配电系统的防雷和接地
民用建筑低压供配电系统的接地与防雷技术
民用建筑低压供配电系统的接地与防雷技术摘要:低压配电系统是民用建筑电气系统的基本组成部分,配电系统由于电气设备绝缘损坏、大自然雷电或其他原因,会对建筑物或电气设备产生破坏作用并威胁人身安全。
针对这样的情况,建筑物一般采取防雷措施和安全接地系统,以避免危险事故发生。
本文重点探讨了民用建筑低压供配电系统的接地与防雷技术。
关键词:民建;接地;防雷一、民用建筑低压供配电系统的防雷接地目的在建筑物供配电设计中,接地系统设计占有重要的地位,因为它关系到供电系统的可靠性,安全性。
不管哪类建筑物,在供电设计中总包含有接地系统设计。
而且,随着建筑物的要求不同,各类设备的功能不同,接地系统也相应不同。
雷电是一种常见的自然现象,具有一定的可预见性。
气象卫星的顺利升空使得雷电的发生预测更具准确性,而且只要掌握常规的避雷方法,一般都可以躲避雷电的危害。
而且通过生活经验也可预测雷电的发生,根据云的颜色和厚度来预测雷电的准确度还是很高的。
当要发生雷电之前,将所有的电闸断开,就可以很大程度上避免雷击。
此外,由于建筑物里的导体是很多的,还有许多导电性能优良的金属导体,在导体没有通电的情况下也可能会产生雷击的现象。
防雷接地可以有效地防止这一现象发生。
以上就是配电系统进行防雷接地保护的目的。
二、民用建筑低压供配电系统的接地与防雷技术(一)建筑物的防雷与接地要想完善民建变配电系统的防雷性能,首先就要考虑民建变配电系统建筑物的防雷性能,因为最先进的防雷害措施就是根本不让雷电进入到系统内部,而在民建变配电系统的建筑物上就将雷电隔离,将雷电的破坏性释放殆尽,只有这样才能最大限度的保证变配电系统的安全。
在建筑物的防雷性能中最重要的就是建筑物本身的防雷性能,在建筑物的防雷技术领域,最新的国家建筑物防雷规范中明确指出,等电位防雷接地线能够有效的减少雷电对建筑物本身和建筑物内部电气设备的影响,所以在建筑物的防雷措施中等电位防雷线连接,已经开始取代传统上独立的接地网络连接。
接地的种类
一、种类1、防雷接地:为把雷电迅速引入大地,以防止雷害为目的的接地。
防雷装置如与电报设备的工作接地合用一个总的接地网" target=_blank>接地网时,接地电阻应符合其最小值要求。
2、交流工作接地将电力系统中的某一点,直接或经特殊设备与大地作金属连接。
工作接地主要指的是变压器中性点或中性线(N线)接地。
N线必须用铜芯绝缘线。
在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。
必须注意,该接线端子不能外露;不能与其它接地系统,如直流接地、屏蔽接地、防静电接地等混接;也不能与PE线连接。
3、安全保护接地安全保护接地就是将电气设备不带电的金属部分与接地体之间作良好的金属连接。
即将大楼内的用电设备以及设备附近的一些金属构件,有PE线连接起来,但严禁将PE线与N线连接。
4、直流接地为了使各个电子设备的准确性好、稳定性高,除了需要一个稳定的供电电源外,还必须具备一个稳定的基准电位。
可采用较大截面积的绝缘铜芯线作为引线,一端直接与基准电位连接,另一端供电子设备直流接地。
5、屏蔽接地与防静电接地为防止智能化大楼内电子计算机机房干燥环境产生的静电对电子设备的干扰而进行的接地称为防静电接地。
为了防止外来的电磁场干扰,将电子设备外壳体及设备内外的屏蔽线或所穿金属管进行的接地,称为屏蔽接地。
