项工程需要的时间是 1÷7/60 = 60/7 天。
三、年龄问题年龄问题常常让同学们感到困惑。
例如:今年爸爸 35 岁,儿子 10 岁,几年后爸爸的年龄是儿子的 2 倍?解题方法:年龄问题的关键是抓住年龄差不变。
爸爸和儿子的年龄差是 35 10 = 25 岁。
当爸爸的年龄是儿子的 2 倍时,年龄差还是 25 岁,此时儿子的年龄是 25 岁,所以需要经过 25 10 = 15 年。
小学数学奥数题解题技巧分析

小学数学奥数题解题技巧分析小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。
所以,我们在复习小学数学奥数时,对这些重要方法一定要认真实行理解。
一起来看看吧。
1、直观画图法:解小学数学奥数题时,假如能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相对应的算式来。
我们能够用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
4、正难则反:有些数学问题假如你从条件正面出发考虑有困难,那么你能够改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
6、整体把握:有些奥数题,假如从细节上考虑,很繁杂,也没有必要,假如能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、部分与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。
以上就是小学数学奥数解题方法介绍,这些方法很多,也很有效。
理解小学数学奥数考试中的这些重要方法,对我们小学生当然是有好处的。
在持续提升我们成绩的同时,我们还能够选择适合自己的初中,这是最为关键的。
六年级数学奥数题及解题思路

六年级数学奥数题及解题思路摘要:一、引言二、六年级数学奥数题类型及解题思路1.代数题2.几何题3.逻辑题4.应用题三、解题技巧与策略1.分析题目2.运用数学知识3.创新思维4.耐心与毅力四、常见错误分析1.概念理解不清2.计算错误3.逻辑不清4.审题不慎五、实战演练与解析1.题目一:代数题2.题目二:几何题3.题目三:逻辑题4.题目四:应用题六、总结与展望正文:一、引言随着教育的不断发展,数学奥数题已经成为了许多六年级学生和家长关注的焦点。
数学奥数不仅能够提高学生的数学素养,还能培养他们的逻辑思维能力。
本文将为大家介绍六年级数学奥数题的类型及解题思路,帮助同学们更好地应对这类题目。
二、六年级数学奥数题类型及解题思路1.代数题代数题是数学奥数中的一个重要类型,主要包括方程、不等式、代数式等。
解题思路如下:(1)认真阅读题目,提取关键信息。
(2)设立未知数,并根据题意建立方程或不等式。
(3)解方程或不等式,求得未知数的值。
2.几何题几何题主要涉及平面几何和立体几何的知识,解题思路如下:(1)熟悉基本几何图形的性质和公式。
(2)根据题目所给条件,判断所求问题属于哪种几何问题。
(3)运用几何知识,解决问题。
3.逻辑题逻辑题旨在考查学生的逻辑思维能力,解题思路如下:(1)分析题目的逻辑关系。
(2)运用逻辑推理方法,解决问题。
(3)注意细节,避免逻辑错误。
4.应用题应用题是将数学知识与生活实际相结合的一种题目,解题思路如下:(1)审清题意,提炼关键信息。
(2)将实际问题转化为数学问题。
(3)运用数学知识解决实际问题。
三、解题技巧与策略1.分析题目:认真阅读题目,了解题目背景和所求问题,明确解题目标。
2.运用数学知识:根据题目类型,运用相应的数学知识解决问题。
3.创新思维:在解题过程中,学会从不同角度思考问题,寻求创新解法。
4.耐心与毅力:面对难题,要有足够的耐心和毅力,不断尝试,逐步解决问题。
四、常见错误分析1.概念理解不清:在解题过程中,要对基本概念有清晰的认识,避免因概念理解不清导致的错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学分类及解题思路和差倍问题年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;植树问题鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用a n表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,a n, d, n,s n,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:a n = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:s n,= (a1+ a n)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (a n+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(a n-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=A n×10n-1+A n-1×10n-2+A n-2×10n-3+ A n-3×10n-4+A n-4×10n-5+A n-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
= A n×2n-1+A n-1×2n-2+A n-2×2n-3+A n-3×2n-4+A n-4×2n-5+A n-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。
十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。
加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有m n种不同方法,那么完成这件任务共有:m1+ m2....... +m n种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有m n种方法,那么完成这件任务共有:m1×m2....... ×m n种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(r n+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。