集成运放的非线性失真分析及电路应用

合集下载

(完整版)电子技术基础习题答案

(完整版)电子技术基础习题答案

(完整版)电子技术基础习题答案三、选择题:(每小题2分,共20分)1、单极型半导体器件是(C)。

A、二极管;B、双极型三极管;C、场效应管;D、稳压管。

2、P型半导体是在本征半导体中加入微量的(A)元素构成的。

A、三价;B、四价;C、五价;D、六价。

3、稳压二极管的正常工作状态是( C)。

A、导通状态;B、截止状态;C、反向击穿状态;D、任意状态。

4、用万用表检测某二极管时,发现其正、反电阻均约等于1KΩ,说明该二极管(C)。

A、已经击穿;B、完好状态;C、内部老化不通;D、无法判断。

5、PN结两端加正向电压时,其正向电流是(A)而成。

A、多子扩散;B、少子扩散;C、少子漂移;D、多子漂移。

6、测得NPN型三极管上各电极对地电位分别为V E=2.1V,V B=2.8V,V C=4.4V,说明此三极管处在(A)。

A、放大区;B、饱和区;C、截止区;D、反向击穿区。

7、绝缘栅型场效应管的输入电流(C)。

A、较大;B、较小;C、为零;D、无法判断。

8、正弦电流经过二极管整流后的波形为(C)。

A、矩形方波;B、等腰三角波;C、正弦半波;D、仍为正弦波。

9、三极管超过(C)所示极限参数时,必定被损坏。

A、集电极最大允许电流I CM;B、集—射极间反向击穿电压U(BR)CEO;C、集电极最大允许耗散功率P CM;D、管子的电流放大倍数。

10、若使三极管具有电流放大能力,必须满足的外部条件是(C)A、发射结正偏、集电结正偏;B、发射结反偏、集电结反偏;C、发射结正偏、集电结反偏;D、发射结反偏、集电结正偏。

三、选择题:(每小题2分,共20分)1、基本放大电路中,经过晶体管的信号有(C)。

A、直流成分;B、交流成分;C、交直流成分均有。

2、基本放大电路中的主要放大对象是(B)。

A、直流信号;B、交流信号;C、交直流信号均有。

3、分压式偏置的共发射极放大电路中,若V B点电位过高,电路易出现(B)。

A、截止失真;B、饱和失真;C、晶体管被烧损。

第11章 集成运算放大器及其应用

第11章  集成运算放大器及其应用

上式表明,差动放大电路的差模电压放大倍数和 单管放大电路的电压放大倍数相同。多用一个放大管 后,虽然电压放大倍数没有增加,但是换来了对零漂 的抑制。这正是差动放大电路的优点。
差动放大电路对共模输入信号的放大倍数叫做共 模电压放大倍数,用Auc表示,可以推出,当输入共 模信号时,Auc为
Au c u o u C1 u C 2 0 0 ui c ui1 ui1
由于集成运放的电压放大倍数Ao d和输入电阻Ri d 都非常大(理想情况下,两者约等于∞),于是可以 推得 u u
i i 0
注意:“虚短”和“虚断”是理想运放工作在线 性区时的两个重要特点。这两个特点常常作为今后分 析运放应用电路的出发点,因此必须牢固掌握。
(2)集成运放工作在非线性区的特性 如果运放的工作信号超出了线性放大范围,则输 出电压与输入电压不再满足式(11-1),即uo不再随 差模输入电压(u+ - u -)线性增长,uo将达到饱和。 此时集成运放的输出电压uo只有两种取值:或等于运 放的正向最大输出电压+UOM,或等于其负向最大输 出电压-UOM,具体为 当u + >u - 时,uo = +UOM 当u + <u - 时,uo = -UOM 另外,因为集成运放的输入电阻Ri d很大,故在 非线性区仍满足输入电流等于零,即式(11-3)对非 线性工作区仍然成立。
有时,为了简化起见,常常不把恒流源式差动放 大电路中恒流管T3的具体电路画出,而采用一个简化 的恒流源符号来表示,如图11-7所示。
二、输出级——功率放大电路 集成运放的输出级是向负载提供一定的功率,属 于功率放大,一般采用互补对称的功率放大电路。 1. 功率放大电路的特点 (1)因为信号的幅度放大在前置电路中已经完成, 所以功率放大电路对电压放大倍数并无要求。由于射 极输出器的输出电流较大,能使负载获得较大输出功 率,并且它的输出电阻小,带负载能力强,因此通常 采用射极输出器作为基本的功率放大电路。不过单个 的射极输出器对信号正负半周的跟随能力不同,在实 用的功率放大电路中大多采用双管的互补对称电路形 式。

集成运放电路习题答案

集成运放电路习题答案

第五章集成运放电路习题答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--集成运算放大器1.集成运算放大器的的特点(1)内部电路采用直接耦合,没有电感和电容,需要时可外接。

(2)用于差动放大电路的对管在同一芯片上制成,对称性好,温度漂移小。

(3)大电阻用晶体管恒流源代替,动态电阻大,静态压降小。

(4)二极管由晶体管构成,把发射极、基极、集电极三者适当组配使用。

2.集成运算放大器的组成(1)输入级:是双端输入、单端输出的差动放大电路,两个输入端分别为同相输入端和反相输入端,作用是减小零点漂移、提高输入电阻。

(2)中间级:是带有源负载的共发射极放大电路,作用是进行电压放大。

(3)输出级:是互补对称射极输出电路,作用是为了提高电路的带负载能力。

(4)偏置电路:由各种恒流源电路构成,作用是决定各级的静态工作点。

3.集成运放的理想模型集成运放的主要参数有:差模开环电压放大倍数A do ,共模开环电压放大倍数A co ,共模抑制比K CMR ,差模输入电阻r id ,输入失调电压U io ,失调电压温度系数 ΔU io /ΔT ,转换速率S R 等。

在分析计算集成运放的应用电路时,通常将运放的各项参数都理想化。

集成运放的理想参数主要有:(1)开环电压放大倍数∞=do A (2)差模输入电阻∞=id r (3)输出电阻0o =r(4)共模抑制比∞=CMR K理想运放的符号以及运放的电压传输特性)(do i do o -+-==u u A u A u 如图所示。

u ou -u +(a )理想运放的符号 (b )运放的电压传输特性图 理想运放的符号和电压传输特性4.运放工作在线性区的分析依据引入深度负反馈时运放工作在线性区。

