1.2.1有理数教案

合集下载

《1.2.1有理数》学历案-初中数学人教版12七年级上册

《1.2.1有理数》学历案-初中数学人教版12七年级上册

《1.2.1 有理数》学历案(第一课时)一、学习主题本课主题为“有理数”,是初中数学课程的重要一环。

通过本课的学习,学生将掌握有理数的概念、性质及运算,为后续学习奠定基础。

二、学习目标1. 理解有理数的概念,能正确区分有理数和无理数。

2. 掌握有理数的表示方法,能运用正负号表示相反意义的量。

3. 学会进行有理数的加、减法运算,并能够利用有理数解决一些简单的实际问题。

三、评价任务1. 通过课堂问答及课后小测,评价学生对有理数概念的掌握程度。

2. 通过学生的作业和课堂表现,评价其运算能力及解决问题的能力。

3. 观察学生对于概念及知识点的理解及运用,以及学习过程中的积极性及态度表现,并进行形成性评价。

四、学习过程1. 导入新课:通过回顾实数概念,引出有理数的定义及特点,激发学生兴趣。

2. 新课讲解:(1)定义与分类:讲解有理数的定义及分类,通过实例加深学生对概念的理解。

(2)表示方法:介绍有理数的表示方法,包括正负号的使用等。

(3)加法与减法:通过具体实例,讲解有理数的加法与减法运算规则,并强调运算的注意事项。

3. 学生活动:(1)小组讨论:学生分组讨论有理数的实际应用,如温度的表示、财务的收支等。

(2)互动问答:教师提出问题,学生回答,检验学生对新知识的掌握情况。

(3)练习巩固:学生独立完成课后习题,加深对知识的理解与运用。

4. 课堂总结:回顾本课重点内容,强调有理数的重要性及实际应用。

五、检测与作业1. 课堂小测:进行简单的有理数加法、减法运算测试,检验学生的运算能力。

2. 课后作业:布置相关习题,包括有理数的加法、减法运算及实际问题的解决等,要求学生独立完成并思考解题方法。

3. 学习反思:学生课后进行学习反思,总结本课学习的收获与不足。

六、学后反思学生应在学习完本课后进行反思,包括对知识的理解程度、学习方法的运用及学习态度的调整等。

教师也可根据学生的反思情况,调整教学方法及策略,以更好地帮助学生掌握知识。

1.2.1有理数(教案,新教材)-2024-2025学年七年级数学上册同步备课(人教版2024)

1.2.1有理数(教案,新教材)-2024-2025学年七年级数学上册同步备课(人教版2024)

1.2.1有理数教案【教学目标】1.借助生活中的实例理解有理数的概念,掌握有理数的分类方法;2.经历对有理数进行分类探索的过程,能够把所给的有理数分类到相应的数集中,初步感受分类讨论的数学思想;3.体会有理数与实际生活的广泛应用.【教学重点】理解有理数的概念,掌握有理数的分类方法.【教学难点】有理数的不同分类.【课时安排】本节用1课时进行教学。

【教学过程】一、情境导入活动一:从生活情境中引入新课,探究整数问题1.小明从天气预报中得到如下信息:某地今天的最高气温为7℃,最低气温达到-11℃,平均气温是0℃,而今天北京的气温-3℃~8℃.这里出现了哪些数?我们到目前为止学过了哪些数?学生活动:交流总结归纳,这里的数有正的整数、0、负的整数.教师活动:(1)给学生活动评价,说明负的整数叫负整数。

(2)提出问题这些数在一起时,我们把它叫什么数最合适?师生活动:师生共同归纳为整数、0、负整数统称为整数.二、合作探究活动二:探究分数问题2.前面我们学习了正分数、负分数,我们把它们放在一起叫做什么数呢?学生活动:类比整数讨论.教师活动:对学生进行评价,类比整数的说法,叫分数.问题3.下列数是分数吗?0.1、0.3、0.5-学生活动:交流总结,这里的数10.110=,10.33=是正分数,10.52-=-是负分数.教师活动:评价学生交流总结的结论,强调:有限小数和无限循环小学都可以化为分数。

问题4.整数能否看成分数的形式?你能举例说明吗?学生活动:交流讨论,举例说明.教师活动:对学生讨论结果进行评价,强调整数可以看成分母为1的分数形式。

活动三:探究有理数问题5.整数和分数都可以统一写成分数的形式,能写成分数形式的数叫什么数? 学生活动:交流讨论.教师活动:对学生讨论结果进行评价,强调能够写分数的形式的数叫有理数,反过来任何一个有理数可以写成分数的形式,举例说明。

活动四:探究有理数的分类学生活动:学生讨论,按什么标准来分类师生活动:按两种标准进行分类,可以得到如下两种分类形式。

1.2.1有理数(教案)

1.2.1有理数(教案)
其次,有理数的乘除运算,特别是涉及负数的运算,对学生来说是一个难点。在教学中,我发现通过例题和练习,让学生亲自动手计算,能够帮助他们更好地掌握运算规律。但在这一过程中,我也注意到部分学生容易混淆乘除运算的符号,因此在今后的教学中,我需要更加注重对这一部分的讲解和练习。
此外,在实践活动和小组讨论中,学生们表现出较高的积极性。他们能够将所,我也发现部分学生在讨论中过于依赖同伴,缺乏独立思考。在未来的教学中,我将鼓励学生更多地进行独立思考,培养他们的自主学习能力。
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
5.培养学生的合作意识,通过小组讨论、互助学习,提高学生团队协作能力和沟通能力,培养集体荣誉感。
三、教学难点与重点
1.教学重点
(1)有理数的定义:理解整数和分数统称为有理数,这是学习有理数运算的基础。
举例:强调0、正整数、负整数、正分数、负分数都属于有理数,让学生明确有理数的范围。
(2)有理数的性质:掌握有理数的加减乘除运算规律,特别是同号相加减、异号相加减、同号得正异号得负等。
举例:讲解正数加正数、负数加负数、正数加负数等运算规律,并强调乘除运算的符号规律。
(3)有理数的运算顺序:理解并掌握先乘除后加减的运算顺序,能够正确进行混合运算。
举例:给出混合运算题目,如3 + 2 × (-4) ÷ 2,让学生明确运算顺序并解答。

