关联速度问题(高一)
高一物理典型例题
高一物理典型例题关联速度1光滑水平面上有A、B两个物体,通过一根跨过定滑轮的轻绳子相连,如图,它们的质量分别为m A和m B,当水平力F拉着A向右运动,某时绳子与水平面夹角为θA=45⁰,θB=30⁰时,A、B两物体的速度之比VA:VB应该是________小船过河1若河宽仍为100m,已知水流速度是5m/s,小船在静水中的速度是4m/s,即船速(静水中)小于水速。
求:1.欲使船渡河时间最短,求渡河位移?2.欲使航行距离最短,船应该怎样渡河?求渡河时间?平抛1小球从斜面上方一定高度处向着水平抛出,初速度v0,已知传送带的倾角为θ。
1.若小球垂直撞击斜面,求飞行时间t1 ,求水平位移x1;2.若小球到达斜面的位移最小,求飞行时间t2 求速度偏转角的正切值;3.反向平抛,何时离斜面最远;平抛实验1如右图所示在“研究平抛物体的运动”实验中用方格纸记录了小球的运动轨迹,a、b、c和d为轨迹上的四点,小方格的边长为L,重力加速度为g。
求:1.小球做平抛运动的初速度大小为v02.b点时速度大小为vb3.从抛出点到c点的飞行时间Tc4.已知a点坐标(xy)求抛出点坐标水平圆周1如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥体固定在水平面上不动,其轴线沿竖直方向,母线与轴线之间的夹角为30°,小球以一定速率绕圆锥体轴线做水平匀速圆周运动,求恰好离开斜面时线速度竖直圆周1如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求:1.物体在A点时弹簧的弹性势能;2.物体从B点运动至C点的过程中产生的内能.开普勒第三定律赤道卫星中同步轨道半径大约是中轨道半径的2倍,则同步卫星与中轨道卫星两次距离最近间隔时间_________。
高一物理导学案3:微专题:小船渡河模型与关联速度问题
高一物理导学案3:微专题:小船渡河模型与关联速度问题知识点1、小船渡河模型1.模型特点(1)船的实际运动是船随水流的运动和船相对静水的运动的合运动。
(2)三个速度v船(船在静水中的速度)、v水(水流速度)、v合(船的实际速度)。
如图甲所示。
2.分析方法如图乙所示,v水表示水流速度,v船表示船在静水中的速度,θ表示船头指向上游与河岸间的夹角,将船的速度v船沿平行于河岸和垂直于河岸方向正交分解,则v水-v船cosθ为船实际上沿水流方向的运动速度,v⊥=v船sinθ为船垂直于河岸方向的运动速度。
两个方向的运动情况相互独立、互不影响。
三种情境(河宽d,位移x,水平位移求渡河的最短航程时,要先弄清船水渡河时间与水流速度的大小无关,只要船头指向与河岸垂直,渡河时间即为最短。
例1、小船在200 m宽的河中横渡,水流速度为2 m/s,船在静水中的速度为4 m/s。
(1)若小船的船头始终正对河对岸,它将在何时、何处到达对岸?(2)要使小船到达河正对岸,应如何航行?历时多长?(3)小船过河的最短时间为多长?(4)若水流速度是5 m/s,船在静水中的速度是4m/s,则怎样渡河才能使船行驶的位移最小?最小位移是多少?变式1、如图所示,河宽d=120 m,设小船在静水中的速度为v1,河水的流速为v2.小船从A点出发,在渡河时,船身保持平行移动.若出发时船头指向河对岸上游的B点,经过10 min,小船恰好到达河正对岸的C点;若出发时船头指向河正对岸的C点,经过8 min,小船到达C点下游的D点.求:(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河中小船被冲向下游的距离s CD.例2、小船横渡一条河,为尽快到达对岸,船头方向始终与河岸垂直,为避免船撞击河岸,小船先做加速运动后做减速运动,使小船到达河对岸时恰好不与河岸相撞。