工作在线性区的理想运放的分析依据为: (1)两个输入端的输入电流为零,即0==-+i i ,称为“虚断”。

(2)两个输入端的电位相等,即-+=u u ,称为“虚短”。

干货|大学生电子竞赛题目分析——放大器非线性失真研究装置

干货|大学生电子竞赛题目分析——放大器非线性失真研究装置

干货|大学生电子竞赛题目分析——放大器非线性失真研究装置1任务设计并制作一个放大器非线性失真研究装置,其组成如图所示,图中的K1和K2为1×2切换开关,晶体管放大器只允许有一个输入端口和一个输出端口。

2要求K1和K2均投到各自的“1”端子,外接信号源输出频率1kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压u i,要求输出无明显失真及四种失真波形u o,且u o的峰峰值不低于2V。

外接示波器测量晶体管放大器输出电压u o波形。

(1)放大器能够输出无明显失真的正弦电压u o(2)放大器能够输出有“顶部失真”的电压u o(3)放大器能够输出有“底部失真”的电压u o(4)放大器能够输出有“双向失真”的电压u o(5)放大器能够输出有“交越失真”的电压u o(6)分别测量并显示上述五种输出电压u o的“总谐波失真”近似值。

(7)其他3说明(1)限用晶体管、阻容元件、模拟开关等元器件设计并实现图中的受控晶体管放大器,其输出的各种失真或无明显失真的信号必须出自该晶体管放大电路,禁用预存失真波形数据进行D/A转换等方式输出各种失真信号。

(2)在设计报告中,应结合电路设计方案阐述出现各种失真的原因。

(3)无明显失真及四种具有非线性失真电压u o的示意波形如下图所示:(4)总谐波失真定义:线性放大器输入为正弦信号时,其非线性失真表现为输出信号中出现谐波分量,常用总谐波失真(THD:total harmonic distortion)衡量线性放大器的非线性失真程度。

THD定义:若线性放大器输入电压其含有非线性失真的输出交流电压为则有:在完成设计要求的第(6)项时,谐波取到五次即可,即(5)对THD自动测量期间,不得有任何人工干预。

(6)K1和K2的“2”端子用于作品测试。

题目分析与方案设计本题主要由两部分组成:一个晶体管放大器、一个谐波分析电路。

题目要求的晶体管放大器是一个具有特殊要求的放大器,要求通过切换某些元件后,不仅能够输出正常的无失真波形,还能输出4种失真波形,分别为顶部失真、底部失真、双向失真与交越失真。

集成运放的电路组成及其各部分的作用

集成运放的电路组成及其各部分的作用

集成运放的电路组成及其各部分的作用
集成运放是一种高电压放大倍数的多级直接耦合放大电路,由四部分组成:输入级、中间级、输出级和偏置电路,原理框图如图1所示。

它有两个输入端,一个输出端,如图中所标up 、un、uo。

均以“地”为公共端。

图1 集成运放原理框图1、输入级
输入级往往是一个高性能的双端输入差动放大电路。

一般要求其输入电阻高,差模电压放大倍数大,抑制共模信号的力量强,静态电流小。

输入级的好坏直接影响集成运放的大多数性能参数,如输入电阻、共模抑制比等。

2、中间级
中间级的作用是使集成运放具有较强的放大力量,多采纳共射(或共源)放大电路。

而且为了提高电压放大倍数,常常采纳复合管做放大管,以恒流源做集电极负载。

其电压放大倍数可以达到千倍以上。

3、输出级
输出级应具有输出电压线性范围宽、输出电阻小(即带负载力量强)、非线性失真小等特点。

集成运放的输出级多采纳互补对称功率放大电路。

4、偏置电路
偏置电路用于设置集成运放内部各级电路的静态工作点。

与分立元件不同,集成运放通常采纳电流源电路为各级供应合适的集电极(或
放射极、漏极)静态工作电流,从而确定了合适的静态工作点。

集成运放

集成运放
i1=iF+ ib- ib-= i1-iF 电压并联负反馈
(2) 同相比例运算放大器
iF if
ib+ =0
RF
u-= u+= ui
ib- =0
ui
Rf
_ + +
Au=1+
uo
iF=if
uo ui R 2F ui R 1f
RP
RP=Rf//RF
RF
Rf
R2 F u o (1 )u i ) R 1f

– +u + A1 o1



R
– + + A2

uo



RL
试判别下图放大电路中从运算放大器A2输出 例2: 并联电流负反馈 端引至A1输入端的是何种类型的反馈电路。 – +u + A1 o1




ui
i1
id if
R
+ A2
+
uo
解: 因反馈电路是从运算放大器A2的负载电阻RL 的靠近“地”端引出的,所以是电流反馈; 因输入信号和反馈信号均加在同相输入端上, 所以是并联反馈; 因净输入电流 id 等于输入电流和反馈电流 之差,所以是负反馈。

Ao
1+ AoF




Ao F
Xo


Xf


Xf

Xd
Ao F 0
Xo
Xd
Xf 、 d X
同相,所以
则有: F|<|Ao| |A
负反馈使放大倍数下降。

电子技术实验报告—实验9集成运算放大器组成的RC文氏电桥振荡器

电子技术实验报告—实验9集成运算放大器组成的RC文氏电桥振荡器

电子技术实验报告实验名称:集成运算放大器组成的RC文氏电桥振荡器系别:班号:实验者姓名:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验原理 (3)1、产生自激振荡的条件 (3)2、RC 串-并联网络的选频特性 (4)3、自动稳幅 (5)三、实验仪器 (6)四、实验内容 (7)1、电路分析及参数计算 (7)2、振荡器参数测试 (8)3、振幅平衡条件的验证 (9)4、观察自动稳幅电路作用 (10)五、误差分析 (10)六、实验心得 (11)一、实验目的1、掌握产生自激振荡的振幅平衡条件和相位平衡条件。

2、了解文氏电桥振荡器的工作原理及起振条件和稳幅原理。

二、实验原理1、产生自激振荡的条件所谓振荡器是指在接通电源后,能自动产生所需的信号的电路,如多谐振荡器、正弦波振荡器等。

当放大器引入正反馈时,电路可能产生自激振荡,因此,一般振荡器都由放大器和正反馈网络组成。

其框图如图1 所示。

振荡器产生自激震荡必须满足两个基本条件:(1)振幅平衡条件:反馈信号的振幅应该等于输入信号的振幅,即:V F = V i或|AF| = 1(2)相位平衡条件:反馈信号与输入信号应同相位,其相位差应为:Ф= ФA + ФF = ±2nπ(n = 0、1、2……)为了振荡器容易起振,要求|AF|>1,即:电源接通时,反馈信号应大于输入信号,电路才能振荡,而当振荡器起振后,电路应能自动调节使反馈信号的振幅应该等于输入信号的幅度,这种自动调节功能称为稳幅功能。

