四年级第一讲整数计算综合
苏教版数学四年级上册第7单元《整数四则混合运算》教案(1)
苏教版数学四年级上册第7单元《整数四则混合运算》教案(1)一. 教材分析苏教版数学四年级上册第7单元《整数四则混合运算》是学生在掌握了加减乘除的基础上,进一步学习四则混合运算。
本节课的内容包括:顺序计算、运算定律的应用、简便计算等。
通过本节课的学习,使学生掌握整数四则混合运算的运算顺序和计算方法,培养学生分析问题、解决问题的能力。
二. 学情分析四年级的学生已经掌握了加减乘除的基本运算,对于简单的四则混合运算也已经有所接触。
但是,学生在运算过程中,往往会因为运算顺序、运算定律的应用等问题而出现错误。
因此,在教学中,需要引导学生明确运算顺序,熟练运用运算定律进行简便计算。
三. 教学目标1.知识与技能:掌握整数四则混合运算的运算顺序,能正确进行计算;2.过程与方法:培养学生分析问题、解决问题的能力,提高学生的运算速度和准确性;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.教学重点:整数四则混合运算的运算顺序和计算方法;2.教学难点:运算定律的应用和简便计算。
五. 教学方法采用情境教学法、引导发现法、小组合作学习法等。
通过创设生活情境,引导学生发现问题,运用已有的知识经验解决问题,培养学生的动手操作能力、观察能力、思维能力和合作能力。
六. 教学准备1.课件:整数四则混合运算的例子;2.黑板:用于板书重点内容和演示运算过程;3.练习题:用于巩固所学知识。
七. 教学过程导入(5分钟)教师通过创设生活情境,如购物、做菜等,引导学生发现需要进行四则混合运算的问题。
学生尝试解答,教师引导学生总结运算顺序。
呈现(10分钟)教师呈现一组整数四则混合运算的题目,如23 + 45 × 6。
学生独立思考,教师引导学生运用运算定律和已有的知识经验进行解答。
教师讲解正确的解题思路和方法,强调运算顺序。
操练(10分钟)学生分组进行练习,教师巡回指导。
学生互相讨论,教师引导学生运用运算定律和简便计算方法进行解答。
四年级下册数学试题-思维训练:第1讲 整数计算综合(含答案)全国通用
整数计算综合第1讲情课堂激例1:计算:(1) 72×27×88÷(9×11×12);(2) 31×121-88×125÷(1000÷121).例2:计算:(1) 555×445-556×444;(2) 42×137-80÷15+58×138-70÷15.练习1:计算:(1) 34×35×36÷(5×6×7);(2) 54×22-36×75÷(100÷24).练习2:计算:2010×1950-2011×1949例3:计算:1+2-3+4+5-6+7+8-9+…+97+98-99.例4:在不大于1000的自然数中,A为所有个位数字为8的数之和,B为所有个位数字为3的数之和。
A与B的差是多少?练习3:计算:200+199-198-197+196+195-194-193+…+4+3-2-1.例5:计算:(1) 202-192+182-172+162-152+…+22-12;(2) 951×949-52×48.例6:规定运算o满足:aob=(a+1)×(b-2).(1)计算:(3o4)o5(2)如果6o(□o5)=91,那么方格内应该填入什么数?练习4:计算:(1) 202-182+162-142+…+42-22;(2) 79×75-25×21.练习5:定义A B表示A、B间(不包括A、B)所有奇数的和,例如:12 7=9+11=20,计算(2 12) 22.知识小结通过改变运算顺序简化计算分组计算思想平方差公式定义新运算力课后能培养课后作业1.计算:(1)125×27×77÷(25×11×9);A. 100B. 105C. 120D. 125(2)738×13×7-13×175×32÷(400÷169).A. 32000B. 34500C. 36400D. 365002.计算:20+19-18-17+16+15-14-13+12+11-10-9+8+7-6-5+4+3-2-1.A. 0B. 10C. 16D. 203.在不大于300的自然数(包括0)中,个位为0的所有数之和与个位为1的所有数之和的差是多少?A. 30B. 60C. 270D. 3004.计算:(1)1002-992+982-972+…+22-12;A. 5050B. 5000C. 4550D. 4500(2) 101×99-51×49.A. 7450B. 7500C. 7555D. 77505.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
四年级数学上册《整数四则混合运算》整理与复习
四年级数学上册《整数四则混合运算》整理与复习《四则混合运算》整理与复习【知识点拨】1.四则混合运算的顺序:①在没有括号的算式里,只有加法和减法,或者只有乘法和除法,要从左往右依次计算;既有加减法,又有乘除法,要先算乘除,后算加减。
②在有括号的算式里,要先算括号里面的,再算括号外面的。
改变算式的运算顺序,可以使用小括号。
2.四则混合运算方法一看、(看数字,运算符号,想想运算顺序是什么。
)二画、(画线,哪一步先算,就在哪一步的下面画一条横线,没有计算的要照抄下来。
) 三算、(按照运算顺序计算)四检验、(检验运算顺序是否错误,计算是否算错。
)* 混合运算顺序歌通览全题定方案,细看是否能简便;明确顺序是关键,同级只要依次算;异级出现仔细看,先乘除来后加减;遇到括号别慌张,先小后大依次算;每算一步都检验,又对又快喜心间。
【解题技巧】解答式题技巧(一)“看”。
“看”,就是先看一看题目里有几个什么数。
会有几种运算符号;再看一看运算符号和数据有什么特点,有什么内在联系。
如405×(3076-2980)+2136÷89。
看的结果应是:①有5个数;②有4种运算;③含有小括号;④是一道带有小括号的整数四则混合运算题。
又如3.68×[1÷(2.1-2.09)]+0.6。
看的结果应是①含有5个数;②有4种运算;③含有中括号;④是一道带有中括号的小数四则混合式题。
这是小学数学的计算题的答题技巧之一。
(二)“定”。
“定”,就是对题目整体观察后,确定运算顺序。
即先算什么,再算什么,后算什么。
可采用画线标序的方法,如:405×(3076-2980)+2136÷89└──┬─┘①└─┬─┘└──┬──┘└──────┘③(三)“想”。
“想”,就是分析题中的数值特征和运算间的联系,联想到有关运算定律、运算性质,然后进行运算。
如:405×(3076-2980)+2136÷89。
苏教版数学四年级上册第7单元《整数四则混合运算》说课稿
苏教版数学四年级上册第7单元《整数四则混合运算》说课稿一. 教材分析苏教版数学四年级上册第7单元《整数四则混合运算》是本册教材中的重要内容。
本节课的主要任务是让学生掌握整数四则混合运算的运算顺序和计算方法,培养学生解决实际问题的能力。
二. 学情分析四年级的学生已经掌握了整数的加减乘除运算,对于简单的四则混合运算也有了一定的认识。
但是,学生在运算过程中往往忽略了运算顺序,导致计算结果错误。
因此,在教学本节课时,需要引导学生掌握运算顺序,提高运算正确率。