小船在静水中的行驶速度v 1随时间变化的图像如图甲所示,水的流速v 2随时间变化的图像如图乙所示,则下列关于小船渡河的说法正确的是( )A .小船的运动轨迹为直线B .河宽是150 mC .小船到达对岸时,沿河岸下游运动了60 mD .小船渡河的最大速度是13 m/s变式2、跑马射箭是民族马术中的一个比赛项目,如图甲所示,运动员需骑马在直线跑道上奔跑,弯弓射箭,射击侧方的固定靶标,该过程可简化为如图乙(俯视图)所示的物理模型:假设运动员骑马以大小为1v 的速度沿直线跑道匀速奔驰,其轨迹所在直线与靶心的水平距离为d 。
关联物体速度专题课件-2021-2022学年高一下学期物理人教版(2019)必修第二册
错误,D 正确;
故选 BD。
例 4.如图所示,一根长为 L 的轻杆 OA ,O 端用铰链固定,另一端固
定着一个小球 A,轻杆靠在一个高为 h 的物块上。则当物块以速度 v
向右运动至杆与水平方向夹角为 时,小球 A 的线速度大小为( )
A. vL sin2
h
B. 2v sin
h
C. vL cos2
确,B 错误; CD.车子向右匀速运动过程中, 角逐渐减小,所以重物的速度增大,重物做 加速上升运动,则绳子的拉力应大于重物的重力,C 正确,D 错误。 故选 AC。
例 3.如图所示,当放在墙角的均匀直杆 A 端在竖直墙上,B 端放在
水平地面,当滑到图示位置时( 已知), B 端速度为 v ,下列说法
针转动,因此将船的速度进行分解,如图
所示,人拉绳行走的速度 v 人=vcosθ
故 A 正确 B 错误;
CD.绳对船的拉力等于人拉绳的力,即绳的拉力大小为 F,与水平方向成θ角,
F cos f
因此 Fcosθ-f=ma 可得 a=
,故 C 正确 D 错误。
m
故选 AC。
例 2.如图所示,汽车以速度 v 向右沿水平面匀速运动,通过绳子提
例 1.如图所示,人在岸上拉船,已知船的质量为 m,水的阻力
恒为 f,当轻绳与水平面的夹角为θ时,船的速度为 v,此时人的
拉力大小为 F,则( )
A.人拉绳行走的速度为 vcosθ
C.船的加速度为
F
cos
m
f
B.人拉绳行走的速度为
v
cos
D.船的加速度为 F f m
答案:AC
AB.船的速度产生了两个效果:一是滑轮与船间的绳缩短,二是绳绕滑轮顺时
专题03 关联速度模型-【模型与方法】2023-2024学年高一物理同步模型易点通(人教版2019必
专题03 关联速度模型1.“关联”速度关联体一般是两个或两个以上由轻绳或轻杆联系在一起,或直接挤压在一起的物体,它们的运动简称为关联运动。
一般情况下,在运动过程中,相互关联的两个物体不是都沿绳或杆运动的,即二者的速度通常不同,但却有某种联系,我们称二者的速度为“关联”速度。
2.“关联”速度分解的步骤(ⅰ)确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向。
(ⅰ)确定合运动的两个效果。
用轻绳或可自由转动的轻杆连接的物体的问题―→⎩⎪⎨⎪⎧ 效果1:沿绳或杆方向的运动效果2:垂直绳或杆方向的运动 相互接触的物体的问题―→⎩⎪⎨⎪⎧效果1:垂直接触面的运动效果2:沿接触面的运动 (ⅰ)画出合运动与分运动的平行四边形,确定它们的大小关系。
3.常见的速度分解模型(1)绳牵联模型单个物体的绳子末端速度分解:如图甲所示,v ⅰ一定要正交分解在垂直于绳子方向,这样v ⅰ的大小就是拉绳的速率,注意切勿将绳子速度分解。