6、功率接地系统电子设备中,为防止各种频率的干扰电压通过交直流电源线侵入,影响低电平信号的工作而装有交直流滤波器,滤波器的接地称功率接地二、要求1、独立的防雷保护接地电阻应小于等于10欧;2、独立的安全保护接地电阻应小于等于4欧;3、独立的交流工作接地电阻应小于等于4欧;4、独立的直流工作接地电阻应小于等于4欧;5、防静电接地电阻一般要求小于等于100欧。
三、智能大厦接地系统的设计1、防雷接地系统接地体一般利用智能大厦桩基,桩基上端钢筋通过承台面钢筋连在一起;防雷接地系统引下线一般利用柱子内钢筋;防雷接闪器用避雷带和避雷针" target=_blank>避雷针结合的方式,智能大厦30米及以上,每三层利用圈梁钢筋与柱筋连在一起构成均压环;接地电阻要求小于1欧姆。
防雷与接地
防雷与接地防雷接地是受到雷电袭击(直击、感应或线路引入)时,通过组成拦截、疏导,最后泄放入地的一体化系统以防止由直击雷或雷电的电磁脉冲对建筑物本身或其内部设备造成损害的防护技术。
常有信号(弱电)防雷地和电源(强电)防雷地之分,区分的原因不仅仅是因为要求接地电阻不同,而且在工程实践中信号防雷地常附在信号独立地上,和电源防雷地分开建设。
防雷和接地的关系雷电防护分为两个概念,一是防雷,防止因雷击而造成损害;二是接地,保证用电设备的正常工作和人身安全。
防雷与接地是统一的,二者缺一不可。
只有防雷措施而无接地,无法迅速泄流放电,反之,设备将直接遭受强大电流的冲击,无论哪种情况系统都将受到破坏甚至瘫痪。
只要通过合理配置,使之融为一体,就能有效确保系统的稳定工作,从而发挥出系统防护工作的最佳效果。
防雷接地的组成1、雷电接受装置:直接或间接接受雷电的金属杆(接闪器),如避雷针、避雷带(网)、架空地线及避雷器等;2、接地线(引下线):雷电接受装置与接地装置连接用的金属导体。
它的作用是把雷电接受装置上的雷电流传递到接地装置上,接地线一般采用圆钢或扁钢组成;3、接地体:包括接地装置和装置周围的土壤或混凝土,作用是把雷击电流有效地泄入大地,现在常用的接地装置有水平接地极、垂直接地极、延长接地极和基础接地极。
雷电的防护雷电的防护可分为两方面,即直击雷的防护和感应雷的防护。
由于直击雷和感应雷的侵害渠道不同,防护措施也就不同。
1、直击雷的防护目前,防直击雷都是采用避雷针、避雷带、避雷线、避雷网作为接闪器,然后通过良好的接地装置迅速而安全地把它送回大地。
2、感应雷的防护感应雷的防护是从整体和系统上建立起三维的防护体系,主要包括在被保护设备构成的系统中采取以下措施:(1)电源防雷:配电系统电源防雷应采用三级防护,避雷器采用的是(B、C、D)三级防雷的方式。
第一级保护(B级),一般安装在建筑物输入电源总配电室内的进线配电柜上,主要用于保护整幢建筑物用电设备或单位的主要用电设备;第二级保护(C级),主要安装在设备配电柜上;第三级保护(D级)主要安装于各个用电设备的电源端,用于保护最终的用电设备。
配电系统的防雷与接地
配电系统的防雷与接地一、防雷措施1. 减少雷击风险的设计高大建筑物和高架电线杆可以成为雷电击中的目标,因此在设计配电系统时,应尽量避免将电线杆或电杆直接连接到建筑物上。
另外,建筑物应具备可靠的避雷设施,如避雷针、避雷网等,用于吸收和分散雷电的能量。
2. 安装避雷装置在配电系统的输入端和输出端分别安装适当的避雷装置,以保护设备不受雷电的干扰和损坏。
避雷装置通常包括避雷器和避雷器引下线,通过将雷电引入地下或接地系统,使其能够得到有效的分散和排放。
