表面粗糙度的测量

合集下载

粗糙度的测量方法

粗糙度的测量方法

粗糙度的测量方法
粗糙度是指物体表面的不平整程度,可以通过以下几种方法来测量粗糙度:
1. 触摸和视觉评估法:通过手感或目视观察物体表面的不平整程度来评估粗糙度,这种方法简单直观,但缺乏精确性。

2. 比较法:将待测物体与已知粗糙度的标准参照物进行比较,通过人眼观察和判断两者之间的差异来确定粗糙度。

这种方法需要经验丰富的观察者来进行评估。

3. 使用表面粗糙度评估仪器:这种仪器能够测量物体表面的凹凸程度、纹理、峰谷间距等参数,常用的仪器有粗糙度测量仪、激光扫描仪、形貌测量仪等。

这些仪器可以提供精确的数值化结果,并且适用于各种表面材料。

需要注意的是,粗糙度的测量方法与被测物体的尺寸、材料、形状等因素相关,选择合适的测量方法需要根据具体情况进行判断。

表面粗糙度的测量方法

表面粗糙度的测量方法

表面粗糙度的测量方法将表面粗糙度比较样块,根据视觉和触觉与被测表面比较,判断被测表面粗糙度相当于那一数值,或测量其反射光强变化来评定表面粗糙度。

样块是一套具有平面或圆柱表面的金属块,表面经磨、车、镗、铣、刨等切削加工,电铸或其他铸造工艺等加工而具有不同的表面粗糙度。

有时可直接从工件中选出样品经过测量并评定合格后作为样块。

利用样块根据视觉和触觉评定表面粗糙度的方法虽然简便,但会受到主观因素影响,常不能得出正确的表面粗糙度数值。

触针法利用针尖曲率半径为2微米左右的金刚石触针沿被测表面缓慢滑行,金刚石触针的上下位移量由电学式长度传感器转换为电信号,经放大、滤波、计算后由显示仪表指示出表面粗糙度数值,也可用记录器记录被测截面轮廓曲线。

一般将仅能显示表面粗糙度数值的测量工具称为表面粗糙度测量仪,同时能记录表面轮廓曲线的称为表面粗糙度轮廓仪(简称轮廓仪),这两种测量工具都有电子计算电路或电子计算机,它能自动计算出轮廓算术平均偏差Rα,微观不平度十点高度RZ,轮廓最大高度Ry和其他多种评定参数,测量效率高,适用于测量Rα为0.025~6.3微米的表面粗糙度。

光切法光线通过狭缝后形成的光带投射到被测表面上,以它与被测表面的交线所形成的轮廓曲线来测量表面粗糙度。

由光源射出的光经聚光镜、狭缝、物镜1后,以45°的倾斜角将狭缝投影到被测表面,形成被测表面的截面轮廓图形,然后通过物镜2将此图形放大后投射到分划板上。

利用测微目镜和读数鼓轮,先读出h值,计算后得到H 值。

应用此法的表面粗糙度测量工具称为光切显微镜。

它适用于测量RZ和Ry为0.8~100微米的表面粗糙度,需要人工取点,测量效率低。

干涉法利用光波干涉原理(见平晶、激光测长技术)将被测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高(可达500倍)的显微镜将这些干涉条纹的微观部分放大后进行测量,以得出被测表面粗糙度。

应用此法的表面粗糙度测量工具称为干涉显微镜。

表面粗糙度的测量方法

表面粗糙度的测量方法
避免环境振动和噪声
环境振动和噪声会影响测量结果的准确性,应采取措施减小或消除这些因素的 影响。
测量误差的来源与控制
误差来源分析
表面粗糙度的测量误差可能来源于测 量设备、被测表面、操作人员和环境 条件等多个方面。
误差控制措施
为减小测量误差,应对各个方面的误 差源进行分析和控制,如提高操作人 员的技能水平、加强设备维护和校准 等。
触针法
总结词
利用触针接触表面并测量其微观不平度的度测量方法之一。它通过将一个微小的触针置于 待测表面上,利用传感器记录触针在表面上的起伏变化,从而测量表面的微观不 平度。该方法精度高,适应性强,但可能会对表面造成轻微划痕。
印模法
总结词
通过复制表面微观形貌并进行分析的方法。
表面粗糙度的测量方法
目录 CONTENT
• 表面粗糙度概述 • 接触式测量方法 • 非接触式测量方法 • 测量方法的选用与注意事项
01
表面粗糙度概述
定义与重要性
定义
表面粗糙度是指物体表面微观不 平度的程度,通常是指在加工过 程中留下的痕迹。
重要性
表面粗糙度对物体的使用性能和 寿命有着重要影响,如耐磨性、 抗腐蚀性、接触刚度等。
光学显微镜法
总结词
利用光学显微镜观察表面形貌来测量表 面粗糙度
VS
详细描述
光学显微镜法是利用光学显微镜观察表面 形貌,通过观察到的表面形貌特征来测量 表面粗糙度的一种非接触式测量方法。通 过调整显微镜的放大倍数和焦距,可以观 察到不同尺度下的表面形貌特征,从而测 量表面粗糙度的大小。
扫描隧道显微镜法
糙度值增大。
工件材料
工件材料的硬度、韧性 等物理性质对表面粗糙
度有影响。