甲 乙 两个物体的绳子末端速度分解:如图乙所示两个物体的速度都需要正交分解,其中两个物体的速度沿着绳子方向的分速度是相等的,即v A ⅰ=v B ⅰ。
如图丙所示,将圆环的速度分解成沿绳方向和垂直于绳方向的分速度,B 的速度与A 沿绳方向的分速度相等,即v A ⅰ=v B ⅰ。
丙丁(2)杆牵联模型如图丁所示,将杆连接的两个物体的速度沿杆和垂直于杆的方向正交分解,则两个物体沿杆方向的分速度大小相等,即v Aⅰ=v Bⅰ。
【模型演练1】(2024上·甘肃兰州·高一兰州一中校考期末)如图在水平力F作用下,物体B沿水平面向左运动,物体A恰好匀速下降。
以下说法正确的是()【模型演练2】(2023上·云南·高一校联考期末)有两条位于同一竖直平面内的水平轨道,轨道上有两个物块A和B,它们通过一根绕过光滑定滑轮O的不可伸长的轻绳相连接,轻绳始终处于紧绷状态,物块A向右运动。
【课件】关联速度问题 课件高一下学期物理人教版(2019)必修第二册
墙壁上,现拉A端由图示位置以速率v匀速向右运动,则B
端滑动的速度是
。
y
B
vB sin
L
vB
b
A xv
v cos
【答案】 寻找分运动效果
vB sin v cos vB v / tan
针训2、如图所示,有一个沿水平方向以加速度a作匀加速
直线运动的半径为R的半圆柱体,半圆柱面上搁着一个只
能沿竖直方向运动的竖直杆.在半圆柱体速度为v时,杆同
第五章 曲线运动
§2.2 运动的合成与分解 绳、杆关联速度问题
绳、杆关联问题是指物拉绳(杆)或绳(杆)拉物问题.高 中阶段研究的绳都是不可伸长的,杆都是不可伸长和不可压 缩的,即绳或杆的长度不会改变,所以解题的原则是:把物 体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量, 根据沿绳(杆)方向的分速度大小相等求解.
C.橡皮的速度与水平方向成60°角
D.橡皮的速度与水平方向成45°角
关 联 速 度 问 题
动,设绳的拉力为FT,在此后的运动过程中,下列说法正确的是( AD )
A.物体A做加速运动 B.物体A做匀速运动 C.FT小于mgsin θ D.FT大于mgsin θ
【例题】如图所示,滑块B以速度vB向左运动时,触点P的 沿杆移动的速度如何?
寻找分运动效果
vB
【答案】v vB cos
针训1、如图所示,长L的杆AB,它的两端在地板和竖直
半圆柱体接触点和柱心的连线与竖直方向的夹角为θ,则这
时竖直杆的速度大小为( A )
A. vtanθ B. v/tanθ
C. vsinθ D. vcosθ
v2
V合
v1=v
曲柄连杆结构是发动机实现工作循环,完成能量转换的主要运动零件,如图所示,
高中物理绳杆关联速度问题
高中物理绳杆关联速度问题
高中物理中的绳杆关联速度问题,主要是指通过绳子或杆连接的两个物体在运动过程中,其速度之间的关系问题。
在这个问题中,需要理解并掌握关联速度的概念和规律。
1. 速度规律:在绳、杆等连接的两个物体运动过程中,它们的速度通常是不一样的。
但是,两个物体沿绳或杆方向的速度大小是相等的,我们称之为关联速度。
2. 解决关联速度问题的一般步骤:
确定合运动,即物体的实际运动。
确定合运动的两个实际作用效果,一是沿绳(或杆)方向的平动效果,这个效果改变速度的大小;二是沿垂直于绳(或杆)方向的转动效果,这个效果改变速度的方向。
即将实际速度分解为垂直于绳(或杆)和平行于绳(或杆)方向的两个分量。
按平行四边形定则进行分解,作出运动矢量图。
根据沿绳(或杆)方向的速度相等列方程求解。
3. 常见的模型:
车拉船模型:当车匀速前进,速度为v,当绳与水平方向成α角时,船速v′是多少?