三. 说教学目标1.知识与技能目标:学生能够理解整数四则混合运算的运算顺序,掌握计算方法,能够正确熟练地进行计算。
2.过程与方法目标:通过观察、分析、归纳等方法,学生能够发现运算顺序的规律,提高解决问题的能力。
3.情感态度与价值观目标:培养学生认真、细致的运算态度,培养学生合作、交流的良好学习习惯。
四. 说教学重难点1.教学重点:学生能够理解整数四则混合运算的运算顺序,掌握计算方法。
2.教学难点:学生能够灵活运用运算顺序,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型等教学手段,直观展示运算过程,帮助学生理解和掌握运算顺序。
六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对运算顺序的思考,导入新课。
2.探究运算顺序:学生分组讨论,分析不同运算顺序下的计算结果,引导学生发现运算顺序的规律。
3.讲解运算方法:教师通过例题讲解,让学生掌握整数四则混合运算的计算方法。
4.练习巩固:学生独立完成练习题,检验自己对于运算顺序的掌握情况。
5.应用拓展:学生分组解决实际问题,运用所学知识解决生活中的数学问题。
七. 说板书设计板书设计要简洁明了,能够突出运算顺序的规律。
可以设计一个运算顺序的流程图,让学生一目了然。
八. 说教学评价教学评价主要通过学生的课堂表现、练习成绩和实际问题解决能力来进行。
苏教版四年级数学上册《整数四则混合运算》全单元教案
苏教版四年级数学上册《整数四则混合运算》全单元教案第七单元整数四则混合运算第1课时不含括号的混合运算教学内容:教材70-71页教学目标:1、使学生理解和掌握不含括号的混合运算的运算顺序,能正确地进行三步混合运算的计算;2、能用所学知识解决相关的实际问题,使学生感受数学与生活的联系,产生自主探索的兴趣3、培养学生认真、严谨的研究惯。
教学重点:掌握不含括号的三步计算运算顺序;正确熟练地进行不含括号的三步计算。
教学难点:运用不含括号的三步计算解决实际问题。
教学资源:例图、多媒体课件、小黑板等。
教学程序:首备设计一、复引入1、计算:240×2+180.600-600÷4学生独立运算,指名板演。
2、提问:算式中都含有哪些运算?它们的运算顺序是什么?指名回答。
3、明确:当算式中只有加减或乘除法时,按从左到右的顺序计算;当既有乘除法又有加减法时,要先算乘除法,再算加法或减法。
4、谈话:今天我们继续研究混合运算。
(板书:不带括号的四则混合运算)二、探究新知1、教学例1.1)出示情境图:很多同学都喜欢下棋,我们一起去看看XXX买棋时遇到了什么数学问题:演例如题,指名说说图上的信息:买3副中国象棋和4副围棋。
象棋的单价是12元,围棋的单价是15元读问题:她一共要付多少元?这是一道购物的实际问题,遇到这类问题你马上会想到哪个基本数量关系式?复:单价×数量=总价2)学生尝试列式,并交换:分步列式:12×3=36元15×4=60元36+60=96元综合:12×3+15×4可能还有):(12+15)×(3+4)讲评:指着分步列式,让学生明确每一步算式的意思。
比较两个综合算式,让学生说说下面的算式为什么是错的?它这样算出的结果表示什么?明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两样棋的总价加起来就是一共要付的钱。
四年级奥数训练第1讲整数计算综合
四年级奥数训练第1讲整数计算综合内容概述熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算方法处理各种数列的计算问题。
学会处理“定义新运算”的问题,初步体会用字母表示数。
典型问题兴趣篇1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×1252. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66.3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。
4. 计算:100-99+98-97+96-95+…+12-11+10.5. 计算:50+49-48-47+46+45-44-43+…-4-3+2+1.6. 计算:(1+3+5+7+…+199+201) -(2+4+6+8+…+198+200).7. 计算:1+2+3+4+…+48+49+50+49+48+…+4+3+2+1.8. 下面是一个叫做“七上八下”的数字游戏。
游戏规则是:对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。
口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大。
例如:给出的数是1995,口令是“8→7,”在第一个口令“8”发出后变成995,在第二个口令“7”发出后变成9995。
如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的6个数的和是多少?9. 规定运算“∇”为:a∇b= (a+1) ×(b-1), 请计算:(1)8∇10;(2) 10∇8.10. 规定运算“☺”为:a☺b=a×b-(a+b), 请计算:(1) 5☺8; (2) 8☺5; (3) (6☺5)4; (4)6☺ (54)拓展篇1. 计算:(1)72×27×88÷(9×11×12); (2) 31×121-88×125÷(1000÷121).2. 计算:(1) 555×445-556×444; (2) 42×137-80÷15+58×138-70÷15.3. 计算:20092009×2009-20092008×2008-20092008.4. 计算:1+2-3+4+5-6+7+8-9+……+97+98-99.5. 计算:100×99-99×98-98×97-97×96-96×95-95×94+…+4×3-3×2-2×1.6. 在不大于1000的自然数中,A为所有个位数字为8的数之和,B为所有个位数字为3的数之和. A与B的差是多少?7. 求图1-1中所有数的和.8. 已知平方差公式:22()()-=+⨯-,计算:a b a b a b22222222-+-+-++-201918171615219. 计算:951×949-52×48.10. 规定运算“Θ”为:aΘb=a+2b-2, 计算:(1) (8Θ7)Θ6;(2) 8Θ(7Θ6)11. 规定运算“”为:a b=(a+1) ×(b-2). 如果6(5)=91,那么方格内应该填入什么数?12. 规定:符号“∆”为选择两数中较大的数的运算,“∇”为选择两数中较小的数的运算,例如:3∆5=5,3∇5=3请计算:1∆2∆3∇4∆5∆6∇7∆…∇100.(运算的顺序是从左至右)超越篇1. 观察下面算式的规律:2000+1991-1988-1982+1976+1970-1964-1958+1952+1946-1940-1934+……一直这样写下去,那么最后4个自然数分别是哪4个?符号分别是加还是减?算式最终的结果为多少?2. 从1, 2, ……, 9, 10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样的乘积全部加起来,总和是多少?3. 