电路振荡产生的信号为矩形波信号,这种信号包含着多种谐波分量,故也称为多谐振荡器。

为了获得单一频率的正弦信号,要求在正反馈网络具有选频特性,以便从多谐信号中选取所需的正弦信号。

本实验采用RC 串-并联网络作为正反馈的选频网络,其与负反馈的稳幅电路构成一个四臂电桥,如图3 所示,故又称为文氏电桥振荡器。

2、RC 串-并联网络的选频特性RC 串-并联网络如图2(a )所示,其电压传输系数为:2()1122F +=12R1211(1)(21)122R2112R VF jwR c R c VO R j wc R jwc jwR c c wc R ++==+++++-()当R1= R2= R , C1= C2= C 时,则上式为:1()13()F j wRc wRc +=+-若令上式虚部为零,即得到谐振频率f o 为:1fo=2RC π 当f=f o 时,传输系数最大,且相移为0,即:F max =1/3,φF =0传输系数 F 的幅频特性和相频特性如图2(b )(c )所示。

放大电路失真现象及改善失真的研究报告

放大电路失真现象及改善失真的研究报告
图2.6截止失真的输出特性曲线
b)
c)双向失真
双向失真那么是由于输入信号过大,在信号正半周造成饱和失真,负半周造成截止失真,因此称为双向失真。
d)交越失真
这是一种比拟特殊的失真,它是由于输入电压较低时,因三极管截止而产生的失真。这种失真通常出现在通过零值处,如图2.7。交越失真出现在乙类放大电路中,如图2.8,这个电路由两个相互对称的PNP和NPN管组成,先分析这个电路的工作原理,当处于正半周期工作时,T1导通,T2截止,其工作等效电路如图2.8〔a〕,当处于负半周期工作时,T1截止,T2导通,其工作等效电路如图2.8〔b〕,但是由于没有直流偏置,管子的 必须在| |大于某一个数值〔即门坎电压,硅管约为0.7V,锗管约为0.2V〕时才有显著变化。当输入信号 低于这个数值时,T1和T2都截止, 和 根本为零,负载 上无电流通过,出现一段死区,输出波形对输入波形来说存在失真,也就是在过零值处出现的交越失真。
模拟电子技术研讨论文
放大电路失真现象及改善失真的研究
学院:电子信息工程学院
专业:通信工程
组长:南海蛟
组员:达川宇涵
指导教师:颖
一、引言3
二、放大电路失真类型3
2.1线性失真3
2.1.1幅度失真4
2.1.2相位失真4
2.1.3改善线性失真的方法4
2.2非线性失真6
2.2.1饱和失真6
2.2.2截止失真6
2.Байду номын сангаас.3双向失真7
2.2.4交越失真7
2.2.5谐波失真8
2.2.6互调失真8
2.2.7不对称失真8
2.2.8瞬态互调失真9
2.2.9改善非线性失真的方法9
2.3负反响对失真现象的影响11