在解决这类问题时,需要仔细分析物体的运动状态和相互作用,理解关联速度的概念和规律,按照一定的步骤进行求解。
这有助于提高物理问题的解决能力和物理思维的培养。
高一物理力学专题提升专题14关联速度问题
专题14 关联速度问题【专题概述】1. 什么是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。
2. 解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。
解题的原则:速度的合成遵循平行四边形定则3. 解题方法:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示【典例精讲】1. 绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时()A.小车运动的速度为v0 B.小车运动的速度为2v0C.小车在水平面上做加速运动 D.小车在水平面上做减速运动【答案】C【解析】将小车速度沿着绳子方向与垂直绳子方向进行分解,如图:2. 杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为()A.水平向左,大小为vB.竖直向上,大小为vtan θC.沿A杆向上,大小为v/cos θD.沿A杆向上,大小为vcos θ【答案】C【解析】两杆的交点P参与了两个分运动:与B杆一起以速度v水平向左的匀速直线运动和沿B杆竖直向上的运动,交点P的实际运动方向沿A杆斜向上,则交点P的速度大小为v P=,故C正确, A、B、D错误.故选C.3. 关联物体的动力学问题典例3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为FT,在此后的运动过程中,下列说法正确的是()A.物体A做加速运动B.物体A做匀速运动C.FT可能小于mgsin θD.FT一定大于mgsin θ【答案】D【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个是合速度,那个是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向和垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来看:A的运动是沿绳子方向的,所以不需要分解A的速度,但是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。
高中物理小船渡河问题与关联速度问题(解析版)
小船渡河问题与关联速度问题一、小船过河问题1.船的实际运动是水流的运动和船相对静水的运动的合运动。
2.三种速度:船在静水中的速度v 1、水的流速v 2、船的实际速度v 。
3.三种情况(1)渡河时间最短:船头正对河岸,渡河时间最短,t min =dv 1(d 为河宽)。
(2)渡河路径最短(v 2<v 1时):合速度垂直于河岸,航程最短,x min =d 。
(3)渡河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直河岸渡河。
确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
由图可知sin θ=v 1v 2,最短航程x min =d sin θ=v 2v 1d 。
4. 解题思路5. 解题技巧(1)解决小船渡河问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头所指方向的运动,是分运动,船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线。
(2)应用运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解。
(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关。
(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况,用三角形定则求极限的方法处理。
【典例1】一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s 。
若船在静水中的速度为v 2=5 m/s ,则: (1) 欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2) 欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【典例2】如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x(m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法正确的是()A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s【答案】B【跟踪短训】1. (多选)下列图中实线为河岸,河水的流动方向如图v的箭头所示,虚线为小船从河岸M驶向对岸N 的实际航线.则其中可能正确的是().【答案】AB【解析】船头垂直于河岸时,船的实际航向应斜向右上方,A正确,C错误;船头斜向上游时,船的实际航向可能垂直于河岸,B正确;船头斜向下游时,船的实际航向一定斜向下游,D错误.2. 如图所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O 点,OA、OB分别与水流方向平行和垂直,且OA=OB.若水流速度不变,两人在静水中游速相等,则他们所用时间t甲、t乙的大小关系为().A.t甲<t乙B.t甲=t乙C.t甲>t乙D.无法确定【答案】 C【解析】设两人在静水中游速为v0,水速为v,则t甲=x OAv0+v+x OAv0-v=2v0x OAv20-v2t乙=2x OBv20-v2=2x OAv20-v2<2v0x OAv20-v2故A、B、D错,C对.3. 