计算:1-3+6-10+15-21+28- (4950)4. 已知平方差公式:22()()a b a b a b-=+⨯-, 计算:222222222222+--++--+++--1009998979695949343215. aΘb表示从a开始依次增加的b个连续自然数的和,例如:4Θ3=4+5+6=15, 5Θ4=5+6+7+8=26, 请计算:(1) 4Θ15 (2) 在算式(Θ7)Θ11=1056中,方框里的数应该是多少?6. 定义两种运算:aΩb=a-b+1, a∀b=a×b+1, 用“Ω”、“∀”和括号填入下面的式子,使得等式成立(不能用别的计算符号):7 3 4 5=27.现定义四种操作的规则如下:①“一分为二”:如果一个自然数是偶数,就把它除以2;如果是奇数,就先加上1,然后除以2. 例如从16可以得到8,从27可以得到14.②“丢三落四”:如果一个自然数中包含数字“3”或“4”,就将其划掉,例如从5304可以得到50,从408可以得到8. (不含数字3和4的自然数不能进行“丢三落四”操作)③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数字“8”,就将所有“8”移到最右边。
数学四年级 第1讲 整数计算综合(教师版+学生版,含详细解析)
第1讲整数计算综合内容概述熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算方法处理各种数列的计算问题。
学会处理“定义新运算”的问题,初步体会用字母表示数。
典型问题兴趣篇1.计算:(1) 121×32÷8;答案:484解析:原式=121×(32÷8)=121×4=484(2) 4×(250÷8)答案:125解析:原式=(4×250)÷8=1000÷8=125(3) 25×83×32×125答案:8300000解析:原式=(25×4)×(8×125)×83=100×1000×83=83000002.计算:(1) 56×22+56×33+56×44答案:5544解析:原式=56×(22+33+44)=56×99=56×(100-1)=56×100-56×1=5600-56=5544(2) 222×33+889×66.答案:66000解析:原式=111×66+889×66=66×(111+889)=66×1000=660003.计算:(1) 37×47+36×53答案:3647解析:原式=(36+1)×47+36×53=36×47+1×47+36×53=36×(47+53)+47=36×100+47=3600+47=3647(2) 123×76-124×75答案:48解析:原式=(124-1)×76-124×75=124×76-1×76-124×75=124×(76-75)-76=124-76=484.计算:100-99+98-97+96-95+…+12-11+10.答案:55解析:原式=(100-99)+(98-97)+(96-95)+…+(12-11)+10=1×45+10=555.计算:50+49-48-47+46+45-44-43+…-4-3+2+1.答案:51解析:原式=(50+49-48-47)+(46+45-44-43)+…+(6+5-4-3)+2+1=4×12+2+1=51 6.计算:(1+3+5+7+…+199+201) -(2+4+6+8+…+198+200).答案:101解析:原式=1+3+5+7+…+199+201-2-4-6-8-…-198-200=1+(3-2)+(5-4)+(7-6)+…+(199-198)+(201-200)=1+1×100=1017.计算:1+2+3+4+…+48+49+50+49+48+…+4+3+2+1.答案:2500解析:原式=(1+49)×49÷2×2+50=50×49+50=50×(49+1)=50×50=25008. 下面是一个叫做“七上八下”的数字游戏。
苏教版数学四年级上册第7单元《整数四则混合运算整数四则混合运算》(第1课时)说课稿
苏教版数学四年级上册第7单元《整数四则混合运算整数四则混合运算》(第1课时)说课稿一. 教材分析苏教版数学四年级上册第7单元《整数四则混合运算》是本册教材中的重要内容,主要让学生掌握整数的加、减、乘、除四则混合运算。
本课时为第1课时,主要教学内容是整数的加减混合运算。
教材内容安排循序渐进,先让学生回顾加减法的运算规则,再通过具体的例子让学生理解加减混合运算的顺序,最后通过练习让学生巩固所学知识。
二. 学情分析四年级的学生已经掌握了加减法的基本运算规则,对于简单的加减混合运算也已经有一定的理解。
但是,学生在运算过程中可能会存在运算顺序混乱、运算符号混淆等问题。
因此,在教学过程中,需要引导学生明确运算顺序,培养学生认真细致的运算习惯。
三. 说教学目标1.让学生掌握整数的加减混合运算顺序。
2.培养学生正确、迅速的运算能力。
3.培养学生认真细致的运算习惯。
四. 说教学重难点1.教学重点:整数的加减混合运算顺序。
2.教学难点:学生在运算过程中出现的运算顺序混乱、运算符号混淆等问题。
五. 说教学方法与手段本节课采用情境教学法、引导发现法、实践操作法等多种教学方法,结合多媒体课件、实物模型等教学手段,引导学生主动探究,培养学生的动手操作能力和思维能力。
六. 说教学过程1.导入:通过生活中的实际例子,引出整数的加减混合运算,激发学生的学习兴趣。
2.新课讲解:讲解整数的加减混合运算顺序,让学生通过具体的例子理解并掌握运算顺序。
3.课堂练习:让学生独立完成练习题,检测学生对加减混合运算顺序的掌握情况。
4.总结提升:对本节课的内容进行总结,强调运算顺序的重要性,引导学生养成良好的运算习惯。
5.课后作业:布置相关的课后练习,让学生进一步巩固所学知识。
七. 说板书设计板书设计如下:整数加减混合运算1.运算顺序:先算加法,再算减法2.运算规则:–加法:同号相加,异号相减–减法:被减数减去减数八. 说教学评价本节课的教学评价主要通过以下几个方面进行:1.学生的课堂参与程度:观察学生在课堂上的积极性、主动性。
四年级奥数训练第1讲整数计算综合
四年级奥数训练
第1讲整数计算综合
内容概述
熟练运用已学的各种方法解决复杂的整数四则运算问题;学
会利用加减抵消、分组计算方法处理各种数列的计算问题。
学会处理“定义新运算”的问题,初步体会用字母表示数。
典型问题
兴趣篇
1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×125
2. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66.
3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。
4. 计算:100-99+98-97+96-95+,+12-11+10.
5. 计算:50+49-48-47+46+45-44-43+,-4-3+2+1.
6. 计算:(1+3+5+7+,+199+201) -(2+4+6+8+,+198+200).
7. 计算:1+2+3+4+,+48+49+50+49+48+,+4+3+2+1.