放大器的非线性失真

放大器的非线性失真

放大器的非线性失真The document was prepared on January 2, 2021放大器的非线性失真非线性失真是模拟电路中影响电路性能的重要因素之一.本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术.概述非线性的定义电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化.放大器的非线性定义:当输入为正弦信号时,由于放大器管子的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器管子参数的非线性所引起的失真称为非线性失真.由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真.非线性的度量方法1 泰勒级数系数表示法:用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似:)()()()(33221 +++=t x t x t x t y ααα 对于小的x ,y t≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式中的α1,α2等系数就可确定.2 总谐波失真THD 度量法:即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”THD .把xt=Acosωt 代入式中,则有:+++++=+++=)]3cos(cos 3[4)]2cos(1[2cos cos cos cos )(332213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方.例如考虑一个三阶非线性系统,其总谐波失真为:2331233222)43()4()2(THD A A A A αααα++= 3 采用输入/输出特性曲线与理想曲线即直线的最大偏差来度量非线性.在所关心的电压范围0 V i,max 内,画一条通过实际特性曲线二个端点的直线,该直线就为理想的输入/输出特性曲线,求出它与实际的特性曲线间的最大偏差ΔV ,并对最大输出摆幅V o,max 归一化.即在如图所示.V图 非线性的确定单级放大器的非线性1 由于管子特性引起的非线性以共源放大器为例来说明单级放大器的非线性,如图所示是带电阻负载的共源放大器.V S +v sVo图 共源放大器图中V S 为M 1管的直流工作点,即栅源电压,而v s 则为输入的交流小信号,假定输入的交流小信号为:t cos V v m s ω= 则根据饱和萨氏方程可得其漏极电流为: 2)cos (t V V V K I m th GS N D ω+-=上式中I D0为直流输出,所以在输出端的交流信号可表示为:+++-=)]2cos(1[21cos )(22t V K t V V V K I m N m th GS N d ωω输出信号的基波与二次谐波的幅度之比为:)(42th GS mV V V A A -=ωω 由上式可以看出MOS 放大器的非线性失真是由于输出电流与输入电压的平方关系引起的,当V m 很小时,二次谐波可以忽略.2 由放大器传输特性引起的非线性带电阻负载的共源放大器的传输特性如图所示.V图 带电阻负载的共源放大器的传输特性由上图可以看出,放大器的非线性失真与输入信号大小、直流工作点偏置点有关.一般放大器的最大输出幅度是指无失真的输出.所以当偏置点不同时同一放大器的输出幅度是不同的.由于V o =V DD -I D R ,而放大器的电压增益为:A v =-g m R ,所以当电源电压为常数时,随着电阻R 值的增大,放大器的增益增加,但输出幅度的动态范围减小.差分电路的非线性对于差分电路,由于输入与输出间表现出一种“奇对称”的关系,即f -x=-fx ,所以对式的泰勒展开式进行简化,应只有奇次项,所有的偶次项系数为零,即输入为差分信号时差分放大器不存在偶次谐波,从而减少了非线性.V图 相同电压增益的单端放大器与差分放大器对于如图所示的差分放大器,其小信号电压增益为:)(2 R V V K R g A th GS N m v -=≈ 与共源放大器一样,假设输入信号为V m cosωt .则有:21D D o I I I -= 21GS GS id V V V -=根据饱和萨氏方程有:22221)(4 2idth GS id N id NS idN D D V V V V K V K I V K I I --=-=-从式可以看出,只有当N S id K I V /2≤时,I D1、I D2才有意义,而当V id 较小时,△I D =I D1-I D2和V id 才是线性的.所以一般认为在满足N S id K I V /±≤时,差分放大器是线性的.如果|V id |<<V GS -V th ,则将式中的根号下的式子展开得:)(8cos cos )(2 )(81)(2)(41)(2233222221⎥⎥⎦⎤⎢⎢⎣⎡---=⎥⎥⎦⎤⎢⎢⎣⎡---≈---=-th GS m m th GS N th GS idth GS id N th GS idth GS di N D D V V t V t V V V K V V V V V V K V V V V V V K I I ωω 利用三角函数的性质cos 3ωt=3cosωt+cos3ωt/4对式进行进一步的简化,有:)(32)3cos(cos )(323232321th GS m m th GS m m m D D V V t V g t V V V V g I I --⎥⎦⎤⎢⎣⎡--=-ωω 由上式可以看出:差分放大器的非线性失真只包含有奇次谐波,而无偶次谐波分量,且当])(32[323th GS m m V V V V ->>时,其三次谐波分量与基次谐波分量的比值为: )(32/22th GS m V V V -.与式相比可发现:在提供相同的电压增益与输出摆幅的情况下,差动电路呈现的失真要比共源放大的失真要小得多.电路中器件引起的非线性前面介绍的者是假定无源组件为线性,但实际上,特别是在集成电路中,无源组件也都是非线性的.这里主要介绍电容以及用MOS 管作电阻的非线性. 1 电容的非线性电容的非线性主要体现在开关电容电路中,电容器对电压的依赖关系可能会引入相当大的非线性.如图所示的电容结构,则是一个非线性电容.图 一种非线性电容结构对于图中的电容,由于其电容值的大小与PX 二点的电压值即电容两端的电压有关,通常此电容可表示为:)1(2210 +++=V V C C αα 为了考虑电容非线性的影响,分析如图a 所示的开关电容电路.CV oV i0a b图 a 非线性电容的开关电容电路 b 输出曲线假设图中放大器输入电容C 1上有一初始电压为V i0,而输出电容C 2的初始电压为零,且C 1是一非线性电容,并假设C 1/C 2=K 电路的死循环增益,C 1=KC 01+α1V ,则电容C 1上获得的电荷为:201000100112)1( 00i i V V V KC V KC dV V KC dV C Q i i αα+=+==⎰⎰而在放大模式终止时,电容C 2上的电荷为:2100222o o V V C V C dV C Q oα+==⎰而根据电荷守恒定理,Q 1=Q 2,所以可令式与式相等,则可求得:)211(10120211i i o V K V K V ααα+++-=上式中平方根项下的后两项通常远小于1,因此可以对平方根项展开,有:20102)1(i i o V K K KV V α-+≈从上式可以看出输出电压V o 的非线性是由第二项产生的.2 MOS 管作为电阻的非线性如图所示,为一个有源滤波器,其中使用MOS 管作为其电阻,V VGV oV V o图 用MOS 管作为电阻的有源滤波器选择V G 的电压使MOS 管工作在线性区,因此根据萨氏方程有: DS DSth GS N d V )2V V V (K i --= 对上式进行泰勒展开得:+----=)(21))((22S D N S D th GS N d V V K V V V V K i 式中V D -V S =V DS ,则其等效电阻为:++--==)(21)(S D N th GS N DS d V V K V V K V i R 上式中第一项为线性电阻,第二项为非线性电阻,使滤波器电路产生非线性,所以用简单管子工作在非饱和区作电阻时使电路产生非线性,当V D +V S 很小时,非线性可以忽略.克服非线性的技术 原理在模拟电路中改善和克服非线性失真的方法基本上都是采用负反馈.其基本的工作原理如下:考虑放大器的非线性失真时,输出信号可以表示为:h v di v o v DA v A v 00+=式中D 为谐波失真系数,v h 为输入端的谐波信号.则一个反馈系统可用图表示.Dv图 反馈系统的对非线性的影响的原理框图由上图可得到:of v f v F v ⋅= f sf di v v v -= di v h v of v A Dv A v 00+=把式、代入式h v sf v v v of Dv A v A F A v 000)1(+=+即:vv hv vv sf v of F A Dv A F A v A v 000011+++=上式说明,非线性失真减小是用降低系统增益换来的,反馈放大器输入信号幅度与无反馈时相同,则负反馈放大器的输出信号缩小了1+A v0F v 倍.为了便于比较,应将输出信号中的基波幅度调到与无反馈时相同,则有: s v v sf v F A v )1(0+= 把式代入到式中可得到:vv hv s v of F A Dv A v A v 0001++=由上式可以看出负反馈作用使放大器输出信号中的谐波成分减小了,若以D F表示,则有: vv F F A DD 01+=上式说明负反馈放大器非线性失真比无反馈放大器减小了1+A v0F v 倍.上述情况也可以从放大器的传输特性曲线来理解.假定一个放大器一般放大器的开环传输特性曲线失真可以用分段线性近似,如图所示.图 传输特性曲线失真的分段线性近似表示法当v s ≤V s1时,放大器开环增益为A 1;当V s1<v s ≤V s2时,放大器开环增益为A 2;当v s >V s2时,放大器开环增益为A 3.实际为传输特性的斜率,从此可以看出A 3为零,由于放大器随着输入信号的变化放大器增益的不一致,使输出波形将有失真.当放大器加反馈后该放大器闭环时的增益分别为假定反馈系数都为F v vvo v v F A A A 10111+=vvo v v F A A A 20221+=当反馈深度足够时,则有:A v1=1/F v ,A v2=1/F v ,A V3=0因为A 3=0.由上述关系画出闭环放大器传输特性如图中虚线所示,可以看出放大器的增益降低了,但线性范围扩展了,只有当v s >V s2时输出信号被限幅,才会失真.所以负反馈放大器在输出信号中非线性失真减小,反馈越深,负反馈放大器线性工作范围越大缓冲器最大:它是全反馈,非线性失真也越小,当放大器进入饱和区后,输出波形限幅.当放大器输入信号本身包含有谐波成分时,负反馈是无法将这种谐波成分减小的,只有加滤波器.改善放大器非线性失真的实际电路1 共源放大器线性电阻源级负反馈如图a所示,这是一个串联负反馈电路,且反馈系数为F=R S.VoViIa b图a带电阻负反馈的共源级 b不同反馈时的漏电流与Vi的关系负反馈减小了晶体管栅源之间施加的信号的摆幅,因此使得输入-输出特性具有更好的线性.忽略体效应,共源级的等效跨导为:1Smmm RggG+=当g m R S>>1时,则G m接近于1/R S,这是一个与输入无关的值.由图b可以发现R S越大,则ID越稳定.该电路的电压增益为:G m R,由于R S与R都是线性化的,因此A v也是线性的.并且该电路的线性范围直接取决于g m R S,g m R S越大则线性范围越大.例对于一个偏置电流为I0的共源级放大电路如图所示,其输入电压摆幅使漏电流由变化到.则MOS管的跨导发生变化,引起电路的非线性失真,计算以下三种情况下小信号电压增益的变化a R S=0,b g m R S=2的负反馈,c g m R S=4,其中g m是I D=I1时的跨导.解:假定M1工作于饱和区,则有DmIg∝.则:a当R S=0时,即不存在负反馈时,有:4.06.0,,=lmhmggb 当g m R S=2时,由式可得:4.06.00.89)6.021()4.021(4.06.0)4.01/(4.0)6.01/(6.0,,=++=++=SmmSmmlmhmRggRggGGc 同理,当g m R S =4时有:4.06.00.86 )6.041()4.041(4.06.0)4.01/(4.0)6.01/(6.0,,=++=++=S m m S m m lm h m R g g R g g G G由式与式可知:当g m R S =2时,线性度提高了11%;而当g m R S =4时,线性度提高了14%.2 差分放大器的线性负载共源放大器线性电阻源级负反馈,可直接应用到差分放大器中形成差分放大器的线性负载负反馈.如图a 、b 所示.a b图 差分对中使用的源级负反馈 a 一个电阻 b 两个电阻图a 、b 中的差分输入的半电路相同,如同图a 所示.因此其负反馈的作用也与带线性电阻负反馈的共源放大器的效果一样.在图a 中, V GS 抬高了I S R S /2电压值比不带反馈的放大器,而当V id =0时,电阻上通过I S /2的电流,因而提高反馈深度以提高线性范围与输出压摆之间是一矛盾的关系,另外,失调与噪声都存在负反馈作用,所以对失调与噪声都有改善.而图b 中,仅用一个电阻,且电阻2R S 上无电流流过,因此失调与噪声不存在负反馈作用,所以容易产生较大的失调和噪声.在MOS 差分运算放大器中,要求R S 能很精确,但是由于工艺原因,其电阻值存在着很大误差,所以一般在制造中采用工作在很深三极管区的MOS 管作为电阻,此时的电阻呈线性特征,当V DS 很小时有:R on3=1/2K N V GS -V th .如图所示.图 通过工作在深线性区的MOSFET 实现负反馈的差分对然而,当输入摆幅较大时,不能保证M 3处于深线性区,因此它的导通电阻将会增大,从而引入了非线性.当图中的电阻R S 用两个工作于深线性区的NMOS 管来实现时,就构成了如图所示的电路.图 用两个工作在线性区的MOSFET 负反馈的差分对当V id =0时,M 3与M 4都处在深线性区.假设V id 为负值,即V G1<V G2,由于V D4=V G4-V GS2,晶体管M 4处在线性区,而M 4则因为其漏极电压大于栅源电压,最终将进入饱和区.因此,即使一个负反馈器件进入饱和区,电路仍能保持相对线性.在设计时,令W/L 1,2≈7W/L 3,4,则可得到较宽的线性范围.但是在图中,当M 3、M 4进入饱和区时,电阻增加,在管子上的压降增大,使电路脱离了线性区.3 改变输入对管的输入特性来克服放大器的非线性强制输入对管始终工作在深的线性区,如图所示,图中运放A 1、A2使得:V A =V B ≈V b,且不受输入电平变化的影响,而且要求V b <<V GS1-V th1,因此输入对管M 1、M 2始终工作于深线性区.13V b图 输入器件工作在线性区的差分对该电路的特点为:1 由于M 1、M 2工作于深线性区,故它们的跨导较小,且为:g m1=g m2=2K N1V DS =2K N1V b . 所以这种线性范围的扩大是以增益的降代为代价的.2 因为M 1、M 2的工作状态与V i 的共模电平有关,所以输入共模电平必须严格控制,并跟踪V b ,以便确定I D1和I D2.3 M 3,M 4与两个辅助放大器在输出端会产生很大的噪声.4 利用器件特性的互补法其思路是将放大器看作由一个电压-电流V/I转换器后面再接一个电流-电压I/V转换器构成.这样在理想情况下,电压-电流转换时的非线性用其后的电流-电压的非线性相互抵消,从而产生线性的放大器.但在实际中,由于存在着各种其它非理想效应都会在电路中产生非线性,从而减小了放大器的线性工作范围.。