一小船在静水中的速度为3 m/s,它在一条河宽为150 m,水流速度为4 m/s的河流中渡河,则该小船().A.能到达正对岸B.渡河的时间可能少于50 sC.以最短时间渡河时,它沿水流方向的位移大小为200 mD.以最短位移渡河时,位移大小为150 m【答案】 C4.船在静水中的速度与时间的关系如图甲所示,河水的流速随离一侧河岸的距离的变化关系如图乙所示,经过一段时间该船以最短时间成功渡河,下列对该船渡河的说法错误的是()A.船在河水中的最大速度是5 m/sB.船渡河的时间是150 sC.船在行驶过程中,船头必须始终与河岸垂直D .船渡河的位移是13×102 m 学-科/网 【答案】B【解析】 由题图乙可知,水流的最大速度为4 m/s ,根据速度的合成可知,船在河水中的最大速度是5 m/s ,选项A 正确;当船头始终与河岸垂直时,渡河时间最短,有t =d v =3003 s =100 s ,因此船渡河的时间不是150 s ,选项B 错误,C 正确;在渡河时间内,船沿水流方向的位移x 在数值上等于水流速度与时间图像所围成的面积大小,根据速度变化的对称性可得x =4×1002 m =200 m ,再根据运动的合成与分解可得,船渡河的位移为13×102 m ,选项D 正确。
高一物理奥赛7:关联速度
高一物理奥赛7:速度关联类问题求解1. 在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2. A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?3.均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.4. 一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).5. S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?解答:1. 命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD ①由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =tBD t s ∆=∆∆2 ③ 由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物=θcos v 解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v2.v B cos α=v A cos β3. v A =v B tan α;a A =a B tan α图5-4 图5-5图5-64.选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.5. 由几何光学知识可知:当平面镜绕O逆时针转过30°时,则:∠SOS′=60°,OS′=L/cos60°.选取光点S′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v;光点S′又在反射光线OS′上,它参与沿光线OS′的运动.速度v1和绕O点转动,线速度v2;因此将这个合速度沿光线OS′及垂直于光线OS′的两个方向分解,由速度矢量分解图5′—1可得:v1=v sin60°,v2=v cos60°又由圆周运动知识可得:当线OS′绕O转动角速度为2ω.则:v2=2ωL/cos60°vc os60°=2ωL/cos60°,v=8ωL.。
物理高一必修二关联速度知识点
物理高一必修二关联速度知识点速度是物理学中一个重要的概念,它描述了物体在单位时间内的位移变化。
在高中物理的学习过程中,学生们会接触到许多与速度相关的知识点。
本文将介绍高一必修二中与速度相关的几个重要知识点,包括平均速度、瞬时速度、速度的合成与分解、加速度等。
一、平均速度平均速度是指物体在一段时间内的位移与时间的比值。
它的计算公式为:平均速度 = 总位移 / 总时间例如,一个物体初位置为A,末位置为B,物体从A点运动到B点所需时间为t,那么物体的平均速度可以表示为:平均速度 = (B点位置 - A点位置) / t二、瞬时速度瞬时速度是指物体在某一瞬间的速度。
在数学上,瞬时速度可以通过求解物体的瞬时位移与瞬时时间的比值来得到。
瞬时速度可以表示为:瞬时速度 = ds/dt其中,ds表示瞬时位移,dt表示瞬时时间。
在实际问题中,通常可以通过计算物体在极短时间内的位移和时间来逼近瞬时速度。
三、速度的合成与分解速度的合成是指当一个物体同时具有多个速度时,将这些速度合成为一个总速度的过程。
合成速度的方法可以使用平行四边形法则或三角法则。
例如,一个物体以速度v1沿x轴正方向运动,同时以速度v2沿y轴正方向运动,那么物体的合成速度可以表示为:合成速度= √(v1² + v2²)相反地,速度的分解是指将一个速度分解为多个分速度的过程。
分解速度的方法可以使用正弦定理或余弦定理。
例如,一个物体以速度v沿某一斜面上升,可以将这个速度分解为分速度v1和v2,其中v1表示物体在垂直于斜面方向上的分速度,v2表示物体在斜面上的分速度。
四、加速度加速度是速度变化的量度,描述了物体单位时间内速度的变化率。
它的计算公式为:加速度 = (末速度 - 初速度) / 时间在高一必修二中,我们主要学习了匀变速直线运动,该运动下的加速度为常数。
当物体在匀变速直线运动中,我们也可以用加速度的公式来计算位移和时间的关系。
例如,一个物体的初速度为v0,加速度为a,它在时间t内的位移可以计算为:位移 = v0t + (1/2)at²其中,v0t表示初速度v0在时间t内的位移,(1/2)at²表示由于加速度a造成的额外位移。
(完整版)高一物理-关联速度专题
高一物理-关联速度专题一、定义:绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。
二、特点:①沿杆或绳方向的速度分量大小必相等;②物体实际运动方向就是合速度的方向;③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。