【 七年级数学 上册】1.2.1 《有理数》教案2

【 七年级数学 上册】1.2.1 《有理数》教案2

【七年级数学上册】1.2.1 《有理数》教案2一. 教材分析《有理数》是七年级数学上册的第一章第二节的内容,主要介绍了有理数的概念、分类及运算。

本节课的内容是学生学习更复杂数学知识的基础,对于培养学生逻辑思维能力、抽象思维能力具有重要意义。

教材通过丰富的例题和练习题,帮助学生掌握有理数的基本概念和运算方法,为学生后续学习数学知识奠定基础。

二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对数学运算有一定的了解。

但部分学生可能对负数和分数的概念理解不深,对有理数的分类和运算方法掌握不牢固。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

三. 教学目标1.了解有理数的概念,掌握有理数的分类。

2.掌握有理数的运算方法,能够进行简单的有理数运算。

3.培养学生的逻辑思维能力、抽象思维能力。

4.培养学生合作学习、积极探究的学习态度。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算方法。

3.学生对负数和分数的理解。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,激发学生的学习兴趣。

2.小组合作学习:引导学生分组讨论,共同探究有理数的分类和运算方法。

3.练习法:通过大量练习,巩固学生对有理数的理解和运算能力。

4.启发式教学:教师提问,引导学生思考,提高学生的逻辑思维能力。

六. 教学准备1.教学PPT:制作含有丰富图片、例题和练习题的PPT,辅助教学。

2.练习题:准备适量有针对性的练习题,巩固学生对有理数的掌握。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引出有理数的概念。

引导学生思考:这些实例中的数属于哪种类型?从而引出有理数的概念。

2.呈现(10分钟)通过PPT展示有理数的分类,包括整数、分数、正数、负数等。

同时,介绍有理数的运算方法,如加、减、乘、除等。

3.操练(10分钟)学生分组进行练习,教师巡回指导。

人教新版(2024)七年级数学上册-1.2.1 有理数(教案)

人教新版(2024)七年级数学上册-1.2.1 有理数(教案)

1.2.1有理数【教学目标】1.使学生理解整数、分数、有理数的概念,并会判断一个给定的数是整数、分数或有理数.2.经历对有理数进行分类的过程,明确有理数分为整数和分数,同时也可以分为正数、0和负数,培养学生观察、比较和概括的能力.体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求做到不重不漏.【教学重点难点】重点:整数、分数、有理数的概念.难点:有理数的分类及其标准.【教学过程】一、创设情境复习引入:在巴黎奥运会网球女子单打金牌赛中,中国选手郑钦文大比分2:0战胜克罗地亚选手维基奇,夺得金牌,实现了中国女子网球单打金牌0的突破.在女子柔道52公斤的冠军争夺战中,中国选手冼东妹仅用1.1分钟,就为中国柔道队夺得首枚金牌.女力士唐功红在女子+75公斤级举重比赛中,不负众望,以抓举122.5公斤,挺举182.5公斤,总成绩305公斤夺得第18枚金牌,与获银牌的韩国选手相比,她的抓举重量-7.5公斤,挺举重量+10公斤.探究:1.在以上各数中,哪些是在小学里学过的数?它们可以分为哪几类?2.在小学里学过的数中,有没有哪类数没有出现?请举例说明.3.用计算器计算下列各分数的值,说明所有分数都可以化作什么数?4.由前面的结论,小学里学的数可以分为哪几类?5.引入负数后,整数除了小学学的整数外,还包含其他的整数吗?分数除了小学学的分数外,还包含其他的分数吗?二、探究归纳探究点1:有理数的概念1.正整数可以写成正分数的形式吗?负整数可以写成分数的形式吗?如何写?2.0如何写成分数的形式?3.由探究中的第3问,你能得到什么结论?所有的整数都可以写成分数的形式,如2=21,-3=-31,0=01. 有限小数及无限循环小数都可以化为分数,因此也可以看成是分数.特别提示:既不是正数,也不是负数!要点归纳:正整数、零和负整数统称数.正分数和负分数都是数.可以写成形式的数称为有理数.注意:目前我们所学的小数都可以化成数,所以把小数划分到数一类.【设计意图】在讨论交流中将学过的数进行归类和统一,同时让学生明确有理数的表示形式.探究点2:有理数的分类问题:统一了有理数表示形式及引入了负数之后,有理数可以分成正有理数和负有理数两类吗?为什么?要让学生明确:①0既不是正数也不是负数,0是有理数,是整数.②还存在一些正数和负数是我们没有学习的,但它们不是有理数.(如圆周率π)③我们把有理数中的正数部分叫作正有理数,负数部分叫作负有理数.有理数零{说明:1.①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,但零既不是正数,也不是负数.2.把一些数放在一起,就组成一个数的集合,简称数集(set of number).所有正数组成的集合,叫作正数集合;所有负数组成的集合叫作负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫作自然数集合.【设计意图】分类要明确标准,使分类后,每一个参加分类的对象属于其中的一类,而且也只能属于这一类(即要不重不漏).【典例剖析】例1:教材P7【例1】.例2:把下列各数填入相应集合的括号内:29,-5.5,2 002,67,-1,90%,3.14,0,-213,-0.01,-2,1 (1)整数集合:{ }(2)分数集合: { }(3)正整数集合:{ }(4)负整数集合:{ }(5)正有理数集合: { }(6)负有理数集合: { }【方法技巧】要正确判断一个数属于哪一类,首先要弄清分类的标准.要特别注意“0”不是正数,但是整数.在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的.三、检测反馈1.下列说法中,正确的是 ( )A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数2.下列各数:-2,5,-13,0.63,0,7,-0.05,-6,9,115,54,其中正数有 个,负数有 个,自然数有 个,整数有 个.3.判断:(1)0是整数. ( )(2)自然数一定是整数. ( )(3)0一定是正整数. ( )(4)整数一定是自然数. ( )4.填空:(1)有理数中,是整数而不是正数的是 ;是负数而不是分数的是 .(2)零是 ,还是 ,但不是 ,也不是 .5.把下列各数填入相应的集合内:127,-3.141 6,0,2025,-85,-0.234,10%,10.1,0.67,-89四、本课小结同学们,请你回想一下,这节课你有什么收获?【学生对本节课进行知识梳理,巩固教学目标.培养学生的归纳能力,让学生的认知结构在反思中得到内化和升华.】五、布置作业课堂作业:P8练习课后作业:P16T1六、板书设计七、教学反思1.本节课的重要思想是转化思想、分类思想.统一有理数的表示形式,并根据数的正负进行分类.有理数表示为分数形式比较重要,在以后的学习中,学生将会逐渐体会到它在数学中的价值.集合的观点比较抽象,学生真正接受需要长期的过程.教学中还要关注小数、百分数等可以化为分数的交待与说明.2.《数学课程标准》提出:数学学习应使学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.因此,本堂课的教学在使学生掌握知识、形成技能的同时注重渗透分类的方法和集合思想,为后继学习奠定了良好的基础.。