8. 下面是一个叫做“七上八下”的数字游戏。
游戏规则是:
对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。
口令“7”是指在这个数中插入一个数字,使得
新生成的数尽量大;口令“8”是指将这个数中的一个数字。
四年级数学复习
第一讲整数计算综合知识精讲一、交换律加法交换律:a+b=b+a 例如:123+234=234+123乘法交换律:a×b=b×a 例如:123×234=234×123二、结合律加法结合律:(a+b)+c=a+(b+c) 例如:(123+234)+345=123+(234+345)乘法结合律:(a×b)×c=a×(b×c) 例如:(123×234)×345=123×(234×345)三、分配率例如:(234×5 ×例如:(100÷10不能-100÷40(错误的)1,去(添)括号后不变号;括号前面是“-”,去(添)括号后要变号。
例如:234+(345-123)=234+345-123345-(234-123)=345-234+1232、乘、除法去(添)括号:括号前面是“×”,去(添)括号后不变号;括号前面是“÷”,去(添)括号后要变号。
例如:8×(5÷8)=8×5÷8; 93÷(31÷3)=93÷31×3五、带符号搬家:同级运算时,可以带符号搬家,改变运算顺序。
注意:加、减法同为第一级运算,乘、除法同为第二级运算。
例如:241-164+59=241+59-164165×29÷5=165÷5×29四则混合运算时要先算乘除法、后算加减法,同级运算按照从左到右的顺序计算,有括号时先算括号内的。
例题一:计算:(1)125×71×8 (2)124×24÷31 (3)28×7÷28×7练习1:计算:(1)25××4 (2)96×25÷24例题二:计算:(1)222÷64×32 (2)123÷(41÷32)(3)125×21×60÷(7÷8×15)练习2:计算:(1)72×27×88÷(9×11×12)(2)25×121÷2÷(11×5÷4)例题三:计算:(1)222×33+889×66 (2)21×32+58×68+32×37 (3)12×21+23×12+52×11练习3:计算:23×5+46×25+69×15例题四:计算:(1)(16+32+40)÷4 (2)96÷4+176÷4+128÷4(3)15÷6+53÷6-20÷6练习4:计算:(1)52÷7-13÷7+3÷7 (2)11÷5+111÷5+1÷5-23÷5挑战极限:例题五:计算:(1)15×16÷12 (2)64÷28×35例题六:计算:(1)56×47+46×44 (2)55×45-56×44作业:1、计算(1)75×24÷25 (2)46÷13×26÷232、计算(1)50×27×77÷(25×11×9)(2)110×47-125÷100×(47×8)3、计算:13×29+26×19+11×394、计算49÷13-107÷13+110÷135、计算:50×27÷45第二讲和差倍中的分组比较一、知识梳理三年级我们学习过,当题目中包含两个以上的对象时,最简单的解决方法就是:把其中的若干对象“打包”变成一个对象,从而减少对象的数量,最终把问题变成两个对象间的和差倍问题.这种“打包”的方法就是所谓的分组法.在有多个对象的和差倍问题中,分组法和比较法是常用的方法.我们先来看这么简单的问题:甲、乙、丙三人称重,由于秤出了点问题,只能准确地称出60千克与90千克之间的重量,因此他们三人只能两人两人一起称重.甲和乙一起称,总重量是73千克;乙和丙一起称,总重量是80千克;丙和甲一起称,总重量是75千克.三人的体重分别是多少千克?我们把甲、乙两人看成一组,乙、丙两人也看成一组(其中乙同时属于两组),比较这两组我们发现丙比甲重80-73=7千克.再结合甲、丙总重量为75千克,可以根据和差关系算出甲、丙各自的重量.在这个例子中,我们既考虑两人一组的总重量,也把两组的总重量作比较.除此之外,还有另一种利用分组比较的分析方法:我们把甲、乙、丙三个人两两的体重看做一组,把三组相加,即为三个人体重和的2倍.由此可得三人体重之和为++÷千克,再分别与每一组进行比较,即可得到三个人的体重. (738075)2由此可见,用分组法与比较法在处理多个对象的和差倍关系时,可以把条件之间的关系变得更清晰.而且,一个题目往往是可以从不同的角度采用不同的分析方法进行解决的,所以我们要根据题目的实际情况进行合理地比较.有些题目直接列出算式去比较会很麻烦,所以我们可以用画图的方法来帮助我们比较.典例精析【典例1】成都树才学校举办包包子大赛,小明比小红多包3个,小张比小黄多包9个,小明和小黄共包了87个,那么着四个人共包了多少个包子?【分析】按条件画出分组图,比较两组中有关联的人,你有什么发现吗?在神秘的星球上只有四种水果,其中火龙果和水龙果共83个,水龙果和金龙果共86个,金龙果和木龙果共88个,请问:火龙果和木龙果共多少个?【分析】这三组的总数之间有什么联系吗?比较其中两组的水果数量,你有什么发现吗?或者试试比较法中“累加”的方法,能有什么发现吗?某学生到工厂勤工俭学,按合同规定,干满30天,工厂将给他一套工作服和1000元钱,但由于学校另有安排,他工作了10天后便终止了合同.按天计算所得报酬,工厂需要给他一套工作服和200元钱,请问:这套工作服值多少元钱?【分析】工作10天比工作30天要少拿20天的报酬,究竟拿了多少元钱呢?某食堂买来的大米的袋数是面粉的4倍,该食堂每天消耗面粉20袋,大米60袋.几天后面粉全部用完,大米还剩下200袋.请问:这个食堂买来大米多少袋?【分析】由于大米的袋数是面粉的4倍,我们可以把1份面粉和4份大米分成一组,怎么分组才能使每天恰好消耗完一组中的面粉呢?这时一组里剩下多少袋大米呢?你能算出一共用了多少天吗?五年级有甲、乙、丙、丁四个班,不算甲班,其余三个班的总人数是121人;不算丁班,其余三个班的总人数是134人;丁班人数的2倍比甲班多9人.请问:这四个班共有多少人?【分析】把题目给出的条件例举出来,进行分析比较,能得出关于丁、甲两班的关系吗?牛刀小试【练习1】有来自阳光、灿烂、雨天、清风这四所小学的同学参加成都树才学校吃包子比赛,其中阳光学校参赛人数比灿烂学校多5人,雨天学校参赛人数比清风学校多7人,如果灿烂、雨天两校一共有40人参加比赛,那么阳光、清风两校一共有多少人参加比赛?【练习2】西瓜太郎有四种西瓜,其中红西瓜和绿西瓜共23个,绿西瓜和粉西瓜共35个,粉西瓜和黄西瓜共39个,请问:红西瓜和黄西瓜共多少个?【练习3】在海阳王国里,海豚在鲸鱼开的餐厅打工,它俩说好工作满30天,鲸鱼就付给海豚100个海洋币和1颗珍珠.但工作了25天,海豚决定不干了.按天算工资,鲸鱼只给付给它50个海币和1颗珍珠.请问:这个珍珠值多少个海洋币?【练习4】箱子里有红、白两种玻璃球,红球数是白球数的3倍.