粗糙度检测方法及评定【干货技巧】

粗糙度检测方法及评定【干货技巧】

以下为表面粗糙度的评定及测量方法:一、表面粗糙度的概念表面粗糙度是指加工表面具有的较小间距和微小峰谷的不平度。

其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。

具体指微小峰谷Z高低程度和间距S状况。

一般按S分:S<1mm 为表面粗糙度;1≤S≤10mm为波纹度;S>10mm为f 形状。

•二、VDI3400、Ra、Rmax对照表国家标准规定常用三个指标来评定表面粗糙度(单位为μm):轮廓的平均算术偏差Ra、不平度平均高度Rz和最大高度Ry。

在实际生产中多用Ra指标。

轮廓的最大微观高度偏差Ry在日本等国常用Rmax符号来表示,欧美常用VDI指标。

下面为VDI3400、Ra、Rmax 对照表。

三、表面粗糙度形成因素表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动、电加工的放电凹坑等。

由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。

四、表面粗糙度对零件的影响主要表现影响耐磨性。

表面越粗糙,配合表面间的有效接触面积越小,压强越大,摩擦阻力越大,磨损就越快。

影响配合的稳定性。

对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了连接强度。

影响疲劳强度。

粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。

影响耐腐蚀性。

粗糙的零件表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。

影响密封性。

粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。

影响接触刚度。

接触刚度是零件结合面在外力作用下,抵抗接触变形的能力。

机器的刚度在很大程度上取决于各零件之间的接触刚度。

影响测量精度。

零件被测表面和测量工具测量面的表面粗糙度都会直接影响测量的精度,尤其是在精密测量时。

表面粗糙度的测量

表面粗糙度的测量

表面粗糙度的测量目录一、表面粗糙度的检测 (2)二、表面粗糙度的测量 (3)三、参考标准 (4)四、参考文献 (5)一、表面粗糙度的检测表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。

其两波峰或两波谷之间的距离(波距)很小(在1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。

表面粗糙度越小,则表面越光滑。

表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面:1)表面粗糙度影响零件的耐磨性。

表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。

2)表面粗糙度影响配合性质的稳定性。

对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。

3)表面粗糙度影响零件的疲劳强度。

粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。

4)表面粗糙度影响零件的抗腐蚀性。

粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。

5)表面粗糙度影响零件的密封性。

粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。

6)表面粗糙度影响零件的接触刚度。

接触刚度是零件结合面在外力作用下,抵抗接触变形的能力。

机器的刚度在很大程度上取决于各零件之间的接触刚度。

7)影响零件的测量精度。

零件被测表面和测量工具测量面的表面粗糙度都会直接影响测量的精度,尤其是在精密测量时。

此外,表面粗糙度对零件的镀涂层、导热性和接触电阻、反射能力和辐射性能、液体和气体流动的阻力、导体表面电流的流通等都会有不同程度的影响。

表面粗糙度基本术语:取样长度:评定表面粗糙度所规定的一段基准线长度。

应与表面粗糙度的大小相适应。

规定取样长度是为了限制和减弱表面波纹度对表面粗糙测量结果的影响,一般在一个取样长度内应包含5个以上的波峰和波谷。

评定长度:为了全面、充分地反映被测表面的特性,在评定或测量表面轮廓时所必需的一段长度。

表面粗糙度的测量

表面粗糙度的测量

表面粗糙度的测量表面粗糙度的测量方法有光切法,光波干涉法及触针法(又称针描法)等,工厂常用的还有粗糙度样板直接和被测工件对照的比较法,以及利用塑性和可铸性材料将被测工件加工表面的加工痕迹复印下来,然后再测量复印的印模的印模法。

一、实验目的1.建立对表面粗糙度的感性认识;2.了解用双管显微镜测量表面粗糙度的原理及方法。

二、实验内容用双管显微镜测量表面粗糙度的Rz值。

三、测量原理及仪器说明双管显微镜又撑光切显微镜,它是利用被测表面能反射光的特性,根据“光切法原理”制成的光学仪器,其测量范围取决于选用的物镜的放大倍数,一般用于测量0.8-80微米的表面粗糙度Rz值。

仪器外型如图1所示,它由底座6,支柱5,横臂2,测微目镜13,可换物镜8及工作台7等部分组成。

仪器备有四种不同倍数(7X,14X,30X,60X)物镜组,被测表面粗糙度大小(估测)来选择相应倍数的物镜组(见表1)。

表1 双管显微镜测量参数物镜放大倍数N 总放大倍数目镜视场直径(mm)物镜与工件距离(mm)测量范围Rz(µm)换算系数E(微米/格)7X 60X 2.5 9.5 30~30 1.2514X 120X 1.3 2.5 6.3~20 0.6330X 260X 0.6 0.2 1.6~6.3 0.29460X 510X 0.3 0.04 0.8~1.6 0.147测量原理如图2所示,被测表面为P1-P2阶梯表面,当一平行光束从45度方向投射到阶梯表面时,即被折成S1和S2两段,从垂直于光束的方向上就可以在显微镜内看到S1和S2两段光带的放大像S1'S2',同时距离h也被放大为h1'。

通过测量和计算,可求得被测表面的不平度高度h。

这种方法类似在零件表面斜切一刀,然后观察其剖面的轮廓形状,因此称为光切法。

图3为双管显微镜的光学系统图,由光源1发出的光,经聚光镜2,狭缝3,物镜4以45度方向投射到北测表面上,调整仪器使反射光束经物镜5成像在目镜分划板6上,光束被测上表面的S1点反射,在下表面S2点反射,它们各成像于分划板6的S1'和S2',距离h1被放大为h1',通过目镜可观察到凹凸不平的光带(图4(b)),光带边缘即工件表面上被照亮了的h1的放大轮廓像h1',测量h1'即可求出被测表面的不平高度h2。