新人教版七年级数学上册 1.2.1《有理数》教学设计

新人教版七年级数学上册 1.2.1《有理数》教学设计

新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。

本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。

教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。

二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。

但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。

此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。

三. 教学目标1.理解有理数的定义,掌握有理数的分类。

2.学会有理数的大小比较方法。

3.能够运用有理数解决实际生活中的问题。

4.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的大小比较方法。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。

2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。

3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。

4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。

六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。

2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。

3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。

通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。

2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。

接着,展示有理数的分类,包括整数、分数和零。

通过课件和实物展示,让学生对有理数有更直观的认识。

最新2024人教版七年级数学上册1.2.1 有理数--教案

最新2024人教版七年级数学上册1.2.1 有理数--教案

1.2 有理数1.2.1 有理数主要师生活动一、创设情境,导入新知回想一下,我们认识了哪些数?师生活动:学生根据所学内容,回忆所学过的数,同时举出相应的例子,既可以让学生复习旧的知识,又可以在所提问题中发现新的知识.二、小组合作,探究概念和性质知识点一:有理数探究一请给下面的数找到家.师生活动:学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

对于剩下的不能分类的,老师可以追问:分组探究小数和分数之间能否互化,所有的小数都能化成分数吗?5.32 = -150.25 =157 = -23 =师生活动:让学生尝试解答,并互相交流,教师结合学生的具体活动,加以指导,得出结论 可以化成分数的小数可以看成分数. 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数, 它们分别是“正整数,零,负整数,正分数,负分数”.探究二 请给下面的家找到家族.师生活动:教师引导学生与同桌分析、交流、归纳,理解有理数以及有理数的分类,按照书本的说法, 得出“整数”“分数”和“有理数”的概念:正整数,零和负整数统称整数,正分数和负分数统称分数. 整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.看书了解有理数名称的由来. 师强调:“统称”是指“合起来总的名称”的意思.合作探究:请类比定义分类,有理数按照符号该怎么分类呢?师说明:把一些数放在一起,就组成一个数的集合,简称数集. 所有的有理数组成的数集叫做有理数 集,所有整数组成的数集叫做整数集.三、当堂练习,巩固所学1.下列关于0的说法,不正确的是( )A. 既不是正数,也不是负数B. 不是有理数,是整数C. 是整数,也是有理数D. 不是负数,是有理数2.把下列各数填入相应的集合内:1.任意写出5个数(不能重复),同时满足下列三个条件:①其中3个数是非正数;②其中3个数是非负数;③5个数都是有理数.有理数教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案03

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案03

第一章有理数1.2.1 有理数的概念备课时间:上课时间:回想一下,目前为止我们学过哪些数?你所知道的数可以分成哪些种类,你是按照什么划分的?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数。

这就是全部的分数分类吗?小数呢?事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。

进一步地,我们还发现整数又可以写成分数的形式。

二、思考探究,获取新知【教学说明】我们把可以写成分数形式的数称为有理数。

知识点1 有理数的分类根据整数和分数来分类。

【教学说明】可加以引导,有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?我们把所有正数组成的集合,叫做正数集合;所有负整数组成的集合,叫做负数集合。

三、典例精析,掌握新知例1 指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:跟踪训练:所有正有理数组成正有理数集合,所有负有理数组成负有理数集合,把下面的有理数填入它们属于的集合内。

15,-1/9,-5,7,0。

5,-80,12,-4。

2,2。

3。

正有理数集合:{ ⋯}。

负有理数集合:{ ⋯}。

知识点2 小数与有理数的联系按照定义,能够写成分数形式的数是有理数,那不能写成分数的数就不是有理数。

思考“不能写成分数的数”是哪些数呢?如2/3,−1/2,⋯这些分数是可以化成有限小数或无限循环小数。

同样地,有限小数和无限循环小数都能化为分数,也是有理数。

无限不循环小数(如π)不能化成分数,因此就不是有理数。

例2 :在-1.2,10%,0,+0.33 ̇,7.01001001…(每两个1之间0的个数逐次增加1)中,有理数共有()A.2个B.3个C.4个D.5个四、运用新知,深化理解1.在数0,2,-3,-1.2 中,属于负整数的是()A.0 B.2 C.-3 D.-1.22.-0.5不属于()A.负数B.分数C.负分数D.整数3.下列说法不正确的是()A.-0.5不是分数B.0是整数C. −1/5不是整数D.-2既是负数又是整数4.下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数5.把下列各数分别填入相应的集合里.-2,0,0.314,25% ,11,0.3 ̇,+12/3.整数集合:{⋯}.分数集合:{⋯}.自然数集合:{⋯}.非正数集合:{⋯}.四、课堂小结填数集的两种方法(1)由数到集合:逐一分析每一个数,看这个数属于哪个集合,然后填入它所属的集合内.(2)由集合到数:逐一分析每个集合,然后从给出的数中找出属于这个集合的数填入.注意:同一个数可能分属于不同的集合.1.2.1 有理数1.整数和分数统称为有理数;2.有理数的分类:(1)按符号分(2)按照整数和分数来分。