3. 使用耐雷设备在配电系统中,应使用能够抵抗雷电干扰和损坏的设备和材料。
例如,选择具有良好耐压、耐高温、耐腐蚀等特性的电缆和开关设备,以减少雷击对系统的影响。
二、接地措施1. 构建良好的接地系统配电系统的接地系统是保证系统安全和稳定运行的重要组成部分。
良好的接地系统应包括合适的接地电极、接地回路以及接地装置,以确保系统的电荷得到有效的分散和排放。
2. 选择合适的接地电极接地电极是将电流引入地下的主要手段,因此选择合适的接地电极对系统的接地效果至关重要。
通常使用的接地电极包括接地棒、接地网和接地块等,可以根据实际情况选择合适的接地电极进行安装。
3. 接地回路的设计与布置配电系统的接地回路应具备足够的导电能力,以确保电荷能够快速、有效地通过接地回路流回地下。
为了提高接地回路的导电能力,可以采用并联多个接地电极、增加接地导线的横截面积等方式。
4. 定期检测和维护为了保证接地系统的正常运行,应定期对接地电极、接地回路及接地装置进行检测和维护。
如果发现接地系统存在故障或损坏,应及时修复或更换,以保证系统的接地效果。
总结:防雷与接地是配电系统中非常重要的安全措施,可以有效减少雷电对系统的影响,并保证系统的稳定运行。
在设计和安装配电系统时,应注意遵循相关的设计规范和标准,并选择适当的设备和材料,以提高系统的防雷能力和接地效果。
此外,定期检测和维护接地系统也是确保其正常运行的关键步骤。
10kV配电线路防雷
10kV配电线路防雷雷电是一种自然天气现象,产生的电流和电压都非常大,因此对于电力设备和线路构成了巨大的威胁。
10kV配电线路是城市电网的重要组成部分,防雷工作对于确保电网正常运行和居民用电安全至关重要。
本文将介绍10kV配电线路的防雷措施。
一、设备接地设备接地是防止雷击电流通过设备或线路引起设备损坏的重要手段。
10kV配电线路的设备接地应符合国家相关标准和规范,并依据现场实际情况选择合适的接地方式,如土壤接地、接地网接地等。
设备接地电阻应符合要求,保证设备接地良好,为线路的防雷提供可靠的基础。
二、避雷器避雷器是防止雷电高压通过线路引起设备中毁灭性击穿的主要措施。
10kV配电线路中应设置避雷器,它是保护线路设备不被雷电击穿的第一道防线。
避雷器的额定击穿电压应适应线路电压等级,并应定期检测和维护,确保其正常工作状态。
避雷器的安装位置应根据电网的实际情况确定,一般选在10kV变压器的输入侧或母线柜附近。
三、接地引下保护器接地引下保护器是保护设备在雷电入侵时迅速放电到地,减少雷电对设备的危害的重要设备。
它通过与设备的地线连接,当雷电入侵时,引下保护器快速放电到地,将雷电瞬间释放。
接地引下保护器的选择和布置应根据线路的实际情况确定,以达到最佳的防雷效果。
四、防护屏蔽10kV配电线路通常会穿过建筑物、树木或其他高大物体附近,这些物体会成为雷电击中线路的潜在风险。
在这些区域应设置防护屏蔽,减小雷电击中线路的可能性。
防护屏蔽可以采用导线网或金属罩等形式,将线路包裹在以形成一个保护层,减少雷电的侵害。
五、定期巡视和检测定期巡视和检测是10kV配电线路防雷工作的重要内容。
通过定期巡视和检测,可以及时发现和排除设备接地不良、避雷器失效、接地引下保护器故障等问题,确保线路的防雷设施处于良好状态。
定期巡视和检测的频率应根据实际情况确定,一般为每年1-2次。
六、培训和宣传防雷工作涉及到多个方面的知识和技能,因此要加强对工作人员的培训和宣传。