电子电路基础判断题

电子电路基础判断题

第一章常用半导体器件1-1 晶体二极管二.判断题1.在外电场作用下,半导体中同时出现电子电流和空穴电流。

(T)2.P型半导体中,多数载流子是电子,少数载流子是空穴。

(F)3.晶体二极管有一个PN结。

所以有单向导电性。

(T)4.晶体二极管的正向特性也有稳压作用。

(T)5.硅稳压管的动态电珠愈小,则稳压管的稳压性能愈好。

(T)6.将P型半导体和N型半导体用一定的工艺制作在一起,其叫界处形成PN结。

(T)7.稳压二极管按材料分有硅管和锗管。

(F)8.用万用表欧姆挡的不同量程去测二极管的正向电阻。

其数值是相同的。

(F)9.二极管两端的反向电压一旦超过最高反向电压,PN结就会击穿。

(F)10.二极管的反向电阻越大,其单向导电性能就越好。

(T)11.用500型万用表测试发光二极管,应该R*10k挡。

(T)1-2 晶体三极管二.判断题1.晶体三极管的发射区和集电区是由同一类半导体(N型或P型)构成的,所以发射极和集电极可以相互调换使用。

(F)2.三极管的放大作用具体体现在Ic=ßIb。

(T)3.晶体三极管具有能量放大作用。

(F)4.硅三极管的Icbo值要比锗三极管的小。

(T)5.如果集电流Ic大于集电极最大允许电流Icm时,晶体三极管可顶损坏。

(F)6.晶体二极管和三极管都是非线性器件。

(T)7.3CG21管工作在饱和状态时,一定是Ube<Uce.(T)8.某晶体三极管的Ib=10μA时。

Ic=044mA;当Ib=20μA时。

Ic=0.89mA,则它的电流放大系数ß=45。

(T)9.因为三极管有两个PN结,二极管有一个PN结。

所以用两个二极管可以连接成一个三极管。

(F)10.判断题1-2-1所示各三极管的工作状态(NON型为硅管。

PNP 型为锗管)。

a)(放大);b)(饱和);c)(截止);d)(放大)11.复合管的共发射极电流放大倍数ß等于两管的ß1,ß2之和。

06 集成运放、反馈的认知及应用电路的制作(电子教材)