1.2.1有理数的概念 教案设计 2024--2025学年人教版七年级数学上册

1.2.1有理数的概念   教案设计   2024--2025学年人教版七年级数学上册

教案设计:《1.2.1有理数的概念》•一、课标分析•本节课依据初中数学课程标准中“数与代数”领域的要求,旨在使学生理解有理数的概念,掌握有理数的分类(正整数、零、负整数、正分数、负分数),以及有理数与整数、分数之间的关系。

通过本节课的学习,学生应能够识别并区分不同类型的有理数,理解有理数集的概念,为后续学习有理数的运算打下基础。

同时,本节课也注重培养学生的抽象思维能力、分类讨论能力和逻辑推理能力。

•二、教材分析•本节课是初中数学有理数章节的重要一课,它承接了小学阶段对自然数、整数、分数的认识,进一步扩展了数的范围,引入了有理数的概念。

教材通过回顾已学过的数(正整数、零、正分数、负分数),引导学生理解整数和分数的统一,即它们都属于有理数的范畴。

同时,教材还通过练习题的形式,帮助学生巩固有理数的分类和识别,加深对有理数概念的理解。

•三、学生分析•学生在小学阶段已经学习了自然数、整数、分数的概念,并具备了一定的数学基础和思维能力。

然而,对于有理数的概念及其分类,学生可能还缺乏系统的认识和深入的理解。

因此,本节课需要通过直观的教学手段和丰富的实例,激发学生的学习兴趣,引导学生主动探索、合作交流,逐步建立有理数的概念体系。

•四、教学目标• 1.通过有理数的学习,学生能够理解有理数的概念,包括整数、分数以及它们之间的关系,从而培养数学抽象能力。

数学抽象是指从具体情境中抽取出数学概念和结构的能力,对于有理数的学习尤为重要。

• 2.通过实际生活中的例子(如温度计读数、银行账户余额等)引入有理数的概念,让学生感受到数学与生活的紧密联系。

同时,通过分类讨论、归纳总结等方法,帮助学生逐步从具体情境中抽象出有理数的概念和性质。

• 3.学生能够运用逻辑推理能力,对有理数进行分类和判断。

逻辑推理是数学学习的核心素养之一,它要求学生能够从已知条件出发,通过合理的推理和论证,得出正确的结论。

•五、教学过程•1、导入新课(约5-7分钟)•【情境创设】•多媒体展示:教师利用多媒体设备展示几张与学生生活紧密相关的图片,如温度计(显示-5°C和28°C)、电梯楼层显示(地下2层和地上15层)、超市小票上的金额(+32.5元和-10元退款)等。

1.2.1有理数-人教版七年级数学上册教案

1.2.1有理数-人教版七年级数学上册教案

1.2.1 有理数-人教版七年级数学上册教案教学目标•理解有理数的含义,能说出正整数、负整数、零、正分数、负分数及其概念和符号表示。

•掌握有理数的加减法,能运用加减法解决有理数的问题。

•培养学生的实际问题解决能力、逻辑思维能力和数学应用能力。

教学重点•有理数的概念和符号表示。

•有理数的加减法。

教学难点•带有符号数的加减法。

教学内容1.有理数的概念在实数范围内,可以表示为两个数之比的数称为有理数。

其中,分母不为零的整数称为分数,包括正整数、负整数、零、正分数和负分数。

2.有理数的符号表示正数在数轴上的位置在零点右边,表示为+;负数在数轴上的位置在零点左边,表示为-。

3.有理数的加减法有理数的加减法与正数的加减法基本相同。

当同号数相加减时,保留符号并把绝对值相加减;异号数相加减时,两数绝对值相减并决定符号。

4.案例分析【例1】分别求下列有理数上的两点之间的距离:•−3和+4的距离;•+2和+3的距离;•−5和−2的距离;•+1.5和−2.5的距离。

【解】分别用数轴上两点间的线段求出各个数的距离,如下图所示。

例1例1解题时,需要在数轴上用两点间的线段表示相应的有理数,并求出它们的距离。

•|−3−4|=|−7|=7•|2−3|=|−1|=1•|−5−(−2)|=|−5+2|=|−3|=3•|1.5−(−2.5)|=|1.5+2.5|=|4|=4教学反思本节课主要讲解了有理数的概念、符号表示和加减法。