每次从箱子里取出7个白球,15个红球.经过若干次后,箱子里白球恰好被取完,只剩下54个红球.那么箱子里原有红球、白球各多少个?【练习5】五年级有甲、乙、丙、丁四个班,不算甲班,其余三个班的总人数是131人;不算丁班,其余三个班的总人数是140人;乙、丙两个班的总人数比甲、丁两个班的总人数少1人.请问:这四个班共有多少人巩固提高1.学校举行联欢会,如果甲、乙、丙三个班的学生参加,共60人;如果只有甲、乙两班的学生参加,共40人;如果只有乙、丙两班的学生参加,共32人.乙班有多少人?2.某次数学考试,甲、乙的成绩和是184分,乙、丙的成绩和是188分,那么甲比丙少多少分?3.一个桶里有一些油,如果把油加到原来的2倍,油桶连油共重26千克;如果把油加到原来的4倍,这时油和桶共重46千克,那么桶重多少千克?4.森林学校里,有的学生爱吃苹果,有的学生爱吃香蕉.于是,兔子厨师就专门针对不同学生的口味订购了一批苹果核香蕉,已知苹果数量是香蕉的5倍,小朋友们每天一共要吃30个香蕉个90个苹果,几天后香蕉全部被吃完了,苹果却还剩下600个.请问:兔子厨师一共订购了多少个苹果?5.老大、老二、老三是张家三兄弟,今年老大与老二的年龄之和是23岁,老二与老三的年龄之和是18岁,老大与老三的年龄之和比老二年龄的2倍多1岁,请问:今年三兄弟的年龄之和是多少岁?第一讲变倍问题一、知识梳理大家在前面的学习中已经掌握了基本和倍、差倍、和差等问题的解法.对于基本和差倍问题,可以根据已知条件直接画出线段图.而对于有些较复杂的和差倍问题,我们往往需要先分析题目中的隐藏条件,找到各个数量之间的和差倍关系,然后再通过画线段图等方法求解.之前学过的题目一般只涉及两个量的一种倍数关系,这时“1”份的量较容易确定.如果已知条件涉及多个量的倍数关系,或是两个量之间的倍数关系发生了变化,那么这时选择哪个量作为“1”分量就是解题的关键了.如果设为“1”份不好算,还可以选择一个合适的数设为多份数.试一试:甲是乙的2倍,也是丙的3倍,那么设甲为( )份.甲是乙的2倍,也是丙的5倍,那么设甲为( )份.甲是乙的3倍,也是丙的5倍,那么设甲为( )份.甲是乙的11倍,也是丙的20倍,那么设甲为( )份.甲是乙的99倍,也是丙的100倍,那么设甲为( )份.甲是乙的4倍,也是丙的12倍,那么设甲为( )份.甲是乙的6倍,也是丙的9倍,那么设甲为( )份.典例精析【典例1】学校门口放有红、黄、蓝三种颜色的花,其中黄花的盆数是最多的,是红花的4倍,是蓝花的3倍.已知蓝花比红花多20盆,请问:学校门口一共有多少盆花?【分析】黄花盆数是红花的4倍,是蓝花的3倍,红花、蓝花都与黄花有倍数关系,我们应该把黄花设为几份呢?爸爸和小明跑步回来,各吃了一些饺子,此时爸爸吃的饺子是小明的3倍,过了一会儿,小明觉得不过瘾,又吃了3个饺子,这时爸爸吃的饺子只有小明的2倍了.请问:爸爸吃了几个饺子?【分析】小明又吃了3个饺子,小明吃的数量发生了变化,但是爸爸吃的数量没有变,我们把不变的量设为多少呢?有红色、绿色两个箱子,红色箱子里装的是红球,绿色箱子里装的是绿球,红球的数量是绿球数量的3倍.从红色箱子里拿出10个球放入绿色箱子里,这时红色箱子里球的数量是绿色箱子里球的数量的2倍.那么现在红色、绿色两个箱子里各有多少个球?【分析】从红色箱子里拿出10个放入绿色箱子里,两个箱子里的球数都发生了变化,那到底有没有不变量,什么不变呢?我们又该把这个不变量设为几份呢?成都树才学校小学部与初中部老师们为希望小学的孩子们捐书,小学部的捐书量是初中部的6倍,若两个部门各增加30本,则小学部的捐书量是初中部的4倍.请问:两个部门原来各捐书多少本?【分析】两个部门各增加30本,那么两个部门的捐书量都发生了变化,但是什么没有变呢?我们把它设为几份比较容易计算呢?王老师和麦兜抢包子,一开始王老师的包子个数是麦兜的3倍,麦兜趁王老师不注意,从王老师的手里抢走了100个包子,结果麦兜的包子数量变成了王老师的2倍.请问:王老师和麦兜原来分别有多少包子?【分析】先找不变量,要仔细读题,注意倍数关系,千万别弄反哦!牛刀小试【练习1】暑假里,心灵手巧的萱萱折了很多纸鹤,做了一副漂亮的纸鹤帘.这幅纸鹤帘以粉色和黄色的纸鹤做背景,绿色的纸鹤排列成一个“家”字,其中粉色的纸鹤比较多,既是黄色纸鹤的3倍,又是绿色纸鹤的5倍.让你过绿色和黄色的纸鹤一共有240个,那么萱萱的这幅纸鹤帘一共有多少个纸鹤?【练习2】小矮人和绿巨人比身高,绿巨人的身高是小矮人的3倍,后来小矮人从巫婆那里获得了生长剂,结果长了30厘米,,而绿巨人却没有再长高,此时绿巨人的身高只有小人的2倍.请问:小矮人和绿巨人原来分别有多高?【练习3】张三和李四一起搬砖,原计划张三搬其中的一些,,李四搬剩余的砖,那么张三所搬的砖数是李四的5倍;如果李四帮张三搬10块,那么张三所搬的砖数是李四的4倍,请问:原计划张三搬多少块砖?李四搬多少块砖?【练习4】熊大和熊二吃蜂蜜,一开始熊大吃的个数是熊二的4倍,之后熊大和熊二又分别吃了10个,此时熊大吃的个数只有熊二的2倍,请问:最后熊大和熊二分别吃了多少个蜂窝?【练习5】张三和李四一起搬砖,原计划张三搬其中的一些,,李四搬剩余的砖,如果张三帮李四搬10块,那么张三所搬的砖数是李四的5倍;如果李四帮张三搬10块,那么张三所搬的砖数是李四的2倍,请问:原计划张三搬多少块砖?李四搬多少块砖?巩固提高1.风老师、雨老师、云老师吃松子,风老师吃的松子颗数是雨老师的5倍,是云老师的3倍,其中云南老师比雨老师多吃了100颗松子.请问:风老师吃了多少颗松子?2.李师傅有大小两种型号的零件,其中大型号零件个数是小型号的3倍,李师傅使用了10个小型号零件,使得大型号零件个数变成了是小型号零件个数的4倍.请问:李师傅原来有多少个小型号零件?3.河马和犀牛是好朋友,他们经常派家里养的信鸽给对方送信,河马家信鸽的数量是犀牛家的3倍,但某次河马出远门不小心忘记了锁鸽笼,结果等它回来时,已经有10只信鸽飞到了犀牛家,这时河马家的信鸽数量就只有犀牛家的2倍了.请问:犀牛家原来养了多少只信鸽?4.花园里开着一些红花和黄花,红花的朵数是黄花的3倍.秋天到了花儿凋谢了,红花和黄花各自减少了60朵,这时剩余的红花朵数是黄花的6倍.请问:还剩下多少朵红花?5.兄弟两人分压岁钱,一开始哥哥的钱数是弟弟的3倍,后来哥哥给弟弟20元,结果弟弟的钱数是哥哥的2倍.请问:两人一共有多少元压岁钱?第二讲年龄问题一、知识梳理在与年龄有关的应用题中,年龄一般只与年份有关,比如某人在2012年是30岁,那么他在2013年一定是31岁,不用具体考虑他今年是否已经过完生日.这类应用题中,给出的条件一般是两个人或者多个人的具体年龄活着他们年龄之间的和差倍关系.所以年龄问题其实就是一类特殊的和差倍问题.与其他和差倍问题相同,年龄问题也可以通过画线段图来分析,但和其他和差倍相比,年龄问题中时常包含一些隐藏条件,需要大家格外关注.