粗糙度仪的四种测量

粗糙度仪的四种测量

粗糙度仪的四种测量粗糙度是表面质量的重要指标之一,它描述了表面细微的起伏和不规则程度。

粗糙度仪是一种用来测量物体表面粗糙度的工具。

本文将介绍粗糙度仪的四种常见测量方法。

1. Ra值测量Ra值是表面粗糙度的一个常见指标,表示表面上大量读数的平均值。

粗糙度仪通过使用一个滑动头,在物体表面采集多个数据点,并计算这些点之间的平均高度差来计算Ra值。

在Ra值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。

滑动头将沿着表面移动,采集多个数据点。

采集后,测量仪将计算这些点之间的平均高度差,并显示Ra值。

2. Rz值测量Rz值是描述表面粗糙度的另一种常见指标,表示整个表面上高度极差的平均值。

Rz值测量与Ra值测量类似,但是它使用的是高度极差而不是平均高度差来计算表面粗糙度。

在Rz值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。

滑动头将沿着表面移动,采集多个数据点。

采集后,测量仪将计算这些点之间的高度极差,并显示Rz值。

3. Rmax值测量Rmax值是表面粗糙度的最大值,表示表面上任意两个数据点之间的最大高度差。

Rmax值测量可以帮助确定表面在给定沟槽或凸起的区域上的极值。

在Rmax值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。

滑动头将沿着表面移动,采集多个数据点。

采集后,测量仪将计算这些点之间的高度差的最大值,并显示Rmax值。

4. Rt值测量Rt值表示表面上任意两个数据点之间的总高度差。

Rt值测量可以帮助确定表面的整体粗糙度程度,并帮助评估表面的适用性。

在Rt值测量中,需要将测量仪放在尽可能平整的表面上,按下开始按钮。

滑动头将沿着表面移动,采集多个数据点。

采集后,测量仪将计算这些点之间的总高度差,并显示Rt值。

总结粗糙度仪有多种测量方法,其中包括Ra值测量、Rz值测量、Rmax值测量和Rt值测量。

这些测量方法可以帮助确定表面的粗糙度程度和适用性,帮助有效地评估表面质量。

无论是在工业生产还是个人使用中,粗糙度仪都是非常有用的工具。

表面粗糙度的检测方法

表面粗糙度的检测方法

表面粗糙度的检测方法
表面粗糙度的检测是通过测量表面的微观形状和轮廓来评估表面质量的过程。

有多种方法可以用于表面粗糙度的检测,其中一些常见的方法包括:
表面轮廓仪(Surface Profilometer):表面轮廓仪是一种用于测量物体表面轮廓的设备。

它通过沿表面滑动或扫描,利用探测器检测高度变化,并生成相应的高度剖面图。

通过分析这些剖面图,可以得出表面的粗糙度参数。

激光干涉仪(Laser Interferometer):激光干涉仪利用激光光束的干涉效应来测量表面的高度变化。

这种方法对于高精度的表面粗糙度测量很有效,可以提供亚微米级别的分辨率。

原子力显微镜(Atomic Force Microscope,AFM):AFM是一种在原子尺度上测量表面形状和粗糙度的工具。

它使用微小的探针扫描样品表面,通过探测器的运动来生成高分辨率的表面图像。

表面粗糙度仪(Surface Roughness Tester):这是一种专门用于测量表面粗糙度的便携式仪器。

通常采用钻头或球形探头,测量表面在垂直方向的高低变化,并输出相应的粗糙度参数,如Ra、Rz等。

光学显微镜:在一些情况下,使用光学显微镜可以对表面进行观察和评估。

虽然其分辨率较低,但对于一些较大尺度的粗糙度评估仍然有效。

在选择适当的检测方法时,需要考虑表面的特性、粗糙度范围和检测精度的要求。

根据具体的应用场景,可以选择最合适的工具和技术。

表面粗糙度怎么测量--测量表面粗糙度的方法【详解】

表面粗糙度怎么测量--测量表面粗糙度的方法【详解】

表面粗糙度的检测,我们常用的有以下几中方法1.显微镜比较法,Ra0.32;将被测表面与表面粗糙度比较样块靠近在一起,用比较显微镜观察两者被放大的表面,以样块工作面上的粗糙度为标准,观察比较被测表面是否达到相应样块的表面粗糙度;从而判定被测表面粗糙度是否符合规定。

此方法不能测出粗糙度参数值2.光切显微镜测量法,Rz:0.8~100;光切显微镜(双管显微镜)是利用光切原理测量表面粗糙度的方法。

从目镜观察表面粗糙度轮廓图像,用测微装置测量Rz值和Ry值。

也可通过测量描绘出轮廓图像,再计算Ra值,因其方法较繁而不常用。

必要时可将粗糙度轮廓图像拍照下来评定。

光切显微镜适用于计量室3.样块比较法,直接目测:Ra2.5;用放大镜:Ra0.32~0.5;以表面粗糙度比较样块工作面上的粗糙度为标准,用视觉法或触觉法与被测表面进行比较,以判定被测表面是否符合规定用样块进行比较检验时,样块和被测表面的材质、加工方法应尽可能一致;样块比较法简单易行,适合在生产现场使用4.电动轮廓仪比较法,Ra:0.025~6.3;Rz:0.1~25;电动轮廓仪系触针式仪器。