在教学过程中,本着生动有趣的原则,通过讲解案例的形式使学生更直观地感受到了有理数的应用场景。

同时,在讲解中加入一些生活中的例子和实际问题,增加了学生的兴趣,提高了他们的学习效率。

但需要注意的是,教学过程中需要适当地调动学生的积极性,激发他们的学习热情。

可以在教学过程中利用课堂互动方式增加学生的参与度,例如提出问题让学生一起讨论解决方法,或者请学生上台讲解个人的理解和思考。

最后,需要做好教学反思和总结,以进一步提高教育教学质量。

1.2.1有理数教案

1.2.1有理数教案

1.2.1有理数一、 教学目标知识与技能:理解有理数的意义,能将目前所学的数准确的归类。

过程与方法:根据小学所学的数,再结合前两节课所学的负数,让学生体会数有哪些类型,再引入有理数的概念。

让学生体会数的分类,做到不重不漏,渗透分类讨论的数学思想方法。

情感与态度:在有理数的分类过程中,培养学生的数学思维的严谨性、观察和归纳能力。

二、教学重点:了解有理数包括哪些数。

教学难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

三、学情分析学生对于数的分类没有明确的概念,只能列举出具体的数,但是不能做到较完整的分类。

我们应该顺着学生的思维,找学生举出所学过的数,再找学生举出和已经写过的不同类型的数,让学生产生疑惑,并不断的引导,从而渗透数的分类,及分类的标准。

四,教学过程1、复习回顾,导入新知在小学,我们学过哪些数啊?答案会各式各样,很多学生会举出具体的数,少部分会提到整数、分数、自然数甚至是质数、偶数。

顺势引导,导出课题。

再请学生列举出具体的数,请下一位学生列举和上一位不同的数……2、师生互动,获取新知师生活动:根据学生所列举出来的数,引导学生归纳,小学的学过的数为:整数和分数,结合前两节课所学的负数,引导学生细化分类,渗透分类思想需做到不重不漏。

根据的数的形式,可以较好的得出有理数的概念。

1、数1,2,3,4叫做正整数;―1,―2,―3,―4叫做负整数;正整数、负整数和零统称为整数;数43,85 ,21…叫做正分数;21-,34-…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。

百分数,小数都是分数。

2、思考并回答下列问题: ①“0”是整数吗?是正数吗?是有理数吗?②“―2”是整数吗?是正数吗?是有理数吗? ③自然数就是整数吗?是正数吗?是有理数吗? 要求学生区分“正”与“整”;小数可化为分数不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即按定义分即得如下分类表不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即按正负(性质)分得如下分类表:注意:(1)凡是整数或分数(含有有限小数或无限循环小数)都是有理数。

人教版七年级上册数学教案:1.2.1有理数

人教版七年级上册数学教案:1.2.1有理数
针对以上教学难点,教师应采取以下措施:
(1)通过直观的教具、实例等方式,加强学生对有理数符号的认识和理解;
(2)运用具体例子,引导学生掌握乘除运算中符号的处理方法,加强乘除法则的讲解和练习;
(3)结合实际问题,让学生学会将有理数知识应用于生活场景,提高数学应用能力;
(4)强调运算顺序,培养学生良好的运算习惯,减少计算错误。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过温度变化、物品的增减等情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。
(二)新课讲授(用时10分钟)
4.在小组讨论中,适时提醒学生关注主题,避免偏离方向。
5.课后对有疑问的学生进行个别辅导,确保他们真正理解和掌握所学知识。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题,如购物时如何计算找零。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过数轴上的移动来演示有理数的加减运算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
最后,总结回顾环节,学生对有理数的知识有了更深入的理解,但仍有个别学生表示对某些知识点仍存在疑问。我计划在课后对这些学生进行个别辅导,帮助他们真正理解和掌握有理数的知识。
1.加强课堂互动,关注每个学生的参与情况,鼓励他们大胆发言。
2.增加有针对性的练习,帮助学生巩固有理数的运算技巧。
3.引导学生独立思考,提高问题解决能力。

人教版数学七年级上1.2.1 有理数 教案

人教版数学七年级上1.2.1 有理数 教案

1.2.1 有理数方法和集合思想,让学生理解整数和分数的概念.】3.有理数的分类〔1〕按定义分类强调零的特殊性.〔0既不是正整数也不是负整数,是整数〕正整数、零、负整数统称整数;正分数、负分数统称分数.我们规定,把上面两种数合在一起,就成了有理数,即整数和分数统称有理数.正整数整数 0负整数有理数正分数分数负分数【设计意图:消除学生对有理数称谓的疑惑,让学生理解有理数的意义,进一步加深对有理数概念的理解,突出本堂课的教学重点.】〔2〕按正负性分类问题:有理数可以分成正数和负数两类吗?为什么?要让学生明确:① 0既不是正数也不是负数,0是有理数,是整数.②还存在一些正数和负数是我们没有学习的,但它们不是有理数.〔如圆周率π〕③我们把有理数中的正数局部叫做正有理数,负数局部叫做负有理数.④我们把有理数中的正数局部包括正整数、正分数.负数局部包括负整数、负分数.正整数正有理数正分数有理数 0负整数负有理数负分数【设计意图:应使学生理解分类的标准不一样时,分类的结果也不同.所以分类要明确标准,使分类后,每一个参加分类的对象属于其中的一类,而且也只能属于这一类〔即要不重不漏〕.同时注意由浅入深,使学生在头脑当中逐步认识问题.这样一步一个台阶的教学过程,符合学生认识问题的一般规律.】三、释疑解难、精讲点拨1.将以下各数填在相应的集合中〔1〕正整数集合{}〔2〕负整数集合{}〔3〕正分数集合{}〔4〕负分数集合{}〔5〕整数集合{}〔6〕分数集合{}〔7〕正有理数集合{}〔8〕负有理数集合{}此题关键是要按有理数的分类方法将各数对号入座,填入时要做到不重不漏,最后要加上省略号.【设计意图:在此练习中出现了集合的概念,可对学生作简单的说明:把一些数放在一起,就做成了一个数的集合,简称数集.所有有理数组成的数集叫做有理数集,所有分数组成的数集叫做分数集,所有作业设计最正确解决方案根底:1.把以下各数填在相应的大括号里:-4,3/2、0.001,0,-1.7,-15,+7,-5,1 61,-217,79,,32,-0.67,315,+5.1 .正整数集合{}分数集合{}正数集合{}负数集合{}整数数集合{}负分数集合{}正有理数{}负分数集合{}综合:2.0是整数吗?自然数一定是整数吗?一定是正数吗?整数一定是自然数吗?举例说明3.以下说法正确有:〔〕A.0是整数B.-1/3是负分数C. 3.2不是正数教学设计说明:对于本节课的设计,仍以探究性活动为主线,通过对教材进展深化的挖掘和适当的整合,设计生动有趣的教学活动激发学生的学习兴趣,借助形象直观的教学模型启迪学生的思维,为学生提供充分的活动时空,引导学生主动参与,积极探究,体验知识的形成过程,开展原有的知识构造,构建新的知识体系,让学生对知识的理解更加深化全面.?数学课程标准?提出:数学学习应使学生获得适应将来社会生活和进一步开展所必需的重要数学知识以及根本的数学思想方法.因此,本堂课的教学在使学生掌握知识、形成技能的同时注重浸透分类的方法和集合思想,为后继学习奠定了良好的根底.。