06 集成运放、反馈的认知及应用电路的制作(电子教材)

项目6 集成运放、反馈的认知及应用电路的制作学习目标1.知识目标(1) 了解集成运算放大器(简称集成运放)的结构组成及特性指标,了解常见集成运放的种类、引脚特性。

(2) 了解集成运放的“虚短”和“虚地”的概念,了解集成运放应用电路的分析与基本计算。

(3) 掌握反馈的定义、分类及判别方法,重点掌握各种反馈类型对放大电路静态和动态性能的影响。

2.技能目标(1) 掌握利用万用表、信号发生器、示波器测试反馈电路的特性的方法。

(2) 制作音频放大电路的中间级,学会对电路所出现故障进行原因分析及排除。

生活提点集成电路是20 世纪60 年代初发展起来的一种新型器件。

它把整个电路中的各个元器件以及器件之间的连线采用半导体集成工艺同时制作在一块半导体芯片上,再将芯片封装并引出相应引脚做成具有特定功能的集成电子线路。

与分立件电路相比,集成电路实现了器件、连线和系统的一体化,外接线少,具有可靠性高、性能优良、质量轻、造价低廉、使用方便等优点。

另外,通过引入反馈可改善放大电路的放大性能。

项目任务制作音频放大电路的中间级部分,要求该电路采用两级集成运放作为放大之用,电压放大倍数至少达到50以上。

该电路在PCB 上如图6.1 所示。

图6.1 音频放大电路的中间级部分项目实施6.1 集成运放的认知集成运放的实物如图6.2 所示。

6.1.1 集成运放的组成及其符号各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图 6.3 所示。

输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图6.3 集成运算放大电路的结构组成集成运放的图形和文字符号如图6.4 所示。

图6.4 集成运放的图形和文字符号其中“-”称为反相输入端,即当信号在该端进入时,输出相位与输入相位相反;而“+”称为同相输入端,输出相位与输入信号相位相同。

2、线性失真和非线性失真 振幅讲解

2、线性失真和非线性失真 振幅讲解


与耦合电容相反,由于半导体管极间电容的存在,对信号构 成了低通电路,即对于频率足够低的信号相当于开路,对电路 不产生影响;而当信号频率高到一定程度时,极间电容将分流, 从而导致放大倍数的数值减小且产生相移。
为了便于理解有关频率响应的基本要领,这里将对无源 单极RC电路的频率响应加以分析。
• 1、高通电路

RC高通电路如图所示:
Au

UO Ui



R 1 R jC

1 1 1 jRC

式中为输入信号的角频率,RC为回路的时间常 数,令:
1 1 L RC L 1 1 fL 2 2 2RC Au

L 1 j
1

1 fL 1 jf

f 1 j fL
三、RC电路的频率响应
在放大电路中,存在着耦合电容和半导体管的极间电容。 • 由于耦合电容的存在,对信号构成了高通电路,即对于频 率足够高的信号电容相当于短路,信号几乎毫无损失地通过; 而当信号频率低到一定程度时,电容的容抗不可忽略,信号将 在其上产生压降,从而导致放大倍数的数值减小且产生相移。

• 2、线性失真和非线性失真
• 振幅频率失真和相位频率失真都是由电路的线性电 抗元件(电阻、电容、电感等)引起的,故又称为线性 失真。 • 线性失真和非线性失真同样会使输出信号产生畸变, 但两者有许多不同点: • ⑴起因不同 • 线性失真由电路中的线性电抗元件引起,非线性 失真由电路中的非线性元件引起(如晶体管或场效应管 的特性曲线的非线性等)。
• (二)、RC低通电路波特图的绘制

按照同样的步骤计算出数据表,画出曲线,分析 渐进线近似后的误差。

电子电路中复习试卷

电子电路中复习试卷

第10章电子电路中常用的元件习题参考答案一、填空题:1. PN结的单向导电性指的是PN结正向偏置时导通,反向偏置时阻断的特性。

2。

硅晶体管和锗晶体管工作于放大状态时,其发射结电压U BE分别为0。

7V和0。

3V。

3。

晶体三极管有两个PN结,分别是发射结和集电结,分三个区域饱和区、放大区和截止区.晶体管的三种工作状态是放大状态、饱和状态和截止状态。

4。

一个NPN三极管发射结和集电结都处于正偏,则此三极管处于饱和状态;其发射结和集电结都处于反偏时,此三极管处于截止状态;当发射结正偏、集电结反偏时,三极管为放大状态。

5. 物质按导电能力强弱可分为导体、绝缘体和半导体。

6。

本征半导体掺入微量的三价元素形成的是P型半导体,其多子为空穴。

7。

某晶体三极管三个电极的电位分别是:V1=2V,V2=1。

7V,V3=-2。

5V,可判断该三极管管脚“1"为发射极,管脚“2"为基极,管脚“3”为集电极,且属于锗材料PNP型三极管.8。

稳压管是一种特殊物质制造的面接触型硅二极管,工作在特性曲线的反向击穿区。

二、判断题:1。

在P型半导体中,空穴是多数载流子,电子是少数载流子。

(对)2. 二极管两端加上正向电压就一定会导通.(错)3。

用万用表测试晶体管好坏时,应选择欧姆档中比较大的量程.(错)4。

PNP管放大电路中,U CC的极性为负,说明发射结反偏,集电结正偏. ( 错 ) 5。

晶体管可以把小电流放大成大电流。

(对)6。

晶体管可以把小电压放大成大电压。

(错)7。

晶体管可用较小电流控制较大电流。

(对)8. 如果晶体管的集电极电流大于它的最大允许电流I CM,则该管被击穿。

(错)9。

二极管若工作在反向击穿区,一定会被击穿。

(错)三、选择题:1。

处于截止状态的三极管,其工作状态为(B)。

A、发射结正偏,集电结反偏;B、发射结反偏,集电结反偏;C、发射结正偏,集电结正偏;D、发射结反偏,集电结正偏.2. P型半导体是在本征半导体中加入微量的( A )元素构成的.A、三价;B、四价;C、五价;D、六价.3。

