盾构机液压系统基础学习知识原理(海瑞克)
盾构机液压系统
盾构机液压系统简介盾构机液压系统是盾构机重要的组成部分,通过液压力来提供驱动力和控制动作,实现盾构机在地下挖掘和前进的功能。
本文档将介绍盾构机液压系统的基本原理和重要组成部分。
基本原理盾构机液压系统利用液压油的流动和压力传递来控制各个液压执行元件的运动。
系统主要由液压泵、液压缸、液压阀以及液压控制系统等组成。
在工作过程中,液压泵通过驱动机构提供能量,将液压油压力增加,然后通过液压阀控制液压油流向不同的执行元件,实现盾构机的挖掘和推进等动作。
组成部分1. 液压泵:负责将液压油从油箱抽取出来,并提供压力,使其流动到液压缸和其他液压元件中。
2. 液压缸:由液压泵提供的压力驱动液压油流入液压缸,通过活塞的运动实现盾构机的动作,如推进和回转等。
3. 液压阀:控制液压油的流向和压力,实现对液压系统的精确控制。
常见的液压阀有方向控制阀、流量控制阀和压力控制阀等。
4. 液压控制系统:通过监测盾构机的工作状态,对液压系统进行控制和调节,保证盾构机正常运行。
优势1.高效性:盾构机液压系统能够通过液压力迅速传递驱动力和控制信号,实现盾构机的快速响应和高效工作。
2.可靠性:盾构机液压系统采用液压油作为传动介质,具有较高的密封性和耐磨性,能够在恶劣环境下稳定可靠地运行。
3.灵活性:盾构机液压系统能够根据工作需要进行灵活的调节,通过改变液压阀的控制参数,实现不同动作的精确控制。
结论盾构机液压系统是盾构机顺利工作的关键部分,通过液压力的传递和控制,实现盾构机的各项动作。
其优势在于高效性、可靠性和灵活性。
在盾构机的设计和使用中,应注意液压系统的维护保养和性能优化,以提高盾构机的工作效率和安全性。
盾构机液压系统原理概要
盾构机液压系统原理概要盾构机是一种用于隧道挖掘的机械设备,广泛应用于地铁、铁路、公路等建设领域。
盾构机液压系统是支撑其正常运转的重要部分,下面将对盾构机液压系统的原理进行概要介绍。
一、盾构机液压系统的组成盾构机液压系统主要由液压泵、液压缸、液压阀、液压管路等组成。
1.液压泵:是液压系统的核心部件,它可以将机械能转化为液压能,为整个液压系统提供动力。
2.液压缸:是执行元件,可以将液压能转化为机械能,驱动盾构机的刀盘、推进装置等部件运动。
3.液压阀:控制液压系统的流量、压力等参数,保证液压系统的稳定性和可靠性。
4.液压管路:连接液压系统的各个部件,保证液压油的流通。
二、盾构机液压系统的工作原理盾构机液压系统的工作原理可以概括为“压力传递”,即通过液压油的压力推动液压缸的活塞运动,从而驱动盾构机的刀盘、推进装置等部件运转。
具体来说,液压泵将机械能转化为液压能,通过液压管路输送到液压缸,推动活塞运动,从而驱动盾构机的刀盘、推进装置等部件运动。
同时,液压阀控制液压系统的流量和压力,保证液压系统的稳定性和可靠性。
在盾构机液压系统中,液压油的温度和压力是两个非常重要的参数。
如果液压油温度过高,会导致液压油的粘度降低,影响液压系统的性能;如果液压油温度过低,会导致液压油的粘度过高,增加液压系统的阻力。
因此,需要对液压油进行冷却和过滤,保证其正常的工作温度和清洁度。
另外,盾构机液压系统还需要进行定期维护和保养,以保证其正常运转和延长使用寿命。
例如,需要定期更换液压油、清洗液压管路等。
三、盾构机液压系统的特点盾构机液压系统具有以下特点:1.大功率:盾构机需要消耗大量的能量来进行隧道挖掘,因此其液压系统需要具备大功率的特点。
2.高压:为了提高挖掘效率,盾构机的刀盘需要具备高冲击力,因此其液压系统需要具备高压的特点。
3.可靠性高:盾构机的工作环境通常比较恶劣,因此其液压系统需要具备高可靠性的特点,保证其正常运转和延长使用寿命。
盾构机液压系统原理
盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说就是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。
铰接系统的主要作用就是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:推进系统的液压泵站就是由一恒压变量泵(1P001)与一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。
恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。
恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整与换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。
因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用与工作原理。
海瑞克盾构简介
盾构机的工作原理1.盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。
2.掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
3.管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。
盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN*m,最大推进力为36400kN,最陕掘进速度可达8cm/min。
盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。
1.盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。
前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。
承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。
前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D 四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。
盾构机控制系统原理(海瑞克)
盾构机控制系统原理(海瑞克)简介本文档介绍了盾构机控制系统的原理,重点关注了海瑞克(Heraeus)控制系统。
盾构机控制系统概述盾构机控制系统是指用于控制盾构机运行和操作的一系列电子设备和软件。
其中,海瑞克控制系统是一种先进的控制系统,具有高度自动化和智能化的特点。
海瑞克控制系统特点海瑞克控制系统采用先进的传感器技术和自动化控制算法,具有以下特点:1. 高精度:海瑞克控制系统能够实时监测和控制盾构机的运行状态,以保证施工精度和安全性。
2. 自动化:海瑞克控制系统能够自动调节盾构机的行进速度、转向角度和推进力等参数,提高施工效率和质量。
3. 智能化:海瑞克控制系统通过分析大量数据和运行经验,能够自主研究和优化控制策略,不断提升盾构机的自动化水平。
盾构机控制系统原理海瑞克控制系统的工作原理如下:1. 数据采集:海瑞克控制系统通过各类传感器实时采集盾构机的运行数据,包括推进力、转向角度、地层变化等。
2. 数据处理:海瑞克控制系统将采集的数据传输至控制单元,并进行数据处理和分析,生成对应的控制指令。
3. 控制指令传输:海瑞克控制系统将生成的控制指令传输至盾构机相关设备,包括电机、阀门等,实现对盾构机的精确控制。
4. 运行监测:海瑞克控制系统持续监测盾构机的运行状态,及时调整控制策略以应对不同的地质条件和施工要求。
海瑞克控制系统的应用海瑞克控制系统广泛应用于盾构机的控制和管理中。
它被用于地铁、隧道和地下工程等领域,提高了盾构机的施工效率和质量。
结论盾构机控制系统的核心原理是通过数据采集、处理和控制指令传输实现对盾构机的精确控制。
海瑞克控制系统作为一种先进的控制系统,具备高精度、自动化和智能化的特点,在地铁和隧道建设中发挥着重要作用。
盾构机各系统原理浅析
盾构机各系统原理浅析本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。
海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。
本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。
1盾构机的工作原理1.1盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。
1.2掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
1.3管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。
盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。
盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。
2.1盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。
前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。
海瑞克盾构机液压系统说明
一、液压系统元件1液压泵液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量泵,按输出出口方向又可以分为单向泵、双向泵。
泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作用,控制着执行元件的运行。
在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向变量泵,管片安装机种使用两个单向变量泵,注浆系统中使用一个单向变量泵,辅助系统使用一个单向变量泵。
1a.定量齿轮泵注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的2c.定量叶片泵注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定d.斜盘式柱塞泵3注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的2液压阀液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。