测量时仪器触针尖端在被测表面上垂直于加工纹理方向的截面上,做水平移动测量,从指示仪表直接得出一个测量行程Ra值。

这是Ra值测量常用的方法。

或者用仪器的记录装置,描绘粗糙度轮廓曲线的放大图,再计算Ra或Rz值。

此类仪器适用在计量室。

但便携式电动轮廓仪可在生产现场使用5干涉显微镜测量法,Rz:.032~0.8;涉显微镜是利用光波干涉原理,以光波波长为基准来测量表面粗糙度的。

被测表面有一定的粗糙度就呈现出凸凹不平的峰谷状干涉条纹,通过目镜观察、利用测微装置测量这些干涉条纹的数目和峰谷的弯曲程度,即可计算出表面粗糙度的Ra值。

必要时还可将干涉条纹的峰谷拍照下来评定。

干涉法适用于精密加工的表面粗糙度测量。

适合在计量室使用而在现场工作中,我们用的多的是:样块比较法和电动轮廓检测法,样块比较法要求对粗糙度的敏感要求比较高,有些老师傅还是可以做到的,毕竟是凭经验和感觉去比较的,而电动轮廓检测法是靠仪器测量,这样测量出来的准确度就大大提高了,所以说,我们建议用电动轮廓检测法.用什么方法去检测1.比较法:将被测表面和表面粗糙度样板直接进行比较,多用于车间,评定表面粗糙度值较大的工件。

表面粗糙度的测量方法

表面粗糙度的测量方法
表面粗糙度的测量
编辑ppt
1
第一节表面粗糙度的评定参数
主要内容:
1、主要术语及定义
取样长度L
评定长度L
n
轮廓中线m
2、6个评定参数
3个基本、3个附加
3、一般规定
重点: 3个基本评定参数
编辑ppt
2
一.主要术语及定义
1.实际轮廓:平面与实际表面相交所得的轮廓线。
按照相截方向的不同,它又可分为横向实际轮廓和纵向实 际轮廓。在评定或测量表面粗糙度时,除非特别指明,通 常均指横向实际轮廓,即与加工纹理方向垂直的截面上的 轮廓。
编辑ppt
17
取得表面测量信号以后,亦可用人工进行计算处理给出结果。
编辑ppt
18
❖ 15.2 表面粗糙度测量的基本原则

(1)测量方向

按现行标准所定义的各种粗糙度评定参数,是基于轮廓法确定数值,
是在被测表面的法向截面上的实际轮廓上进行测量的结果。由于垂直于
被测表面的法向截面存在各种不同的测量方向.试验表明,大多数的切
削加工表面,在横向轮廓上测得的粗糙度数值比较大,只是有的该铣加
工和个别端铣加工表面,在纵向轮廓上会有较大的数值。 如果在被测表
面上难以确定加工纹理方向,以及某些加工纹理紊乱或不存在固定方向
的表面,应分别在多个方向上测量,以获取最大参故值为结果.或取其
峰谷高度的最大值,计算一个区域的测量结果。

编辑ppt
❖ 15.1 测量方法综述
❖ 对加工表面质量的评定,除了用视觉和触觉进行定性地比较检验的方 法以外,并逐步实现了用数值确定表面粗糙度参数值的定量测量。从本 世纪30年代陆续提出了测量粗糙度的方法原理和仪器以来,已发展了一 系列利用光学、机械、电气原理的表面粗糙度专用测量仪器,其基本结 构模式如图9—7所示。

表面粗糙度量测方法

表面粗糙度量测方法

表面粗糙度是对工件质量进行评估的重要指标之一,对于其在使用过程中的配合质量、运动精度以及耐磨损性等都有着不容忽视的影响,因此,想要保证工件的加工质量,就必须采取有效措施,降低表面粗糙度。

表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。

由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。

表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。

一般标注采用Ra。

表面粗糙度测量方法一、接触式测量方法接触式测量方法指的是,在测量设备中的探测位置会直接与表面接触,可以帮助人们获取被测表面的信息。

但是这种测量方式不适用于刚性强度偏高、容易发生磨损的表面。

1、比较测量方法在车间普遍应用的测量方法是比较法。

比较法指的是将对比粗糙度样板与被测表面进行比较,测量人员直接用手的触摸来确定表面的粗糙度,或者通过肉眼观察,也可以使用放大镜、比较显微镜来对比。

通常情况下,当粗糙度评定参数值偏高时,可以运用比较法,但是很可能造成很大的误差。

2、印模法印模法指的是采用一些塑性材料当做块状印模,然后将其与被测表面互相贴合,再取下时,印模上会出现表面的具体轮廓,测量人员可以开始测量印模的表面,这种方式可以获取部件的表面粗糙度。