我们先来看一下只与两个人的年龄有关的几类问题.典例精析【典例1】今年小高12岁,他父亲42岁,请问:多少年后,父亲的年龄是小高的2倍?多少年前,父亲的年龄是小高的4倍?【分析】小高和父亲的年龄差是不变的,怎么把年龄差与年龄的倍数关系联系起来呢?今年爸爸的年龄是儿子的4倍,4年以后,爸爸年龄就只有儿子的3倍,请问:今年爸爸、儿子分别各多少岁?【分析】父亲年龄的倍数关系发生了变化,是一个典型的变倍问题,其中的不变量是什么呢?把不变量设为几份呢?小红问师傅多少岁,师傅说:“当我像你这么大时,你刚3岁;当你想我这么大时.我已经39岁了.”请问:师傅和小红现在分别多少岁?【分析】本题中过去、现在、将来的时间都出现了,你能在一个图里把这些时间都表示出来吗?兄弟俩现在年龄之和是32岁,当哥哥像弟弟现在这么大时,哥哥的年龄是当时弟弟年龄的3倍.请问:哥哥现在几岁了?【分析】这个题目中只有现在和过去,应该先画哪个时间点呢?和差倍问题,有倍数我们要优先画出倍数关系.一年前,父母的年龄和是兄弟二人年龄和的7倍;4年后,父母的年龄和是兄弟二人年龄和的4倍.已知爸爸和妈妈同岁,请问:妈妈今年多少岁?【分析】这是关于父母年龄和与兄弟年龄和的变倍问题,我们是不是应该把父母二人分成一组,兄弟二人分成另一组来计算呢?牛刀小试【练习1】今年小高10岁,他父亲30岁.请问:多少年前,父亲年龄是小高的5倍?多少年前,父亲年龄是小高的6倍?【练习2】今年,母亲年龄是儿子年龄的3倍,10年后,母亲年龄是儿子年龄的2倍.请问:今年母亲的年龄是几岁?【练习3】叔叔对小亮说:“当你像我这么大的时候,,我已经60岁了;当我像你这么大的时候,你才24岁.”请问:小亮和叔叔今年各多少岁?【练习4】姐妹两个现在年龄之和是35岁,当姐姐是妹妹现在这么大时,姐姐当时的年龄是妹妹当时年龄的2倍,请问:姐姐现在的年龄是多少?【练习5】哥哥对弟弟说:“你长到我这么大的时候,,我恰好获得博士学位;我在你这么大的时候,你刚刚上幼儿园.”已知哥哥和弟弟现在的年龄和为32岁,哥哥获得博士学位时的年龄是弟弟上幼儿园时年龄的7倍.请问:哥哥获得博士学位时是多少岁?巩固提高1. 2010年张伯伯45岁,小聪9岁,那么在哪一年张伯伯的年龄是小聪的3倍?2. 今年父亲年龄是儿子年龄的4倍,24年后父亲年龄是儿子年龄的2倍,那么今年父亲几岁?3. 李家有老大、老二、老三三兄弟,当老二像老大那么大时,老二的年龄是老三的3倍,老大的年龄是老二、老三的年龄之和.已知现在三兄弟年龄和为28岁,那么现在老大几岁?4. 哥哥对弟弟说:“当我到爸爸现在的年龄时,爸爸就70岁了.”弟弟对哥哥说:“当我到妈妈现在的年龄时,妈妈也70岁了.”已知爸爸比妈妈大2岁,那么哥哥比弟弟大几岁?5. 5年前父母的年龄和是兄弟二人年龄和的10倍,明年父母的年龄和是兄弟二人年龄和的4倍.那么从今年起多少年后父母的年龄和是兄弟年龄和的2倍?第三讲相遇问题一、知识梳理院子里两棵槐树之间的距离是10米,一只小猫从一棵槐树跑到10米外的另一棵÷=米.槐树需要5秒,那么小猫每秒跑1052行程问题是研究路程、时间和速度之间的关系.速度是衡量运动快慢的量,一般我们选用1个单位的时间,如用1小时或1分钟或1秒,用1个单位的时间内经过的路程的多少来表示速度的大小.因此我们有了速度的定义.速度就是单位时间内所经过的路程.1.速度、时间和路程是行程问题中最重要的三个量,它们之间的关系如下:2. 两个运动物体在一条直线上运动,行进的方向可能相同,也可能相反.当它们行进方向相反时,如果它们面对面地接近,我们就称为“相向而行”;如果它们背对背地远离,我们就称为“相背而行”.两人之间的“相遇问题”既可以是“相向而行”,也可以是“相背而行”,其中“相向而行”的相遇问题更为常见些.相遇问题是关心两个人的“速度和”以及“路程和”.根据行程问题基本公式,我们可以类似得到相遇问题的三个基本公式:在使用上述公式时,一定要注意,两个运动物体必须同时进行.如何整个相遇过程不是同时进行的,这个公式就不能直接应用,需要分段考虑.3.解决行程问题最得力的助手------画线段图.画线段图要注意:A.专人专线:如果我们考虑的是两个或多个对象的运动,可以把它们的运动路线并排摆放,要注意不同人的运动路线不同.B.同时性:如果运动时间分为几个阶段,那么应该在运动路线上表示相应的时刻.课前练一练:1、长跑运动员每秒跑4米,如果按照这个速度跑完10000米,需要秒.2、一颗子弹射出后2秒钟,恰好击中1800米处的目标,那么,他的速度是每秒米.3、一名长跑运动员以每秒4米的速度奔跑,那么2分钟内,他跑了米.典例精析【典例1】甲乙两地相距360千米,一辆汽车原计划用8小时从甲地到乙地,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时,如果按照原定的时间到达乙点,汽车在后一半路程每小时应该行驶多少千米?【分析】需要计算速度,找清楚对应的路程和时间即可.A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,以每分钟走100米,请问:(1)将从A走到B需要多长时间?(2)两个人从出发到相遇需要多长时?【分析】从出发到相遇,两人一共走了多远?他俩每分钟一共走多远呢?一辆公共汽车和一辆小轿车同时从相距350千米的两地出发相向而行,公交汽车每小时行驶40千米,小轿车每小时行驶60千米,请问:(1)2小时后,两车相距多少千米?(2)出发几小时后两车第一次相距50千米?(3)出发几小时后两车第二次相距50千米?【分析】两车从两地出发相向而行,为什么会有两次相距50千米呢?画出线段图,试着找找相同时间内两辆车的路程和吧!甲、乙两地相距,350千米,一辆汽车早上8点从甲地出发,以每小时40千米的速度开往乙地,两小时后,另一辆汽车以每小时50千米的速度从乙地开往甲地,请问:什么时候两车在途中相遇?【分析】两辆车不同时出发,是不能直接用公式计算时间的.还是画出线段图,寻找相同时间内的路程和进行分析计算吧!(1)小高跑400米用50秒,旗鱼每小时能游120千米,请问:谁的速度更快?(2)一般情况下,成年人跑100米要用14秒,河马奔跑的速度是40千米/小时,河马跑得比人快吗?牛刀小试【练习1】兔子和乌龟赛跑,从A地跑到B地,全程共6000米.兔子计划5分钟跑完全,结果比赛时兔子实际每分钟跑的路程比计划的要少200米,那么兔子实际跑完全程用了多长时间?【练习2】阿呆和阿瓜从相距5000千米的A、B两地同时出发,相向而行.如果阿呆每分钟走150米,阿瓜每分钟走350米,那么两人从出发到相遇需要多长时间?【练习3】A、B两地相距400千米,甲、乙两车分别从A、B两地同时出发相向而行,甲车的速度为每小时60千米,乙车的速度为每小时40千米,请问:(1)出发几小时后,甲、乙两车第一次相距,100千米?