压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。
流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。
方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。
各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。
4a.单向阀注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2口流出,油液只能从p1流向p25b.溢流阀注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液从溢流口6c.液控单向阀注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,7d.插装阀8注:控制油路克服弹簧力,接通进出口,该阀一般用于主油路e.减压阀注:主要用于控制出口压力93液压马达液压马达属于液压系统的执行元件,与液压泵的工作原理相反,液压泵是将其他形式的能(如电能、风能)转化为液压油的动能,而液压马达是将液压油的动能转化为机械能,从而实现马达的旋转带动执行元件的转动。
盾构机各系统原理浅析
盾构机各系统原理浅析本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。
海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。
本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。
1盾构机的工作原理1.1盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。
1.2掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
1.3管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。
盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。
盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。
2.1盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。
前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。
盾构机液压系统原理
盾构机液压系统原理
盾构机液压系统是指驱动盾构机工作的一种动力系统,它主要由液压
泵站、液压缸、液压管路和控制系统等组成。
其工作原理是利用液压传动
技术,通过液压介质的压力传递与控制,实现盾构机各个部件的运动,从
而推进巷道的掘进工作。
1.能源供应:液压系统的能源供应一般由电动机通过连接主泵的轴驱
动液压泵工作。
液压泵将电能转化为液压能,并将液压油加压输送到液压
传动元件,如液压缸。
3.液压传动:液压传动是通过液压油的压力传递,实现盾构机的推进、后退、高低速、转向等运动。
主要液压传动元件包括液压缸、液压马达、
液压缓冲器等。
其中,液压缸作为液压系统中的执行元件,通过液压油的
压力进行推进、回退和掘进的动作。
4.控制系统:盾构机液压系统的控制系统是整个液压系统的大脑,用
于控制和监测整个系统的工作。
控制系统包括传感器、比例阀、PLC等控
制单元,可以实时感知盾构机液压部件的运动状态,并根据所设定的参数
和程序,对液压系统进行控制和调节。
盾构机推进系统电液控制基础学习知识原理探究
海瑞克盾构机推进系统电液控制原理探究海瑞克盾构机推进系统液压阀组众多,电气控制系统复杂,PLC 连锁条件繁琐。
加之现场维保人员对其工作原理认知不深,控制思路理解不透,无法将液压、电气及PLC控制有效融合,导致故障排查时间久效率低。
为此,现以海瑞克S465盾构机推进系统为例,结合液压、电气图纸及PLC控制程序详细阐述推进系统的电液控制原理,为快速排查液压电气故障提供理论依据。
另外,为方便探究原理,特将推进系统电磁阀、传感器、电位器在电路液压图、PLC中的标签及功效列表呈现。
一、操作原理上图为推进系统的操作面板,面板上包括两种工作模式按钮,15-6S4按钮为正常掘进模式,15-6S7按钮为管片拼装模式,红色按钮15-6S2为停止操作按钮。
在正常推进时,按一下15-6S4按钮,调节四组油缸的压力调节电位器,直到理想的压力值,然后调节速度电位器15-11R6,速度电位计控制所有四组油缸的比例阀开口相同;当需要调节某一组油缸的速度时,就根据需要调节改组油缸的推进压力电位器(A组15-27R5、B组15-45R5、C组15-63R5、D组15-82R5)。
需要整体增加推进速度时,需要调节速度旋钮15-45R5,当调节速度调节按钮不能满足掘进速度要求时,需要对各组压力提高。
当进行盾构机的姿态调整时,通过调节各组油缸的压力调节旋钮使盾构沿设计曲线掘进。
每组油缸中都设有位移传感器,显示每组油缸的行程。