人教版七年级数学上册1.2.1有理数的概念教学设计

人教版七年级数学上册1.2.1有理数的概念教学设计
1.注重激发学生的学习兴趣,引导学生主动参与课堂,培养学生的学习积极性。
2.重视学生已有的知识经验,以此为生长点,引导学生逐步理解和掌握有理数的概念。
3.考虑到学生的认知发展水平,采用适当的教学方法,降低学习难度,帮助学生顺利过渡到有理数的学习。
4.关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高和发展。
4.教学策略:
-关注学生的认知规律,合理安排教学内容,由浅入深,循序渐进。
-注重培养学生的数学思维,引导学生运用数学知识解决实际问题。
-针对学生的个体差异,实施分层教学,让每个学生都能在课堂上得到有效的提升。
-创设愉快的课堂氛围,鼓励学生积极参与,激发学生的学习热情。
5.教学资源:
-利用多媒体教学设备,展示丰富的教学素材,提高学生的学习兴趣。
-整合网络资源,拓展学生的学习视野,提高教学效果。
-结合教材和实际生活,开发校本课程,满足学生个性化学习需求。
四、教学内容与过程
(一)导入新课
在这一阶段,我将通过一个生动的例子来导入新课,激发学生的兴趣。例如,我会讲述一个关于温度变化的情景:在一个寒冷的冬天,温度从零下5摄氏度上升了3摄氏度,然后又下降了6摄氏度。我会引导学生思考如何用数学的方式来描述这种温度变化。
作业要求:
1.学生需认真完成作业,字迹清晰,表述准确。
2.家长需督促孩子按时完成作业,关注孩子的学习进度,鼓励孩子积极思考、主动提问。
3.教师在批改作业时,要关注学生的解题思路和方法,及时发现并纠正错误,给予针对性的指导和鼓励。
4.对学生在作业中表现出的优秀作品和进步,教师要在课堂上进行表扬,提高学生的学习积极性。
(4)巩固:设计梯度性练习题,让学生在实际操作中巩固所学知识,提高运算能力。

1.2.1 有理数的概念 教案 2024--2025学年人教版七年级数学上册

1.2.1 有理数的概念 教案 2024--2025学年人教版七年级数学上册

1.2 有理数及其大小比较 1.2.1 有理数的概念教学目标课题 1.2.1 有理数的概念 授课人素养目标 1.理解有理数的意义和概念,能够把给出的有理数分类,了解0在有理数分类中的作用.2.通过对有理数分类的教学活动,让学生了解分类的思想方法的作用. 教学重点 掌握有理数的概念及分类. 教学难点 能将所给数进行正确的分类.教学活动教学步骤 师生活动活动一:问题导入,引出新课 【问题引入】问题 请观察下列一组数: 1,5.7,457 ,-76 ,-10,0,13 ,-312,-15.2. 你能模仿小学学过的数的分类方法对上面的数进行分类吗?请简单说明你分类的理由.学习完今天这节课后,你就能轻松解决上面的问题了!【教学建议】教师应给学生充足的时间思考,然后与同伴交流答案,并鼓励学生踊跃发言,表达自我. 设计意图 通过唤醒旧知识,为进一步学习新知识做准备.活动二:实践探究,获取新知 探究点 有理数的概念及分类问题1 想一想,我们已经学过的数有哪些?问题2 0.1,5.32,0.3,-0.5,-150.5等数为什么被列为分数?因为这里的小数可以化为分数,所以我们也把它们看成分数.0.1=110 ,5.32=13325 ,0.3=310 ,-0.5=-12 ,-150.5=-3012.问题3 比较13 和0.3·的大小,你有什么发现?13和0. 3·相等.发现无限循环小数也可以化为分数,因此无限循环小数也可以看成分数.问题4 整数也能写成分数的形式吗?请举例说明.【教学建议】教师需让全体学生都参与到活动中来,并通过引导让学生归纳,并将新旧知识融合.【教学建议】教学时,教师可引导学生回顾无限循环小数的相关知识,借助简单实例让学生认识到无限循环小数可转化为分数,具体方法会在设计意图 通过简单的问题引入,促使学生回忆所学知识,启发学生获取新知识,同时在解答问题的过程中让学生体会、感悟有理数的相关概念.正整数可以写成正分数的形式,例如2=21 ;负整数可以写成负分数的形式,例如-3=-31;0也可以写成分数的形式01.这样,整数可以写成分数的形式.概念引入:即有理数⎩⎪⎨⎪⎧`正有理数负有理数这样,引入负数后,我们对数的认识就扩大到了有理数范围.问题5 有没有一些数不是有理数呢?有限小数和无限循环小数都是分数,所以也是有理数.无限不循环小数(如π)不是分数,就不是有理数. 例 (教材P7例1) 指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,-38 ,8.5%,-30,-12%,19,-7.5,20,-60,1.2·. 解:正有理数:13,4.3,8.5%,19,20,1.2· ;其中正整数有13,20.负有理数:-38 ,-30,-12%,-7.5,-60;其中负整数有-30,-60. 【对应训练】教材P8练习.后面的课时中学到,学生了解即可,本课时不做要求.【教学建议】学习了有理数的概念后,教师可适当总结,说明从小学开始,在我们不断认识新数的过程中,数的范围也不断扩大,让学生体会数系扩充的原则.活动三:随堂训练,课堂总结【课堂总结】 师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是有理数?2.如何对有理数进行分类?【知识结构】【作业布置】1.教材P16习题1.2第1题.板书设计1.2 有理数及其大小比较 1.2.1 有理数的概念1.有理数的概念2.有理数的分类教学反思本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程,避免教师直接分类带来学习的枯燥性,要有意识地突出“分类”这一数学思想的渗透.解题大招 有理数的相关概念和分类(1)有理数:可以写成分数形式的数.(2)进行有理数分类时注意0的归属. 拓展:(1)小数的分类(2)例1(1)在-2,+3.5,0,-23,-0.7·中,负有理数有( C )A.1个B.2个C.3个D.4个 (2)下列各数中,是正整数的是( A )A.3B.2.1C.0D. -2 (3)下列有理数中,既是正数又是分数的是( D )A. -5.2B.0C.2D. 13(4)下列各数:-8,2.89,6,-12 ,-0.25,123,-314,0.其中非负数有( D )A.1个B.2 个C.3个D.4个例2 把下面的有理数填人它们属于的集合内:-10,8,-712,334,-10%,3101,+2,0,3.14,-2 025,73,0.61·8·,-1.正有理数集合:{ …}. 整数集合:{ …}.负有理数集合:{ …}. 正整数集合:{ …}.负整数集合:{ …}.分析:要将各数填入它们属于的集合内,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意有的有理数可能“身兼不同的身份”,解答时不要有遗漏.解:正有理数集合:{8,334, 3101,+2,3.14, 73,0.61·8·,…}.整数集合:{-10,8,+2,0,-2 025,-1,…}. 负有理数集合:{-10,-712,-10%,-2 025,-1,…}.正整数集合:{8,+2,…}.负整数集合:{-10,-2 025,-1,…}.方法总结:在填数时可参考以下两种方法:(1)逐个观察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象.培优点有理数概念的开放性题例在如图所示的方格中,填入相应的数字,使它符合下列语句的要求:(1)5的正上方是一个负整数;(2)5的左上方是一个正分数;(3)一个既不是正数又不是负数的数在5的正下方;(4)5的左边是一个负分数;(5)剩下的四格请分别填上正数和负数使方格中正数与负数的个数相同.分析:此时,正数有两个,负数有两个,还剩四个空格,所以要填两个正数和两个负数,即可满足方格中正数与负数的个数相同.解:答案不唯一,示例如图②所示.。