(2)再过多长时间两车第二次相距100千米?小王和小许从相距5000米的各自的家里出发相向而行,小王每分钟走200米,小许每分钟走300米,小王出发后10分钟后小许才从家出发.那么小王走了多长时间两人才相遇?巩固提高1、一名长跑运动员以每秒4米的速度奔跑,那么5分钟后他跑了多少米?2、甲、乙两车从相距700千米的两地同时出发相向而行,甲车每小时行驶40千米,乙车每小时行驶60千米,那么出发几小时后两车相遇?3、甲、乙两车从两地同,是出发相向而行,甲车每小时行驶60千米,一车每小时行驶75千米,出发两小时后两车相遇.请问两地相距多少千米?4、一只大老鼠和一只小老鼠分别从一根长1000厘米的直线面条的两端开始吃,大老鼠每秒吃3厘米,小老鼠,每秒吃1厘米.请问多长时间后,大老鼠和小老鼠第一次相距40厘米?5、甲、乙两城相距580千米,从甲城开往乙城的客车每小时行驶60千米,客车出发1小时后,货车从乙城开往甲城,每小时行驶70千米,请问,货车开出多少小时后两车相遇?第四讲追及问题一、知识梳理上一讲我们学习了基本行程问题中的相遇问题,这一讲我们来学习行程问题中的另一类重要问题——追及问题.基本追及问题是指两个人在同一直线上同向而行的行程问题,主要分为两种情况:一种是后面的人速度快,经过一段时间追上了另一个人;还有一种是前面的人速度快,两人的距离越来越远.相遇问题考虑的是“路程和”与“速度和”,而追及问题中两人是同向而行,因此我们考虑的是两个人的“路程差”以及“速度差”,仿照行程问题公式我们同样可以得到追及问题的三个基本公式:路程差=速度差×追及时间追及时间=路程差÷速度差速度差=路程差÷追及时间典例精析【典例1】A、B两地相距260米,甲乙两人分别从A、B两地同时出发同向而行,(乙在前,甲在后)甲每秒走5米,乙每秒走3米那么甲出发多长时间后可以追上乙?【分析】从出发到追上,甲一共比乙多走了多少?甲每分钟比乙多走多少呢?墨莫步行上学,每分钟行75米,墨莫离家12分钟后,爸爸发现他忘了带文具盒,马上骑自行车去追,每分钟行375米,求爸爸追上墨莫所需要的时间?【分析】画出线段图,注意两人不是同时出发的哦!试着找找两人相同时间内的路程差吧!。
苏教版数学四年级上册第7单元《整数四则混合运算整数四则混合运算》(第1课时)教学设计
苏教版数学四年级上册第7单元《整数四则混合运算整数四则混合运算》(第1课时)教学设计一. 教材分析苏教版数学四年级上册第7单元《整数四则混合运算》是本册教材中的重要内容,主要让学生掌握整数的加减乘除混合运算。
本课时主要引导学生通过实际问题,理解整数四则混合运算的意义,掌握运算顺序,并能正确进行计算。
教材通过生活情境的图片和问题,激发学生的学习兴趣,让学生在解决问题的过程中,体会四则混合运算的实际应用,培养学生的解决问题的能力。
二. 学情分析四年级的学生已经掌握了整数的加减法和乘除法,对于简单的四则混合运算也有了一定的了解。
但是,学生在实际操作过程中,可能会对运算顺序产生困惑,对于一些复杂的四则混合运算,可能会出现计算错误。
因此,在教学本课时,需要让学生充分理解运算顺序,并通过大量的练习,巩固所学知识。
三. 教学目标1.让学生理解整数四则混合运算的意义,掌握运算顺序。
2.培养学生解决问题的能力,提高学生的计算速度和准确性。
3.培养学生认真思考、细心计算的学习习惯。
四. 教学重难点1.教学重点:让学生掌握整数四则混合运算的运算顺序,能正确进行计算。
2.教学难点:对于一些复杂的四则混合运算,学生能正确确定运算顺序,并进行计算。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过生活情境的图片和问题,激发学生的学习兴趣,引导学生主动探究,小组合作交流,培养学生的解决问题的能力。
六. 教学准备1.教学课件:包括生活情境的图片、例题、练习题等。
2.教学道具:小黑板、粉笔、练习本等。
3.教学资源:相关的生活视频或图片等。
七. 教学过程1. 导入(5分钟)教师通过展示生活情境的图片,引导学生观察并提出问题,让学生意识到生活中存在大量的四则混合运算,激发学生的学习兴趣。
例如,展示一幅商场购物的图片,提问:“小明买了2个苹果,每个苹果3元,他还买了1个香蕉,2元,请问他一共花了多少钱?”2. 呈现(10分钟)教师通过例题,引导学生理解整数四则混合运算的运算顺序。
四年级数学上册第七单元整数四则混合运算第1课时不含括号的混合运算教案苏教版
第1课时不含括号的混合运算〖教学内容〗教科书第70~71页例1和相关练习。
〖教学目标〗1.联系现实问题中的数量关系,理解和掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。
2.在按顺序进行计算和运用学过的计算解决实际问题的过程中,进一步增强策略意识。
〖教学重、难点〗重点:掌握不带括号的含有乘、除法和加、减法整数混合运算的运算顺序,并正确地计算。
难点:用不带括号的四则混合运算的相关知识解决实际问题。
〖教学过程〗一、引入1.谈话:同学们喜欢下棋吗?为了丰富同学们的课余生活,李小红正在体育用品商店为同学们购买中国象棋和围棋呢!我们一起去看看吧!出示情境图,提问:从图中你知道了什么?这道题要求的问题是什么?再问:想一想,要求一共要付多少元,要先算什么?请按自己的想法列式解答,并与同学交流。
指名板演,并组织讲评。
提问:如果列综合算式解答这道题,综合算式可以怎么列?根据学生的回答,板书:12×3+15×4。
2.揭示课题:这是一道不含括号的三步混合运算式题。
(板书课题:不含括号的混合运算)这样的算式应按怎样的顺序进行计算呢?二、展开1.教学例1。
启发:你会算这样的三步混合运算式题吗?请同学们先根据例题中的填空想一想,这道算式可以按怎样的顺序计算?再试着算一算。
学生尝试计算,教师巡视,并指名板演。
(包括分步算出两个积与同时算出两个积的两种情况)反馈:我们请这两名同学分别说说各是按怎样的顺序计算的。
追问:你觉得按这样的顺序计算正确吗?能联系实际问题中的数量关系来说说为什么可以这样算吗?(“12×3”算出的是买中国象棋要付的钱,“15×4”算出的是买围棋要付的钱,都要先算出来,然后把买中国象棋要付的钱和买围棋要付的钱加起来,得到一共要付的钱。
)比较:他们的计算过程有什么不同的地方?追问:谁的计算过程更简略一些?指出:这两名同学在计算时的运算顺序都是正确的,不过同时计算两个乘积能使计算过程简略一些。
四年级第1讲-整数计算综合