电子课件-《电工与电子技术基础(第三版)》-A06-3734 第五章 放大与震荡电路

电子课件-《电工与电子技术基础(第三版)》-A06-3734 第五章 放大与震荡电路
估算静态工作点的公式:
固定偏置放大电路的直流等效电路
第五章 放大与震荡电路
(2)动态分析 当放大电路输入交流信号,即 ui ≠ 0 时,称为动态。
放大电路的电压、电流波形图
第五章 放大与震荡电路
通常把交流信号流通的路径称为交流等效电路。交流等效电路的画法原则: 对小容抗的电容和内阻很小的电源,忽略其交流压降,都可以视为短路。
一、集成运算放大器的外形和图形符号
1. 集成运算放大器的外形
常见集成运放的外形 a)双列直插式 b)单列直插式 c)扁平式 d)圆壳式
第五章 放大与震荡电路 2. 集成运算放大器的图形符号
集成运算放大器的图形符号如图所示。图中“ ”表示放大器,三角形所 指方向为信号的传输方向,“∞”表示开环电压放大倍数极高。
一、低频功率放大器的概念
功率放大电路又称为功率放大器,简称“功放”。功放中以半导体三极管 为主要器件,一般称为功率放大管,简称“功放管”。
1. 对功率放大器的基本要求
(1)要求有足够大的输出功率。 (2)要求有较高的效率。 (3)要求非线性失真较小。 (4)要求功放管的散热性能好。
第五章 放大与震荡电路
第五章 放大与震荡电路
对负载来说,放大器又相当于一个具有内阻的信号源,这个内阻就是放大 电路的输出电阻。该放大电路的输出电阻
放大器的输入电阻和输出电阻
第五章 放大与震荡电路
二、分压式射极偏置放大电路
三极管在不同温度时的输出特性曲线
第五章 放大与震荡电路 1. 分压式射极偏置放大电路的结构特点
分压式射极偏置放大电路 a)分压式射极偏置放大电路 b)直流等效电路 c)交流等效电路
2. 加法器
uo = -(ui1 + ui2)

第6章 集成运算放大器及其应用

第6章 集成运算放大器及其应用

6.3 .
一、比例运算电路
集成运算放大器的线性应用
1.反相比例运算电路 反相比例运算电路如下图所示
根据理想运放在线性区“虚短”和“虚断”的特点,有 输入电压ui 通过电阻R1作用于集成运放的反相输入端,故输出电压uo与ui 反 相;电阻Rf 跨接在集成运放的输出端和反相输入端,引入了电压并联负反馈; 同相输入端通过电阻R’ 接地,R’ 为补偿电阻,以保证集成运放输入级差分放 大电路的对称性,其值为ui =0时反相输入端总等效电阻,即R’=R1∥ Rf 。 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称为“虚 地”。节点N的电流方程为 该电路的闭环电路放大倍数为 由于N点虚地(u-=0),整理得出 A= uo /ui = -Rf/ R1 若Rf= R1 ,则A=1,即uo =-ui ,这时电路为倒相器。 uo 与ui 成比例关系,比例系数为-Rf/ R1负号表示uo 与ui 反相。 1
6.2 放大电路中的负反馈 .
一、反馈的基本概念 所谓反馈,就是指连接放大电路输入回路和放大电路输出回路的电路(或元 件),利用反馈元件将输出信号(电压或电流,全部或部分)引回到放大电路输入 回路中,来影响或改变受控元件的净输入信号(电压或电流)的大小或波形,从 而控制输出信号的大小及波形。将放大电路输出端的电压或电流,通过一定的 方式返回到放大器的输入端,对输入端产生作用或影响,称为反馈。 反馈放大电路的方框图如下图所示。

• 放大器的输出信号为 由上式可知,放大器一旦引入深度负反馈,其闭环放大倍数仅与反馈系数 F 有关,而与放大器本身的参数无关。 反馈放大器的放大倍数At(又称为闭环增益)为
其中, 称为反馈深度,是描述反馈强弱的物理量。可见,放大器引 入负反馈后,放大器的放大倍数下降。如果 >>1,则一般认为反馈 已经加得很深,这时的反馈称为深度负反馈,此时上式可简化为

模拟电子技术基础第4章

模拟电子技术基础第4章

图4.2.2 同相输入放大电路
放大电路的输入电阻Ri→∞ 放大电路的输出电阻Ro=0 图4.2.3 电压跟随器
4.2.3 差动输入(Differential input)放大电路
图 4.2.5 所示为差动输入放大电路,它的两个输入端都有 信号输入。 ui1通过R1接至运放的反相输入端,ui2通过R2、R3分压后接 至同相输入端,而uo通过Rf、R1反馈到反相输入端。
三、开方运算
平方根运算电路如图4.3.5 所示,与图4.3.2所示的除法电路比 较可知,它是上述除法电路的一个特例,如将除法电路中乘法 器的两个输入端都接到运放的输出端,就组成了平方根运算电 路。
图4.3.5 平方根运算电路
4.4
有源滤波器
滤波器的功能及其分类
4.4.1
滤波器是从输入信号中选出有用频率信号并使其顺利通过, 而将无用的或干扰的频率信号加以抑制的电路。 只用无源器件R、L、C 组成的滤波器称为无源滤波器,采用 有源器件和R、C元件组成的滤波器称为有源滤波器。 同无源滤波器相比,有源滤波器具有一定的信号放大和带 负载能力可很方便的改变其特性参数等优点; 此外,因其不使用电感和大电容元件,故体积小,重量轻。 但是由于集成运放的带宽有限,因此有源滤波器的工作频率较 低,一般在几千赫兹以下,而在频率较高的场所,采用LC无源 滤波器或固态滤波器效果较好。
通常用分贝数dB表示,则为
一般情况希望Aod越大越好, Aod越大,构成的电路性能 越稳定,运算精度越高。 Aod一般可达100dB,最高可达140dB 以上。 2、输入失调电压UIO及其温漂 dUIO/dT 如果集成运放差动输入级非常对称,当输入电压为零时,
输出电压也应为零(不加调零装置)。但实际上它的差动输入