二、推进系统速度、压力调节的电液控制原理1、基础设计为实现推进及拼装功能,海瑞克盾构机推进系统需具备以下能力:推进阀组满足推进速度的要求,能够实现方向调节、可远程连续调整推进方向及推进速度,能够实现推进油缸的快速回退。
(1)推进速度控制推进系统的自动控制模式在自动控制的模式下工作,PLC可以根据已建立的推进压力解算出当前在所处的地质状况下的推进速度,因为推进速度是由推进压力所决定的,在一定的推进速度下所需的最小工作流量是可以确定的,进而建立比例流量阀的合适开口,以提供合适的流量,进一步,根据比例流量阀的最小工作压差(可知的不变量),可以解算出泵出口的最小压力,从而使系统工作在最佳的效率点上。
[优秀]海瑞克盾构及TBM介绍PPT资料
混合式盾构机:
机械化的施工方法和优化的拖车式物流方式有效节约时间 ; 护板因应地层中的开挖角度而制,从而保证其与隧道掌子面持续接触。
按如缩照果空工 隧 气程道支的掌撑要子。求面,处在作顶于进稳不。架定可的稳在以地定这连层在中的种一,个例砂模水如砾式平硬和岩地 下竖或直密层 ,移实或 开动的平粘混 挖台性上土合 仓来体地 内方中便,层 完进像行小中 全大型, 充量的的AV设 满钻N设孔备 了备作以 悬一业样。混 浮,盾合 液构机式,以盾而泥水构压模式机力工的腔作,模(4而)无式则需工使位用压 衬砌工作在隧道推于进刚分刚完隔成挡而隧板道仍(1然)处后于面盾体,保护悬状浮态下液时使由用压环形缩钢筋气预垫应力(混1凝2土)和管片压进力行支挡护-板即(所2谓)的支“撑衬砌。”。气 气围这压岩是通 /传粘过统土一开矿个挖物空模学气式特压液调无性节法通喷设实备现过爆的(1一和0。+1个渣1)自空土动控气进制,调 仓防节 。止隧设 开道掌备 挖子仓(面1发0(生3+)浆1和液1)喷分自爆隔和动渣挡控土进板制仓后。,面防调止压隧腔道内掌悬子浮面液发之生间浆 除了对加工工艺的的选择压,刀力盘调设计节对隧通道过掘进连起着通重管要作(用5,)进也需行特。别注进意。泥管(9)把新鲜悬浮液输送到开挖 隧可转道实运衬 现 皮砌1带0既机米可位直以于径是掘的仓过防进隧水机道调。性和以的后压每而也配24腔可套小排以系时内泥是统12非之的米管防间的输水,(速6性从度浆)的那则施。里管工,把;(石8格渣)和或栅直排接(1由浆3皮)管带后机(面运7出)开连隧道挖续,仓或冲被内刷装载的连到悬渣通车浮管上运液下送输出方去送,。 出以去避。免通渣 衬砌管片的几何形土状各沉式各积样。。 而用如作果 介在质混的合理土想层土在或质松是稳散含土有定层较的中多使粘地用土这、质种肥状衬土砌或况方淤法泥中,的,泥粘土结如将性会土硬从壤岩从。支或护体密旁实边塌的落。粘性地层中,像小型的AVN
盾构机各系统原理浅析
盾构机各系统原理浅析本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。
海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。
本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。
1盾构机的工作原理1.1盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。
1.2掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
1.3管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。
盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。
盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。
2.1盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。
前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。
盾构机各系统原理浅析
盾构机各系统原理浅析本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。
海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。
本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。
1盾构机的工作原理1.1盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。
1.2掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
1.3管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。
盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。
盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。
2.1盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。