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案02

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案02

第一章有理数1.2.1 有理数的概念0.3…负分数:如-52,-23,-17, -0.5, -150.5,… 引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。

指出:正分数、负分数统称为分数。

想一想:整数能化成分数吗?预设:2=21, 3=31,…正整数可以写成正分数的形式-2=−21, -3=−31,…负整数可以写成负分数的形式0=01,0也可以写成分数的形式 整数可以写成分数的形式指出:可以写成分数形式的数称为有理数。

可以写成正分数形式的数为正有理数,可以写成负分数形式的数为负有理数。

思考:你能试着对有理数进行分类吗?预设:有理数的分类(整分性):有理数的分类(正负性):例1:指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,−38,8.5%,-30,-12%, 19 ,-7.5,20,-60,1.2解:正有理数:13,4.3, 8.5%, 19 ,20,1.2;其中正整数有13,20。

负有理数: −38, -30,-12%, -7.5,-60 ; 其中负整数有-30,-60。

例2:下列说法中,正确的是( ). A .在有理数中,0的意义仅仅表示没有 B .一个有理数,它不是正数就是负数 C .正有理数和负有理数组成有理数 D .0是自然数 答案:D强调:在有理数概念中,“0”很特殊: (1)0既不是正数,也不是负数; (2)0是整数,不是分数; (3)0既是非正数,又是非负数. 活动意图说明:【解析】本题主要考查了有理数的分类,理解有理数的相关定义是解题的关键.先根据正数的定义判断A 的正误,再根据非负数是正数或0判断B 的正误;再根据有理数也可分成整数和分数判断C ,D 的正误即可解答.解:A .由50%,1,2.5是正数,故正确,符合题意; B .由−2,−4为负数,故错误,不符合题意; C .1为整数,故错误,不符合题意; D .因为112是分数,故错误,不符合题意. 故选:A .【综合拓展类作业】5.如图,把下列各数填入相应的各圈里. 100,−99%,0,−2000,5.2,6,−0.3,116,−53【答案】见解析【解析】本题考查了有理数的分类,根据有理数的分类,即可求解. 解:整数为:100,0,−2000,6; 负数为:−99%,−2000,−0.3,−53; 则负整数为:−2000;本节课的主要内容是让学生明确有理数的概念,并能对有理数进行正确。

1.2.1 有理数的概念 教学设计 2023-2024学年人教版七年级数学上册

 1.2.1 有理数的概念 教学设计  2023-2024学年人教版七年级数学上册

章节名称人教版(2024版)初中数学七年级上册第一章有理数 1.2.1 有理数的概念学科数学授课班级授课时数设计者所属学校教学目标知识与技能目标:使学生理解有理数的定义,掌握有理数的分类及大小比较方法。

过程与方法目标:通过自主学习、合作探讨,培养学生分析问题、解决问题的能力。

情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。

教学重难点教学重点:1.有理数的概念2.会把所给的有理数填入表示它所在的集合圈内教学难点:理解有理数的分类及其分类标准、分类原则,分类时要做到不重复不遗漏教学问题诊断分析通过小学阶段的学习,学生对数已经有了比较全面深刻的的认识,不过同时思维也造成了一定程度的定势,这就容易与数的概念的扩充发生冲突,另外,刚刚步入初中的学生年龄小,对概念的理解能力不强,对枯燥的数字不如具体事物感兴趣,抽象思维能力弱,好奇、好动、好表现,不能长时间集中精力,因此,他们更喜欢参与生动有趣的教学活动,更容易接受形象直观的教学模型,更渴望得到教师的表扬与鼓励,本节课还初步渗透了集合的思想和分类的方法,所以本堂课不仅是发展学生原有的认知结构,形成新的知识体系的主要通道,而且是渗透数学思想方法,感受数的应用价值以及增强学生数感的有效载体,学情分析鉴于初一年级生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。