一些规模大的零件内表面测量工作无法通过设备来完成,可以使用印模法来实现。

然而印模法也存在一定缺陷,它的准确性不强,而且操作过程很复杂。

3、触针法触针法的另一种名称是针描法。

这种方法是在被测表面上放置一根很尖的触针,测量过程中需要垂直放置,使触针做横向移动。

根据被测表面的轮廓,触针会自行做垂直起伏运动。

把触针所做的位移活动利用电路转变为电信号后,可以将其方法,分析与计算后就可以获取表面粗糙度的指数。

触针法主要包括感应式、压电式以及电感式等几种方法。

表面粗糙度的测量方法

表面粗糙度的测量方法

Ra、Rp、RSm、Rpk Rz、RΔa、RΔq、Rpc RΔa、RΔq、Rzjis、Rp
Rzjis、Rz、RΔa、RΔq、Rlr
Rv、负载曲线、Rmr、Rvk、Rδc、Mr2、RA2 Ra、Rv、Rvk、Rpc Rz
Rzjis、Rz、RΔa、RΔq、Rlr RΔq、Rq、Ra
Rp、负载曲线、Rmr、Rpk、Rsk Rz、Rv、Rvk
相应产品
参数示例
电镀面、虹面加工、雕花加工、各种镜面钢板
RΔq、Rq、Ra、Rku
封装、阀、阀门、气缸 薄膜、缎纹面、雕花评估、滚花
轴 / 轴承、离合器、薄膜、阀 块规、印刷电路板、
黏着面涂层衬底、电镀衬底
齿轮、门窗、孔 印刷用纸 轴承、齿轮 模具
透镜、镜头、棱镜 轴、轴承、活塞环、导轨
粗钢筋、曲轴、螺栓
光干涉法
● 可通过亚纳米的高度分辨率 (0.1 nm)测量大视野(多角) ● 测量时间短。
非接触式
采用焦点移动的图像合成法
● 角度特性佳 ● 测量时间短
共焦法
● 可通过亚纳米的高度分辨率(0.1 nm)进行测量 ● 角度特性佳 ● 高对比度图像的扩大观察
短处
● 样品表面会因测量力而留下瑕疵 ● 无法测量具有粘着性的样品 ● 无法测量比触针尖端半径还小的沟槽
如果凹凸越大,则该部分的手感越粗糙,光线也会发生漫反射现象,呈现出粗 糙的质感。反之,如果凹凸极小,则手感就会非常光滑,也会呈现光泽。
在表面粗糙度的测量中,可对该程度的凹凸进行数值化。因此,可对产品的手 感、质感或功能性等进行数值管理,使品质稳定。
铝切削面 铝磨损面
表面放大 3D 图像
表面放大 3D 图像
在图纸或产品技术信息的要求事项中指示基准长度时,将截断值 λc 设为所指示的基准长度。

表面粗糙度的测量

表面粗糙度的测量
光切法常用于测量表面粗糙度的Rz值。
光切法测量原理为从光源发出的光线经聚光镜和狭缝形成一束扁 平光带,通过物镜组以45°方向投射在被测表面上。由于被测表面上 存在微观不平的峰谷,被具有平直边缘的狭缝像的亮带照亮后,表面 的波峰在S点产生反射,波谷在S′点产生反射,在与被测表面成另一 个45°方向经物镜放大后反射到目镜分划板上。从目镜中可以看到被 测表面实际轮廓的影像各自成像在分划板的a和a′处,若两点之间的 距离为N,用目镜上的测微百分表测出轮廓影像的高度N,根据物镜组 的放大倍数K,即可算出被测轮廓的实际高度h。
公差配合与要进行尺寸和形位误差的 测量,还要进行表面粗糙度的测量。其测量方法很多,下面 仅介绍几种常见的测量方法。 一、比较法
比较法是将被测表面与表面粗糙度样块相比较来判断工 件表面粗糙度是否合格的检验方法。
表面粗糙度样块的材料、加工方法和加工纹理方向最好 与被测工件相同,这样有利于比较,提高判断的准确性。另 外,也可以从生产的零件中选择样品,经精密仪器检定后, 作为标准样板使用。
公差配合与测量技术
用样板比较时,可以用肉眼判断,也可以用手触摸感觉, 为了提高比较的准确性,还可以借助放大镜和比较显微镜。 这种测量方法简便易行,适于在车间现场使用,常用于评定 中等或较粗糙的表面。 二、光切法
光切法就是利用“光切原理”来测量零件表面的粗糙度; 工厂中常用的光切显微镜(又称为双管显微镜),就是根 据光切原理制成的测量粗糙度仪器。
光切显微镜
三、针描法 针描法的工作原理是利用金刚石触针在被测表面上等速
缓慢移动,由于实际轮廓的微观起伏,迫使触针上下移动, 该微量移动通过传感器转换成电信号,并经过放大和处理得 到被测参数的相关数值。按照针描法原理测量表面粗糙度的 常用量仪有电动轮廓仪。

表面粗糙度的测量方法

表面粗糙度的测量方法

21
干涉显微镜
编辑课件ppt
22
编辑课件ppt
23
Mirau干涉仪的改进: R被固定在PZT上。
1986年WYKO公司研制成功 的TOPO非接触微表面测量 系统。 测量精度达 1
1000
自动完成测量。
编辑课件ppt
24
Nomarski干涉显微镜及改进
带有旋转检偏器测相的改进的微分干涉显微镜(清华)
m
Sm =2C (ei1 ei ) / m i1
❖ (5)用光切法测量Ra值
因测量与计算都很麻烦,故很少应用。
编辑课件ppt
19
4.仪器的测量误差和示值相对误差的检定
❖ (1)测量误差的主要因素有:瞄准误差、测微目镜制造误 差、估读误差、 定度用标准尺误差、被测工件定位误差、 仪器使用调整误差等。
编辑课件ppt
9
二、光切法测量表面粗糙度
编辑课件ppt
10
1.光切法原理:
所谓光切法就是用一狭窄的扁平光束 以一定的倾斜角照射到被测表面上,光 束在被测表面上发生反射,将表面微观 不平度用显微镜放大成象进行观测的方 法。图4-5是光切法的测量原理图。
图4-5 光切原理
❖ 若倾斜角取45°,则得:
编辑课件ppt
8
4.间接测量方法 这类方法是利用被测表面的某种特性来间接评定表
面粗糙度的数值。例如: ❖ 气动法:是利用流经测量头与被测表面间气体流量的大小
或其所引起的压力变化来评定表面粗糙度。 ❖ 电容法:是利用测量头与被测表面间形成的电容量大小来
评定表面粗糙度。不能直接测出表面参数Ra或Rz,而需 进行比对定标,且要配备一些和被测表面几何形状相适应 的测量头。 ❖ 其他方法:激光散射法、激光散班法、激光全息法等。