前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。
盾构机各系统原理浅析
盾构机各系统原理浅析本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。
海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。
本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。
1盾构机的工作原理1.1盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。
1.2掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
1.3管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。
盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。
盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。
2.1盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。
前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。
铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。
恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。
恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。
因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。
油泵输出的高压油经高压管路由B组的P口进入,一路径F1(过滤)→A111(流量调整)→A101(压力调整)→经电液换向阀进入推进油缸。
缸的快进快退,提高工作效率。
A783控制的插装阀。
A403为推进油缸底端预卸荷阀。
阀组中还有液控单向阀、载荷溢流阀,以及A256压力传感器和油缸行程传感器。
四组阀组中的电液换向阀的液控油由定量泵(1P002)经减压阀(1V034)提供。
2. 铰接装置工作模式分三种:铰接装置的动力来源于推进系统的液压泵站中的定量泵(1P002),铰接装置的加载和卸载由(A349)两位两通电液阀控制。
(1)铰接回收(PULL或RETRACTION)模式(减小铰接间隙),定量泵输送来的高压油从阀快(2C001)P口进入,此时(H001)不得电截止,(H002)得电导通,高压油进入铰接油缸的有杆腔使铰接油缸回收。
(2)铰接保持(HOLD或FREE)模式(浮动模式),该模式下(H001、H002)都不得电截止。
铰接油缸有杆腔的油被封闭,油量保持不变,被封闭的油在所有相互并联的有杆腔内互相补偿,直线推进时保持铰接间隙,转弯时处于浮动状态。
(3)铰接释放(RELEASE或LOOSE)模式(伸长模式),当(H001)得电导通,(H002)无电截止时,铰接油缸有杆腔的油接通低压,在盾构机推进时,因盾尾的阻力使铰接油缸被拉长,达到增大铰接间隙的目的。
该油路中还设有负载溢流阀(V2)、压力传感器(H005)及铰接间隙长度传感器。
另外可以通过(2V003、2V004、)的导通和截止达到铰接保持和铰接释放功能。
但当(2V003、2V004)两个阀的截止,在铰接油缸有杆腔的压力过高时(盾构机推进时,盾尾如果被卡住),因无压力传感器的压力显示和载荷溢流阀的溢流,可能会使铰接油缸损坏或油管爆裂。
(二)刀盘旋转液压系统刀盘旋转系统可分为补油回路、主工作回路、外部控制供油泵、主泵外部控制回路、马达外部控制回路。
刀盘旋转系统是为刀盘切割岩石或土壤时提供转速和扭矩,要求根据岩石地质的变化转速能够方便的调整。
为了得到较大的功率和扭矩,该系统采用3台315KW的双向变量液压泵并联,带动8台双向两速低速大扭矩液压马达。
下面分别介绍各回路的作用及工作原理。
补油回路:因主工作回路是闭式回路,加之系统功率大,需要进行补油和散热,所以设置了一套补油回路对其进行补油和散热。
为增大散热效率,补油回路采用了55KW低压大流量的定量泵来带走闭式回路中的大量热量,同时也对其进行了补油。
补油泵从油箱泵出的油经两个滤清器(1F001、1F002)进入3个主泵的E口,并通过两个单向阀分别对闭式回路的低压端进行补油,然后经主泵的高压端为液压马达提供动力油。
从马达返回的携带热量的低压油又回到主泵,一部分又进入主泵的高压端,一部分经排放阀从主泵的K1口流出,并经一节流阀流回油箱进行冷却。
补油回路中还设有蓄能器和压力传感器,蓄能器是保证回路的压力平稳。
主工作回路由主泵和液压马达组成,主泵是一315KW 的双向变量泵,在主泵的主回路中有补油单向阀、载荷溢流阀、及低压排放阀,主泵的控制回路有主泵斜盘伺服油缸及双向伺服控制阀,司服阀由外部控制回路调压控制,以便实现换向和无级调速。