我决定采取启发式教法及情感教,创设问题情境,引导生主动思考,用大量的实例和生动的语言激发生习兴趣,调节习情绪。

本节课通过创设问题情境,理解有理数产生的必然性、合理性,通过合作探索,理解有理数的分类,精心设问,适时、适度采用激励性语言,提高生习积极性,从而较好地完成有理数概念的建构,达到教目标。

课堂教学过程结构设计教学教学过程设计意图环节1、复习、导入大于0 的数叫正数,小于0的数叫负数0既不是正数,也不是负数正数的符号用+ 表示,书写时可以省略负数的符号用-表示,书写时不能省略(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数 教学设计
教学目标
知识与技能:
1.说出有理数的意义。

2.把给出的有理数按要求分类。

3.说出数0在有理数分类中的作用。

过程与方法:
树立对数分类讨论的观点并发展正确地进行分类的能力。

情感、态度与价值观:
通过有理数的分类,感受数学对称美。

重点、难点、疑点及解决办法
1.重点:有理数包括哪些数。

2.难点:有理数的分类。

3.疑点:明确有理数分类标准。

教具准备
投影仪、自制胶片。

教学设计思路
这节课主要教学内容是有理数的分类,讲解时要启发引导,充分体现学生为主体,注重学生参与意识。

教学过程设计
(一)复习导入
(出示投影1)
1.把下列各数填入相应的大括号内:
+6,211
-,3.8,0,-4,-6.2,722+,-3.8,32-
正数集合{}ΛΛ
负数集合{
}ΛΛ
2.填空:
(1)若下降5 m 记作-5 m ,那么上升8 m 记作__________________,不升不降记作_____________________。

(2)如果规定+20表示收入20元,那么-10元表示______________。

(3)如果由A 地向南走3千米用3千米表示,那么-5千米表示____________________,在A 地不动记作__________________。

【教法说明】出示投影后,学生思考,然后举手回答问题。

当学生回答完一题后。

教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。

通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。

师:在小学大家学过1,2,3,4……这是什么数呢?
生:自然数。

师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢? 生:负数。

师:具体叫什么负数呢?
师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。

【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。

这样一步一个台阶的教学过程,符合学生认识问题的一般规律。

(二)探索新知,讲授新课
1.分类数的名称
1,2,3,4……叫做正整数;
-1,-2,-3,-4……叫做负整数。

0叫做零。

218,32+,2.5+(即515+)……叫做正分数;
214
-,76,5.3-(即313-)……叫做负分数; 正整数、负整数和零统称为整数。

正分数和负分数统称为分数。

整数和分数统称有理数。


→⎧⎨→⎩整数正整数、负整数和零有理数分数正分数、负分数
【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。

提出问题:巩固概念
(出示投影2)
(1)0是整数吗?是正数吗?是有理数吗?
(2)-5是整数吗?是负数吗?是有理数吗?
(3)自然数是整数吗?是正数吗?是有理数吗?
【教法说明】这三道小题主要是检查学生对概念的理解。

新授过程中随时设计习题进行反馈练习,以便调节回授。

注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。

2.有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:
(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:
(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类
尝试反馈,巩固练习
(出示投影3)
下列有理数中:-7,10.1,61-
,89,0,-0.67,531
. 哪些是整数?哪些是分数?哪些是正数?哪些是负数?
学生思考,然后找同学逐一回答.其他同学准备补充或纠正。

【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。

3.数的集合
我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。

同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

(三)变式训练,培养能力
(出示投影4)
(1)把有理数6.4,-9,32,+10,43-,-0.021,-1,317
,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。

正整数集合{
}ΛΛ,负整数集合{}ΛΛ 正分数集合{}ΛΛ,负分数集合{}ΛΛ
(2)把下列有理数:-3,+8,21-,+0.1,0,31
,-10,5,-0.7填入相应的集合:
整数集合{
}ΛΛ,分数集合{}ΛΛ 正数集合{}ΛΛ,负数集合{}ΛΛ
【教法说明】学生思考后,动笔完成上述第(1)题。

一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力。

第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。

(四)归纳小结
师:今天我们一起学习了哪些内容?
由学生自己小结,然后教师再总结:
今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。

【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。

再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。

(五)反馈检测
(出示投影5)
(1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________。

(2)把下列各数填入相应集合的持号内:
-3,4,-0.5,0,8.6,-7
整数集合{
}ΛΛ,分数集合{}ΛΛ 正有理数集合{}ΛΛ,负分数集合{}ΛΛ
(4)选择题:-100不是( )
A .有理数;
B .自然数;
C .整数;
D .负有理数。

以小组为单位计分,积分最高的组为优胜组.
【教法说明】通过反馈检测,既使学生巩固本节课所学内容,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。

布置作业
思考题:把下列各数填在相应的集合中
3.14,-5,0,312
,89,-2.67,431-
,π,+1001 有理数集合{
}ΛΛ 非负有理数集合{
}ΛΛ 负有理数集合{
}ΛΛ
板书设计
作业答案
思考题: 有理数集合⎭⎬⎫⎩
⎨⎧+---ΛΛ,,,,,,,,100143167.2893120514.3 非负有理数集合
⎭⎬⎫⎩⎨⎧+ΛΛ,,,,,100189312014.3 负有理数集合⎭⎬⎫⎩
⎨⎧---ΛΛ,,,43167.25。

相关文档
最新文档