粗糙度的测量方法

粗糙度的测量方法

粗糙度的测量方法
粗糙度是表面不光滑程度的度量,它描述了一个表面的凹凸不平程度。

以下是一些常见的粗糙度测量方法:
1. 雷达测高仪:雷达测高仪通过测量信号的反射来确定表面的高度
差异,从而得出粗糙度参数。

2. 表面轮廓仪:表面轮廓仪使用感应器或探针扫描表面,记录并测
量高度变化,然后产生表面轮廓数据,可用于计算粗糙度参数。

3. 光学测量方法:光学测量技术利用光学干涉、散射或反射等原理,测量表面特征以确定表面的粗糙度。

4. 表面比对法:将待测表面与标准表面进行比对或触摸,使用人工
或机械测量工具测量其间的高度变化,从而计算粗糙度。

5. 飞行式触针仪:飞行式触针仪通过感应探针接触表面,并探测探
针的垂直运动,从而测量表面的凹凸程度。

6. 拉伸法:拉伸样本并测量其表面的拉伸载荷与位移变化,通过分析位移数据得出粗糙度参数。

7. 静电传感器:静电传感器可以测量电荷在表面上的分布情况,进而估计表面的粗糙度。

请注意,粗糙度的测量方法因应用领域、表面条件和预期结果而异。

选择合适的测量方法需要考虑以上因素,并结合仪器设备的可用性和适应性。

表面粗糙度测量实验

表面粗糙度测量实验

实验三表面粗糙度测量实验一、实验目的1.了解JB-1C型粗糙度测量仪测量表面粗糙度的原理和方法。

2.加深对粗糙度评定参数R a、R y、R max、R t、R zd、R z、R3z、R p、S m、S、T p的理解。

二、实验内容用JB-1C型粗糙度测量仪测量表面粗糙度的R a、R y、R max、R t、R zd、R z、R3z、R p、S m、S、T p值。

三、实验设备JB-1C型粗糙度测量仪。

四、实验原理1大理石座2升降装置3升降手轮4传感装置5传感器6连接电缆7电器箱8可调节工作台9电源线10支撑架JB-1C粗糙度测量仪属于接触式的粗糙度测量,它属于感应式位移传感的原理。

在这个系统里,一个金刚石触针被固定在一移动极板上(铁氧体极板),在被测表面上移动。

在零位状态时,这些极板离开定位于传感器外壳上的两个线圈,有一定的距离,且有一高频的震荡信号在这两个线圈内流动。

如果铁氧体极板与线圈间的距离改变了(由于传感器的金刚石触针在一粗糙表面移动),线圈的电感发生变化,而测量仪的微机系统,则对此的变化,进行采集、数据转移处理后,在液晶屏上显示出被测物表面的粗糙度参数。

本设备测量的粗糙度参数说明如下:1.取样长度(截止波长)λc:它是用来判断具有表面粗糙度特征的一段基准线长度,在轮廓的走向上量取。

本测量仪分为λc=0.25mm、0.8mm、2.8mm三档。

2.平定长度(测量长度)L n:它是测量过程中有效的行程长度,一般取样长λc 的3至7倍。

3.算术平均粗糙度值R a :它是取样长度λc 内轮廓偏距绝对值的算术平均值。

cadxx Y R λ⎰=1)(4.轮廓最大高度R y :它是在取样长度λc 内轮廓峰顶线和谷底线之间的距离。

分别用R max 、R t 表示。

5.平均峰谷高度R zd :在已滤波的轮廓上,五个等量相邻的单元测量长度中单个高度的算术平均值。

6.十点高度R z :在测量长度(评定长度)内,五个最高的轮廓峰值和轮廓谷值的绝对高度的平均值之和。

表面粗糙度 测量方法

表面粗糙度 测量方法

众所周知,表面粗糙度表征了机械零件表面的微观几何形状误差。

对粗糙度的评定,主要分为定性和定量两种评定方法,所谓定性评定就是将待测表面和已知的表面粗糙度比较样块相互比较,通过目测或者借助于显微镜来判别其等级;而定量评定则是通过某些测量方法和相应的仪器,测出被测表面的粗糙度的主要参数,这些参数是Ra,Rq,Rz,Ry ;他们代表的意义是:Ra 是轮廓的算术平均偏差,即在取样长度内被测轮廓偏距绝对值之和的算术平均值。