集成运算放大器及其应用

集成运算放大器及其应用

集成运算放⼤器及其应⽤第5章集成运算放⼤器及其应⽤在半导体制造⼯艺的基础上,把整个电路中的元器件制作在⼀块硅基⽚上,构成具有特定功能的电⼦电路,称为集成电路。

集成电路具有体积⼩,重量轻,引出线和焊接点少,寿命长,可靠性⾼,性能好等优点,同时成本低,便于⼤规模⽣产,因此其发展速度极为惊⼈。

⽬前集成电路的应⽤⼏乎遍及所有产业的各种产品中。

在军事设备、⼯业设备、通信设备、计算机和家⽤电器等中都采⽤了集成电路。

集成电路按其功能来分,有数字集成电路和模拟集成电路。

模拟集成电路种类繁多,有运算放⼤器、宽频带放⼤器、功率放⼤器、模拟乘法器、模拟锁相环、模/数和数/模转换器、稳压电源和⾳像设备中常⽤的其他模拟集成电路等。

在模拟集成电路中,集成运算放⼤器(简称集成运放)是应⽤极为⼴泛的⼀种,也是其他各类模拟集成电路应⽤的基础,因此这⾥⾸先给予介绍。

5.1 集成电路与运算放⼤器简介5.1.1 集成运算放⼤器概述集成运放是模拟集成电路中应⽤最为⼴泛的⼀种,它实际上是⼀种⾼增益、⾼输⼊电阻和低输出电阻的多级直接耦合放⼤器。

之所以被称为运算放⼤器,是因为该器件最初主要⽤于模拟计算机中实现数值运算的缘故。

实际上,⽬前集成运放的应⽤早已远远超出了模拟运算的范围,但仍沿⽤了运算放⼤器(简称运放)的名称。

集成运放的发展⼗分迅速。

通⽤型产品经历了四代更替,各项技术指标不断改进。

同时,发展了适应特殊需要的各种专⽤型集成运放。

第⼀代集成运放以µA709(我国的FC3)为代表,特点是采⽤了微电流的恒流源、共模负反馈等电路,它的性能指标⽐⼀般的分⽴元件要提⾼。

主要缺点是内部缺乏过电流保护,输出短路容易损坏。

第⼆代集成运放以⼆⼗世纪六⼗年代的µA741型⾼增益运放为代表,它的特点是普遍采⽤了有源负载,因⽽在不增加放⼤级的情况下可获得很⾼的开环增益。

电路中还有过流保护措施。

但是输⼊失调参数和共模抑制⽐指标不理想。

第三代集成运放代以⼆⼗世纪七⼗年代的AD508为代表,其特点使输⼊级采⽤了“超β管”,且⼯作电流很低。

3.4集成运算放大器的应用

3.4集成运算放大器的应用

退出
结束
The End
退出
运算电路图 幅频特性
低频 衰减
高频 通过
退出
本章小结
本章的主要内容是在基础放大模块层面 之上的级间问题。集成运放则又上到集 成芯片层级,是实际应用性的电路。
负反馈的分类及判断方法
正负 瞬时极性法 交流直流 反馈元件法 电压电流 串联并联
输出短路法 叠加点接地法
退出
负反馈的作用 减小整体增益,但提高增益稳定性 拓展通频带,频率特性改善 减少非线性失真 电压负反馈稳定输出电压,减小输出电阻; 电流负反馈稳定输出电流,增大输出电阻;
退出
为了提高滤波效果,可以再加上一节RC网络,构成二阶低 通电路。这样高频信号衰减速度更快,为-40dB/十倍频程。 运算电路图 幅频特性
引入反馈,加强 高频段衰减程度 退出
(2)高通滤波器
低通滤波器即是高频信号能通过而低频信号不能通过的滤波器。 将低通滤波器中起滤波作用的电阻、电容互换,即成为高通。
2. 集成运放的线性区与非线性区 (1)线性区
满足uo Aod (u u )
为了使运放工作在线性区,集成运放外围都接有深度负反馈, 以减小其净输入电压,从而使其输出电压不超出线性范围。 有两条基本结论:
u u 0即u u
称之为“虚短”现象,即同相端“+”与反相端“–”电位 相同,但并非真正短路,即两端之间无电流导通。
上述结论也可利用叠加定理来导出。
退出
3.4.3 信号处理电路
1. 滤波器
滤波器是一种能使部分频率的信号顺利通过而其他频 率的信号受到很大衰减的装置,在信息处理、数据传 送和抑制干扰等方面广泛应用。
退出
(1)低通滤波器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成运放的非线性失真分析及电路应用
0 引言运算放大器广泛应用在各种电路中,不仅可以实现加法和乘法等线性运算电路功能,而且还能构成限幅电路和函数发生电路等非线性电路,不同的连接方式就能实现不同的电路功能。

集成运放将运算放大器和一些外围电路集成在一块硅片上,组合成了具有特定功能的电子电路。

集成运放体积小,使用方便灵活,适合应用在移动通信和数码产品等便携设备中。

线性特性是考查具有放大功能的集成运放和接收射频前端电路的一个重要参数,并且线性范围对集成运放的连接方式也有很大影响。

集成运放的线性范围太小,就会造成输出信号产生多次谐波和较大的谐波功率,严重地影响整个电路的功能。

基于集成运放的非线性分析,可以发现造成电路非线性失真的原因,并且在不改变电路设计的前提下,通过改变集成运放的连接方式,达到实现集成运放正常工作的目的。

本文设计优化的集成运放电路应用于定位系统射频前端电路,完成对基带扫频信号的放大输出,能有效抑制了集成运放谐波的产生,实现射频接收前端电路的高增益,提高对后端电路设计部分的驱动能力。

l 差分电路的接入方法和集成运放的非线性参数通用集成运放电路由:偏置电路、输入级、中间级和输出级等组成。

其输入级部分由差分电路构成。

差分电路有双端输入和单端输入两种信号输入方法;偏置电路可以采用单电源和双电源两种供电方式。

在移动通信或便携设备中,一般采用单电源供电方式,单电源供电的集成运放要求输入信号采用单极性形式,即输入信号始终是正值或是负值,差分输入级可以用来保证输入中间级电路的信号极性,同时差分输入级放大电路可以有效抑制共模信号,增强集成运放的共模抑制比。

但是,当共模输入信号较大时,差分对管就会进入非线性工作状态,放大器将失去共模抑制能力,严重影响到集成运放的共模抑制比。

集成运放的非线性特性参数除了最大共模输入。

相关文档
最新文档