两个补油单向阀分别向低压侧进行补油,另一个带弹簧符号的单向阀是当两侧回路都较高或相等时(如:主泵斜盘角度为0时),补油直接通过它,并经节流阀(1Z017)返回油箱。
载荷溢流阀当载荷过大时使过高的压力油泄至低压侧,以达到保护系统不受损坏。
排放阀用于闭式系统多余的热油经低压侧排放回油箱。
节流阀(1Z017)是保证排放出的压力油与油箱之间形成约20bar的压差。
主泵控制回路用于控制其斜盘的±角度,以实现刀盘的正反转及转速的无级调整。
外来控制油经换向阀(1V002)到达司服阀的左右端,使司服油缸的无杆腔进油和排油来实现活塞杆的左右移动,从而完成斜盘角度的控制。
外来控制油是通过外部控制回路中的电比例溢流阀(B006)提供,调整范围0-45bar。
马达回路含有司服油缸、司服阀及低压排放阀,司服阀由主回路压力及外部控制回路控制,当马达外载荷增大时,主回路高压侧的油压随之升高,高压油经过单向阀,一路到达司服阀左端,使司服阀右移,一路到达司服阀P口经减压阀进入司服油缸无杆腔使斜盘角度增大,从而降低转速增加扭矩,外部控制回路由控制油泵提供控制油压,当无控制油压时,马达处于高速档,当外部提供油压时,司服阀右移,使马达处于低速档,从而实现了两速控制。
外部控制供油泵(2P001):控制油泵是一台 5.5KW的恒压变量泵,泵中的两个司服阀上面一个与溢流阀联合控制泵的压力,下面一个以控制流量为主。
(B040)为加载电磁阀。
该泵的油通过滤清器(2F001)向刀盘旋转系统的主泵和液压马达以及螺旋输送机的控制回路供油。
一路去旋转主泵回路的控制阀,一路去旋转马达控制阀,另两路去两台螺旋输送机的主泵控制阀。
进入旋转主泵控制阀的油经节流和减压后在经电液比例溢流阀(B006)向旋转主泵司服阀提供0-45bar的可变压控制油压,以实现转速的无级调整。
另外从主泵P口(H88)和梭阀(V030、H92)反馈到控制阀(2C003)并汇集到两组溢流阀和载荷感知阀,两组溢流阀由手动两位四通阀转换,正常工作时使用左边溢流阀,增大扭矩时使用右边溢流阀(只能短时间使用),手动阀自动回位。
感知阀是在扭矩突然增大时,反馈的油压将减低其溢流压力,使控制主泵伺服的压力降低,从而减小主泵斜盘角降低刀盘转速。
进入旋转马达控制阀P口的油经节流阀(M10)又分两路,一路经减压阀、两位四通电磁阀(B032)到(H86)旋转马达控制马达的高低速。
另一路经减压阀、两位四通阀(B033)、单向节流阀去控制马达(1A002)的刹车(1G002)。
在(1A002)马达上装有旋转方向传感器(1S026、B035)、马达高低速传感器(1S025、B038)和油温传感器(1S023、B050)。
在刹车回路中设有蓄能器(2C002),与单向节流阀一起保证了刹车时的快杀慢放。
(三)管片拼装机液压系统为了提高管片的拼装效率及避免拼装中的管片损坏,要求系统要有一定的速度、准确的移动位置精度、足够的活动自由度及可靠的安全度。
速度由一55KW的双联恒压变量泵提高的流量控制,精度靠电液比例司服阀控制,自由度有:管片的左右旋转、提升(可左右分别提升及同时提升)、前后水平六个自由度,并有管片的抓紧及绕抓举头水平微转、前后微倾的微调功能。
55KW的双联恒压变量泵为拼装机提供动力。
当用快速档时,双泵同时工作。
低速档时,只(1P002)工作。
加载阀(C003、C004)由PLC控制,根据拼装机的工作速度可对其进行分别控制或同时控制。
旋转控制:油泵输出的高压油一路经减压阀(DM)减至30bar到达电液比例阀然后控制司服阀以达到控制流量来控制马达旋转速度。
各阀的功能如下,DM为控制油减压阀,DBV2为控制油溢流阀,DBV1与插装阀组成主溢流阀,进入司服阀前的减压阀经DUE4、DUE7节流阀后的反馈油控制,以达到动作启动时的平稳。
D1、D4为反馈油溢流阀,F1、DUE2是停止动作时起泄油的作用。
经控制阀控制后压力油分别进入两个并联的回转马达,高压侧的油一路经减压阀(1V001)减压后去控制刹车,减压阀旁的单向阀起回转停止时刹车的泄油回路。
进入马达的油先经平衡阀(此阀进油时不起作用),驱动马达旋转,马达出来的油进入下一个平衡阀,该阀在进油有一定压力后经X口其慢慢打开回油通路,并保证一定的背压,避免马达因惯性吸空,当旋转惯性过大时平衡阀右边的压力会增加,使阀芯左移以减少回油来减小惯性产生的转速,当回油压力增大到最大设定值时平衡阀中的溢流阀工作,避免了液压元件被损坏。
水平移动的控制与回转控制一样,从控制阀出来的油经平衡阀(1C004)进入水平移动油缸,控制油缸的前后移动。
提升控制:控制阀原理与回转控制相同,但在司服阀反馈油出口处只在提升回路中设置了节流阀,下降反馈口没有设置,其目的是为了较快的提高司服阀进口处减压阀的减压压力以增加下降时的反应速度,同时也反映一个功率平衡问题。
两个提升油缸即可以单控,也可以同时控制,所以有两套单独得司服控制阀,。
从控制阀出来的压力油先通过一个两位两通随动阀进入提升油缸,当达到一定压力后,油缸出油口的两位两通随动阀在进口压力的推动下打开,导通回油通道形成回路。
反之亦然。
管片抓紧控制:压力油经减压阀减压,在经三位四通电磁换向阀换向,经液压锁、单向节流阀、B口端还有溢流阀。
抓紧时,从A1口出来的油经过抓举油缸进口处的液压锁进入抓举缸的有杆腔,当达到设定的抓紧力时油缸旁的溢流阀溢流,并使油缸旁的两位两通阀换向,切断通往压力开关(1S001)的油压,使压力开关信号改变。