Rq 是轮廓的均方根偏差:在取样长度内轮廓偏距的均方根值。

Rz 是微观不平度的10点高度:在取样长度内5个最大的轮廓峰高与5个最大的轮廓谷深的平均值之和。

Ry 是轮廓的最大高度:在取样长度内轮廓的峰顶线与轮廓谷底线中线的最大距离。

目前常用的表面粗糙度测量方法主要有样板比较法,光切法,干涉法,触针法等。

1. 比较法它是在工厂里常用的方法,用眼睛或放大镜,对被测表面与粗糙度样板比较,或用手摸靠感觉来判断表面粗糙度的情况;这种方法不够准确,凭经验因素较大,只能对粗糙度参数值较大情况,给个大概范围的判断。

2. 光切法它是利用光切原理来测量表面粗糙度的方法。

在实验室中用光切显微镜或者双管显微镜就可实现测量,它的测量准确度较高,但它是与对Rz,Ry 以及较为规则的表面测量,不适用于对测量粗糙度较高的表面及不规则表面的测量。

3. 干涉法它是利用光学干涉原理测量表面粗糙度的一种方法。

这种方法要找出干涉条纹,找出相邻干涉带距离和干涉带的弯曲高度,就可测出微观不平度的实际高度;这种方法调整仪器比较麻烦,不太方便,其准确度和光切显微镜差不多;4. 触针法它是利用仪器的测针与被测表面相接触,并使测针沿其表面轻滑过测量表面粗糙度的测量方法。

采用这种方法的仪器最广泛的就是电动轮廓仪,它的特点是:显示数值直观,可测量许多形状的被测表面,如轴类,孔类,锥体,球类,沟槽类工件,测量时间少,方便快捷。

它可分为便携式和台式电动轮廓仪,便携式仪器可在现场进行测量,携带方便;带记录仪的电动轮廓仪,可绘制出表面的轮廓曲线,带微机的轮廓仪可显示轮廓的形状情况,并有打印机打印出数据和表面的轮廓线,便于分析和比较。

表面粗糙度测量

表面粗糙度测量

干涉条纹的弯曲。相应部位峰、谷的高度差 h 与干涉条纹弯曲量 a 和干涉条纹间距 b 有关(如图 3-10b
所示),其关系式为:
h= a×λ b2
式中:λ 为测量中的光波波长。本实验就利用测量干涉条纹弯曲量 a 和干涉条纹间距 b 来确定 R z 值
3
和 R y 值。
2. 测量步骤 (1)调整仪器 a 开亮灯泡,转动手柄 10 和 6(见图 3-6),使图 3-6 中的遮光
目镜的固紧螺钉,转动测微目镜,使其中的十字线的水平线与光带轮廓中线(估计方向)平行,锁 紧螺钉,然后转动测微目镜测微器上的刻度套筒,使十字线的水平线在光带最清晰的一边。在取样
长度 l 范围内,,找出 5 个最高峰点和 5 个
最低谷点,并分别用十字线的水平线与之
相切,如图 3-4 所示。读出十个读数 a 1、a 2、 a 3…… a 12,填入表 3-3,并按下式计算出 10
1~0.03 um 表面粗糙度的 R z 值和 R y 值。
a)
b)
图 3-6 6JA 型干涉显微镜的外形图
6JA 型干涉显微镜的外形图如图 3-6 所示。该仪器的
光学系统图如图 3-7 所示,由光源 1 发出的光束,通过聚
光镜 2、4、8(3 是滤色片),经分光镜 9 分成两束。其中
一束经补偿板 10、物镜 11 至被测表面 18 再经 原光路
h 松开图 2-10 中螺母 1b,转动测微目镜 1,使视场中十字线之一与干涉条纹平行,然后拧紧螺
母,此时即可进行具体的测量工作。
(2)测量方法。
在此仪器上,表面粗糙度可以用两种方法测量。
第一种用测微目镜测量:
a 转动测微目镜中与干涉条纹平
行的十字线中的一条线,对准一条干涉

面粗糙度怎么测量_测量表面粗糙度的方法【详解】

面粗糙度怎么测量_测量表面粗糙度的方法【详解】

表面粗糙度怎么测量_ 测量表面粗糙度的方法内容来源网络,由深圳机械展收集整理!表面粗糙度的检测,我们常用的有以下几中方法1.显微镜比较法,Ra0.32;将被测表面与表面粗糙度比较样块靠近在一起,用比较显微镜观察两者被放大的表面,以样块工作面上的粗糙度为标准,观察比较被测表面是否达到相应样块的表面粗糙度;从而判定被测表面粗糙度是否符合规定。

此方法不能测出粗糙度参数值2.光切显微镜测量法,Rz:0.8~100;光切显微镜(双管显微镜)是利用光切原理测量表面粗糙度的方法。

从目镜观察表面粗糙度轮廓图像,用测微装置测量Rz值和Ry值。

也可通过测量描绘出轮廓图像,再计算Ra值,因其方法较繁而不常用。

必要时可将粗糙度轮廓图像拍照下来评定。

光切显微镜适用于计量室3.样块比较法,直接目测:Ra2.5;用放大镜:Ra0.32~0.5;以表面粗糙度比较样块工作面上的粗糙度为标准,用视觉法或触觉法与被测表面进行比较,以判定被测表面是否符合规定用样块进行比较检验时,样块和被测表面的材质、加工方法应尽可能一致;样块比较法简单易行,适合在生产现场使用4.电动轮廓仪比较法,Ra:0.025~6.3;Rz:0.1~25;电动轮廓仪系触针式仪器。