巨人学校吴瀚霖四年级新华数邮箱:hlwu.bnu@巨人学校四年级新华数吴瀚霖第1讲整数计算综合——数列计算与定义新运算基本运算定律复习 Contents1基本运算定律应用2 分组运算3一、交换律⏹加法运算:a+b=b+a;乘法运算:a×b=b×a二、结合律⏹加法运算:(a+b)+c=a+(b+c)⏹乘法运算:(a×b)×c=a×(b×c)三、分配律⏹乘法运算:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c c×(a+b)=c×a+c×b c×(a-b)=c×a-c×b四、去括号,添括号:⏹(1)加、减法去括号:括号前面是“+”,去括号后不变号;括号前面是“-”号,去括号后变号。
⏹(2)乘、除法去括号:括号前面是“×”,去括号后不变号;括号前面是“÷”号,去括号后变号。
五、带着符号搬家⏹同级运算时可以带着符号搬家,改变运算顺序。
⏹注:加、减法同为一级运算,乘、除法同为二级运算。
例题1:计算(1)121×32÷8(2)4×(250÷8)(3)25×83×32×125 练习1:计算(1)1234×16÷8(2)8×(125÷20)(3)2×1273×125×4例题2:(1)56×22+56×33+56×44 (2)222×33+889×66练习2:(1)83×17+83×27+83×56 (2)12×38+24×81例题3:(此题有典型例题示范)计算:(1) 37×47+36×53(2) 123×76-124×75 练习3:计算:(1) 25×54+24×46(2) 68×13-69×12分组运算有等差数列得到的“分组配对”的思想。
数学教案:小学四年级的整数运算
数学教案:小学四年级的整数运算整数运算是小学四年级数学中重要的内容,它是学生数学思维发展的一大突破口。
通过整数运算的学习,学生将逐渐掌握加减乘除的运算法则,提高计算能力和思维逻辑能力。
在本教案中,我将为四年级学生设计一堂整数运算的课程,旨在帮助他们理解整数运算的概念与方法,培养他们的数学思维和解决问题的能力。
一、整数与自然数1. 整数的引入(15分钟)本节课的开始将引入整数的概念,通过简单的例子让学生了解整数的定义和特点。
我们可以从温度的正负、海拔的上升和下降等实际生活中的例子出发,让学生观察和探索,并引导他们总结整数的基本性质。
2. 整数与自然数的联系(15分钟)在上一节中,学生已经初步认识了整数,接下来我们将进一步探讨整数与自然数的联系。
通过比较自然数与整数在数轴上的位置,让学生发现自然数是整数的一部分,并通过练习题加深他们对整数与自然数的理解。
二、正数与负数的加法1. 正数与负数的加法(20分钟)通过生动的例子,我们将引导学生直观地理解正数与负数的加法。
首先,给学生展示一条数轴,并让他们思考一下正数和负数在数轴上的位置关系。
然后,通过示范和练习,教授正数与负数相加的规则和方法。
2. 练习与检测(15分钟)在掌握了正数与负数的加法规则后,我们将给学生一些练习题,并对他们进行检测。
这些练习题将涉及正数与正数相加、负数与负数相加、正数与负数相加等不同情况,旨在帮助学生巩固所学知识。
三、正数与负数的减法1. 正数与负数的减法(20分钟)在这一节中,我们将教授学生正数与负数的减法规则和方法。
通过生动的例子和实际问题,让学生理解减法的概念,并引导他们逐步掌握正数与负数的减法技巧。
2. 练习与巩固(15分钟)在掌握了正数与负数的减法规则后,我们将给学生一些练习题,并进行巩固训练。
这些练习题将涉及正数与正数相减、负数与正数相减、负数与负数相减等不同情况,旨在帮助学生进一步巩固所学知识。
四、整数的乘法与除法1. 整数的乘法(20分钟)在这一节中,我们将教授学生整数的乘法规则和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级第一讲整数计算综合
姓名班级
学习目标:掌握四则混合运算简化方法。
能熟练运用5个简算工具。
教学重点:带符号移位、去(添)括号、四则混合运算中通过带运算符号数字的移动使得可以运用分配律和结合律,达到计算简化。
教学难点:1乘除法分配律运用; 2如何找出隐性的朋友数,拆分数字达到可以使用用运算律,简化运算。
教学过程:1 ,通过图画询问图中的小朋友在干什么,为什么要这样分配来进入状态,2,通过例题讲解,学生互动,从而掌握运算规律。
利用最简单的数字但不是倍数的除法,必须通过分配律和结合律才能计算。
学会四则混合运算的简化。
3,课后总结。
4课后作业。
1、知识精讲:交换律结合律分配律去(添)括号带符号搬家
一、交换律:加法交换律和乘法交换律
二、结合律:加法结合律和乘法结合律
三、分配律:乘法分配律和除法分配律
四、去(添)括号; 括号前面是“×”或“+”去(添)括号后不变号,
括号前面是“÷”或“—”去(添)括号后都要变号,
五、带符号搬家:同级运算时,可以带符号移动位置,改变运算顺序。
括号最大先算。
加减法同为第一级运算,乘除法同是第二级运算。
先算乘除再加减。
从左至右。
2,实例讲解:
一、例○1125×71×8 ○2124×24÷31 ○328×7÷28×7
讲解:板书
小结:125×8 4×25找出组合是简化的要点
习题1:○125×123454321×4 ○296×25÷24
二、例○1222÷64×32 ○2123÷(41÷32):○3125×21×60÷(7÷8×15)
讲解:板书
小结:通过除法使数字变小,进而简化计算。
要注意去括号后各数字前的运算符号。
练习2:○172×27×88 ÷(9×11×12):○225×121÷ 2÷(11×5÷4)
提取公因数或自己构造就公因数是常用巧算方法之一
三、例○1222×33+889×66 ○221×32+58×68+32×37 ○312×21+23×12+52×11
讲解:板书
小结:没有共同的数字我们就构造公因数,倍数关系是关键
练3:○123×5+46×25+69×15
四、例○1(16+32+36+40)÷4:○296÷ 4+176÷4+128÷4; ○315÷6+53÷6-20÷6;
讲解:板书
小结:除法中这个叫公除数。
千万不能和乘法的分配律混淆。
除法不能调顺序。
练4: ○152÷ 7-13÷7+3÷7; ○211÷ 5+111÷5+1÷5-23÷5
课堂总结:简化就是凑整,运算规律,去加括号,拆分数字等等的合理组合运用,达到一目了然,能够直接计算的目的。
3、挑战极限题:可上可不上,主要针对学习成绩超好的,有余力超越自我的学生.
五例○115×16÷12:○264÷28×35; (除数太大,除不开怎么办.,能拆吗?) 讲解:板书
六例○156×47+46×44:○255×45-56×44 (没有公因数,怎么办,能拆或自已造吗?) 讲解:板书
课后作业7小题。
(1)75×24÷25 (2)46÷13×26÷23
(3)50×27×77÷(25×11×9)
(4) 110×47-125÷100×(47×8)
(5) 13×29+26×19+11×39
(6) 49÷13-107÷13+110÷13 (7) 50×27÷45。