三、解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果。
以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。
四、题型分类1.基础题型【例1】如图1所示, 人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为θ时,船的速度为v,此时人的拉力大小为T,则此时A.人拉绳行走的速度为v cosθB.人拉绳行走的速度为v/cosθC.船的加速度为D.船的加速度为解析:船的速度产生了两个效果: 一是滑轮与船间的绳缩短, 二是绳绕滑轮顺时针转动, 因此将船的速度进行分解如图所示, 人拉绳行走的速度v人=v cosθ, A对, B错;绳对船的拉力等于人拉绳的力,即绳的拉力大小为T,与水平方向成θ角,因此T cosθ-f=ma,解得:,C正确,D错误。
答案:AC。
点评:人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。
即若按图3所示进行分解,则水平分速度为船的速度,得人拉绳行走的速度为v/cosθ,会错选B选项。
【例2】如图4所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为α时,船的速度是多少?解析:方法1——微元分析法(不要求掌握)取小量θ,如图5所示,设角度变化θ所需的时间为Δt,取CD=CB,在Δt时间内船的位移为AB,绳子端点C的位移大小为绳子缩短的长度AD。
高一物理必修二【关联速度问题】专题
高一物理必修二【关联速度问题】专题1.“关联”速度关联体一般是两个或两个以上由轻绳或轻杆联系在一起的物体,它们的运动简称为关联运动。
一般情况下二者的速度通常不同,但却有某种联系,我们称二者的速度为“关联”速度。
2.“关联”速度分解的步骤(1)确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向。
(2)确定合运动的两个效果效果1:沿绳或杆方向的运动;效果2:垂直绳或杆方向的运动。
(3)画出合运动与分运动的平行四边形,确定它们的大小关系。
3.常见的速度分解情形(如图所示)(多选)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d。
现将小环从与定滑轮等高的A处由静止释放,当小环沿直杆下滑距离也为d时(图中B处),下列说法正确的是(重力加速度为g)()A.小环刚释放时轻绳中的张力一定大于2mgB.小环到达B处时,重物上升的高度为(2-1)dC.小环在B处的速度与重物上升的速度大小之比等于2 2D.小环在B处的速度与重物上升的速度大小之比等于 2[思路点拨](1)由题图显示的几何关系,可找出重物上升的高度。
(2)小环实际上是沿杆下落,该运动是合运动,绳的运动是分运动。
(3)绳子绕过定滑轮与重物相连,所以重物上升速度的大小等于小环沿绳方向的分速度的大小。
[解析]小环释放后,其下落速度v增大,绳与竖直杆间的夹角θ减小,而v1=v cos θ,故v1增大,由此可知小环刚释放时重物具有向上的加速度,绳中张力一定大于2mg,A项正确;小环到达B处时,绳与直杆间的夹角为45°,重物上升的高度h=(2-1)d,B项正确;如图所示,将小环速度v进行正交分解,则v1=v cos 45°=22v,所以小环在B处的速度与重物上升的速度大小之比等于2,C项错误,D项正确。
[答案]ABD[名师点评]“四步”巧解关联速度问题第一步:先确定合运动,物体的实际运动就是合运动;第二步:确定合运动的两个实际作用效果,一是使绳或杆伸缩的效果,二是使绳或杆转动的效果;第三步:按平行四边形定则进行分解,作出运动矢量图;第四步:根据沿绳(或杆)牵引方向的速度相等列方程。
1.速度关联问题
9、速度关联问题 题型一、 杆端关联【例题1】如图所示,A 、B 两小球用轻杆连接,A 球只能沿内壁光滑的竖直槽运动,B 球处于光滑水平面内。
开始时杆竖直,A 、B 两球静止。
由于微小的扰动,B 开始沿水平面向右运动。
当轻杆与水平方向的夹角为θ时,A 球的速度v A 与B 球的速度v B 满足的关系是( )A. v A =v B ·cot θB. v A =v B ·tan θC. v A =v B ·sin θD. v A =v B ·cos θ〖变式1—1〗如图所示,A 、B 两小球用轻杆连接,A 球只能沿内壁光滑的竖直槽运动,B 球处于光滑水平面内。
开始时杆竖直,A 、B 两球静止。
由于微小的扰动,B 开始沿水平面向右运动。
在A 球下滑到底端的过程中,下列选项正确的是( )A.B 球的速度先增大后减小B. B 球的速度先减小后增大C.A 球到达竖直槽底部时,B 球的速度为0D. A 球到达竖直槽底部时,B 球的速度不为0〖变式1—2〗在光滑的水平面内建立如图所示的直角坐标系,长为L 的光滑细杆AB 的两个端点A 、B 被分别约束在x 轴和y 轴上运动,现让A 沿x 轴正方向以v 0匀速运动,已知P 点为杆的中点,当杆AB 与x 轴的夹角为θ时,下列关于P 点的运动轨迹或P 点的运动速度大小v 的表达式正确的是( )A .P 点的运动轨迹是一条直线B .P 点的运动轨迹是圆的一部分C .P 点的运动速度大小v =v 0·tan θD .P 点的运动速度大小v =v 02sin θ【例题2】如图所示,AB 杆以恒定角速度ω绕A 点由竖直位置开始顺时针旋转,并带动套在固定水平杆OC 上的小环M 运动。
则小环M 的速度大小变化情况是(小环仍套在AB 和OC 杆上)( )A.保持不变B. 一直增大C.一直减小D. 先增大后减小〖变式2—1〗如图所示的装置中,AB 杆水平固定,另一细杆可绕AB 杆上方距AB 杆高为h 的O 轴以角速度ω转动,两杆都穿过P 环。
高一物理竞赛培训- 关联速度