测量时仪器触针尖端在被测表面上垂直于加工纹理方向的截面上,做水平移动测量,从指示仪表直接得出一个测量行程Ra值。

这是Ra值测量常用的方法。

或者用仪器的记录装置,描绘粗糙度轮廓曲线的放大图,再计算Ra或Rz值。

此类仪器适用在计量室。

但便携式电动轮廓仪可在生产现场使用5干涉显微镜测量法,Rz:.032~0.8;涉显微镜是利用光波干涉原理,以光波波长为基准来测量表面粗糙度的。

被测表面有一定的粗糙度就呈现出凸凹不平的峰谷状干涉条纹,通过目镜观察、利用测微装置测量这些干涉条纹的数目和峰谷的弯曲程度,即可计算出表面粗糙度的Ra值。

必要时还可将干涉条纹的峰谷拍照下来评定。

干涉法适用于精密加工的表面粗糙度测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面粗糙度的测量
表面粗糙度的测量方法有光切法,光波干涉法及触针法(又称针描法)等,工厂常用的还有粗糙度样板直接和被测工件对照的比较法,以及利用塑性和可铸性材料将被测工件加工表面的加工痕迹复印下来,然后再测量复印的印模的印模法。

一、实验目的
1.建立对表面粗糙度的感性认识;
2.了解用双管显微镜测量表面粗糙度的原理及方法。

二、实验内容
用双管显微镜测量表面粗糙度的Rz值。

三、测量原理及仪器说明
双管显微镜又撑光切显微镜,它是利用被测表面能反射光的特性,根据“光切法原理”制成的光学仪器,其测量范围取决于选用的物镜的放大倍数,一般用于测量0.8-80微米的表面粗糙度Rz值。

仪器外型如图1所示,它由底座6,支柱5,横臂2,测微目镜13,可换物镜8及工作台7等部分组成。

仪器备有四种不同倍数(7X,14X,30X,60X)物镜组,被测表面粗糙度大小(估测)来选择相应倍数的物镜组(见表1)。

表1 双管显微镜测量参数
测量原理如图2所示,被测表面为P1-P2阶梯表面,当一平行光束从45度方向投射到阶梯表面时,即被折成S1和S2两段,从垂直于光束的方向上就可以在显微镜内看到S1和S2两段光带的放大像S1'S2',同时距离h也被放大为h1'。

通过测量和计算,可求得被测表面的不平度高度h。

这种方法类似在零件表面斜切一刀,然后观察其剖面的轮廓形状,因此称为光切法。

图3为双管显微镜的光学系统图,由光源1发出的光,经聚光镜2,狭缝3,物镜4以45度方向投射到北测表面上,调整仪器使反射光束经物镜5成像在目镜分划板6上,光束被测上表面的S1点反射,在下表面S2点反射,它们各成像于分划板6的S1'和S2',距离h1被放大为h1',通过目镜可观察到凹凸不平的光带(图4(b)),光带边缘即工件表面上被照亮了的h1的放大轮廓像h1',测量h1'即可求出被测表面的不平高度h2。

h=h1cos45=(h1/N)cos45
式中N——物镜的放大倍数
影象高度h1'是利用目镜测微器来测量的,测微目镜头结构见图4(a)由于测微器中的十字刻线与测微器读数方向成45,所以当用十字线只能感的任一直线与影像蜂,谷相切来测量波高度时,波高h1=h1cos45
h1”为刻度线移过的实际距离,即测微器量词读数差(见图4(b)),所以被测表面的
不平高度为:
h=h1cos45cos45/N=1/2N·h1
式中,E为刻度套筒的分度值,或称为换算系数,它与投射角,目镜测微器的结构和物镜放大倍数有关,可在表1中查取。

由上述可知,零件表面不平度的高度h等于测微器两词读数差,即套筒转过的楼数。

四、测量方法与步骤
1.按被测表面轮廓特点,确定取样长度t,几种常用的机械加工方法的最小测量长度见表2。

表2
2.估计被测表面的粗糙度,按表1选择适当的物镜,装在仪器上。

3.将零件擦净后放在仪器工作台上,通过变压器接通电源。

4.粗调节:用手拖住横臂2,松开锁紧钉1。

旋升转动螺母4,使镜头对准被测表面上方,上下移动横臂2,直到在目镜中看到绿色光带和光面轮廓不平度的影象(图4b),然后旋紧螺钉1,调节中要避免物镜与被测表面发生碰撞。

5.细调节:在目镜中观察,并转动微调手轮3,使视场中央出现最狭窄且一边最清晰的光带。

6.转动测微目镜头,使十字线的水平线和光带轮廓中线平行,并以此水平线做为测量的
基准线,旋转测微目镜头的刻度套筒12(图4a),使目镜中十字线的水平线(基准线)分别与轮廓的峰顶和谷底相切(图4b)中的实线和虚线位置,丛刻度筒12中读出峰和谷的数值h1,h2……hm,在取样长度l内,测出5个峰和5个谷的数值,然后按下式算出10点的平均高度值Rz。

Rz=E·(h1+h3+……+hn)-(h2+h4+……hm)/5
式中h1,h3……hn为峰顶读数,h2,h4……hm为谷底读数,h单位为格数。

7.纵向移动工作台,按上述步骤在平定长度内,测出几个取样长度的Rz的值,取其平均值作为被测表面的微观不平度十点的高度Rz值。

8.添好实验报告,判断零件的适用性。

五、思考题:
1.什么是Rz参数和Ra参数?用双管显微镜也能测量Ra参数吗?
2.为什么只测量光带一个边缘的诸峰谷点?。

相关文档
最新文档