2014级高一物理竞赛培训第一讲关联速度所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有:1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.2, 接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.3, 线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同·类型1 质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.(全国中学物理竞赛试题)图5-1 图5-2类型2 绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度.(全国中学生奥林匹克物理竞赛试题)类型3 直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1 杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2 接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3 线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1 如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解 考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又 v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为AC=R·cotθ,代入前式中即可解得ω=(vsin2θ)/(Rcosθ).例2 如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解 顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2)vA1;v2=(/2)vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则 vA1=v/2,vA2=(5/6)v,由此求得 vB2=(/6)v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2)(vA2-vA1),代入前式可得 vB2=(/6)v.两解殊途同归.例3 如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解 首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心),绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心)的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα).例4 如图5-12所示,半径为R的半圆凸轮以等速v 0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解 这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则 vA=v0tanα.故AB杆的速度为v0tanα.例5 如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解 当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vO sinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14 图5-15rω-vOsinα=v. ①又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO=Rω, ②由①、②两式可解得vO=(Rv)/(r-Rsinα).若绳拉线轴使线轴逆时针转动,vO=(Rv)/(r-Rsinα),请读者自行证明.例6 如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17分析与解 设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn=ω·BC=ω·Rcot(α/2). ①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vOsinα. ②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r)=vO/R. ③将②、③两式代入①式中,得ω=(1-cosα)/(R+r)v.例7 如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解 当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8 如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解 本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为vM=vMA=v·tanφ=10cm/s.例9 如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解 轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关联速度问题(高一)
河南省信阳高级中学陈庆威 2015.02.02
绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。
同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。
希望能通过下面几个例题,帮助同学们消除解题中的困惑。
例1:如图1的A所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少?
解析:
方法一:
图1
1、找关联点(A点)
2、判断合速度(水平向左)
3、速度的合成与分解(沿绳子与垂直绳子)
4、验证正误(新位置在两坐标轴方向上)
船的实际运动是水平运动,它产生的实际效果可以从图B中的A 点为例说明:A是绳子和船的公共点,一是A点沿绳的收缩方向的运
动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。
由图可知:v=v1/cosθ
方法二:微元法:如图C
1、关联点在很短时间内经过一小位移S
2、绳子缩短了S′=OA-OB=PA=Scosθ<S
3、速度比即是位移比。
例2.如图2所示,一辆匀速行驶的汽车将一重物提起,在此过程中,重物A的运动情况是()
A. 加速上升,且加速度不断增大
B. 加速上升,且加速度不断减小
C. 减速上升,且加速度不断减小
D. 匀速上升
解析:物体A的速率即为左段绳子上移的速率,而左段绳子上移的速率与右段绳子在沿着绳长方向的分速率是相等的。
右段绳子实际上同时参与两个运动:沿绳方向拉长及向上摆动。
将右段绳子与汽车相连的端点的运动速度v沿绳子方向和与绳子垂直方向分解,如图3所示,则沿绳方向的速率即为物体A的速率v A=v1=vsinθ。
随着汽车的运动,θ增大,v A=v1增大,故A应加速上升。
由v-t图线的意义知,其斜率为加速度,在0°~90°范围内,随θ角的增大,曲线y=sinθ的斜率逐渐减小,所以A上升的加速度逐渐减小。
答案 B
点评本题主要考查了运动的分解,解题的关键是要分清合速度与分速度。
一般情况下,物体相对于给定的参考系(一般为地面)的实际运动就是合运动,本例中,汽车的实际运动就是合运动。
另外,运动的分解要按照它的实际效果进行。
例3.如图4所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为()
A.v B.v.sinθ C.v.cosθ D.V/sinθ
图4 图5
解析:如图5,将A的速度分解为沿绳子方向和垂直于绳子方向,,根据平行四边形定则得,v B=vsinθ.故B正确,A、C、
D 错误.故选B .
例4.如图6所示,均匀直杆上连着两个小球A 、B ,
不计一切摩擦.当杆滑到如图位置时,B 球水平速度为
v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速
度和加速度大小?
图6
解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v 则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度。
v =v A cos α
对B 球进行速度分解,得到v =v B sin α
联立得到v A =v B tan α
加速度也是同样的思路,得到a A =a B tan α
例5.如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于
光滑水平面上,若A 车以速度v 0向右匀速运
动,当绳与水平面的夹角分别为α和β时,B
车的速度是多少?
解析:
右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v 。
将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则
v =v A cos β
同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则
v =v B cos α
由于定滑轮上绳子的速度都是相同的,得到A
B v v αβcos cos = 例6.如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,则橡皮运动的速度( )
A .大小为v ,方向不变和水平方向成60°
B .大小为v ,方向不变和水平方向成60°
C .大小为2v ,方向不变和水平方向成60°
D .大小和方向都会改变
解析:橡皮沿与水平方向成300的斜面向右以速度v 匀速运动,由于橡皮沿与水平方向成300的斜面向右以速度v 匀速运动的位移一定等于橡皮向上的位移,故在竖直方向以相等的速度匀速运动,根据平行四边形定则,可知合速度也是一定的,故合运动是匀速运动;根据平行四边形定则求得合速度大小为v 3,方向不变和水平方向成60°. 故选B .(此题与2013年江苏单科题相似)。