重复接地、保护接地、工作接地、防雷接地、屏蔽接地、防静电接地
重复接地、保护接地、工作接地、防雷接地、屏蔽接地、防静电接地接地为防止触电或保护设备的安全,把电力电讯等设备的金属底盘或外壳接上地线;利用大地作电流回路接地线。
在电力系统中,将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接叫做接地。
1、接地种类——常见的接地种类有以下几项重复接地、保护接地、工作接地、防雷接地、屏蔽接地、防静电接地等。
2、重复接地重复接地就是在中性点直接接地的系统中,在零干线的一处或多处用金属导线连接接地装置。
在低压三相四线制中性点直接接地线路中,施工单位在安装时,应将配电线路的零干线和分支线的终端接地,零干线上每隔1千米做一次接地。
对于距接地点超过50米的配电线路,接入用户处的零线仍应重复接地,重复接地电阻应不大于10欧。
保护接地电气设备在正常情况下不带电的金属外壳及金属支架与大地作电气连接,称为保护接地。
保护接地重要应用在中性点不接地的供电系统中。
假如不采纳保护接地措施,那么人体触及带电外壳时,由于输电线和大地之间存在分布电容而构成回路,使人体有电流通过而发生触电事故。
假如电气设备采纳了保护接地措施,那么人体触及带电外壳时,人体与保护接地装置的电阻并联。
由于接地电阻小于人体电阻,此时可以认为通过人体的电流很小,电流几乎不通过人体,避开了触电事故。
工作接地接地网示意图地是为了使系统以及与之相连的仪表均能牢靠运行并保证测量和掌控精度而设的接地。
它分为机器逻辑地、信号回路接地、屏蔽接地,在石化和其它防爆系统中还有本安接地。
防雷接地防雷接地是构成防雷措施的一部分,其作用是把雷电流引入大地。
建筑物和电气设备的防雷重要是用避雷器(包括避雷针、避雷带、避雷网和消雷装置等)。
避雷器的一端与被保护设备相接,另一端连接地装置。
当发生直击雷时,避雷器将雷电引向自身,雷电流经过其引下线和接地装置进入大地。
此外,由于雷电引起静电感应副效应,为了防止造成间接损害,如房屋起火或触电等,通常也要将建筑物内的金属设备、金属管道和钢筋结构等接地;雷电波会沿着低压架空线、电视天线侵入房屋,引起屋内电工设备的绝缘击穿,从而造成火灾或人身触电伤亡事故,所以还要将线路上和进屋前的绝缘瓷瓶铁脚接地。
10kV及以下配电线路的防雷保护与接地装置
10kV及以下配电线路的防雷保护与接地装置摘要:随着我国经济社会的飞速发展和城市化建设的不断进步,我国城市配电系统的内外部环境发生了较大的变化,给10kV及以下配电线路的发展带来了机遇的同时,也带来了较大的挑战,对10kV及以下配电线路进行科学合理的防雷保护,对我国电力事业发展有重要意义。
文章主要对10kV及以下配电线路的防雷保护与接地装置进行分析,避免更多事故发生。
关键词:配电线路;雷击;防雷引言近年来,我国的电网覆盖率不断提升,作为电网系统的重要组成部分,配电线路直接影响着城市电网系统的发展。
由于10kV及以下配电线路点多面广,线路结构复杂,在运行过程中很容易发生事故,会严重影响线路的安全与平稳的运行,给人们的生产生活带来影响。
尤其是在夏季,很容易受到雷击导致短路现象的发生,在暴雨、雷电、大风的天气,线路的某一个位置因为受潮、腐蚀、风吹等原因使电线的绝缘下降,导致线与线、线与地有部分电流通过,发生漏电事故,极易引发火灾。
受大风影响,地面的漂浮物挂在线路上也会造成短路,对线路造成损害,影响正常的供电,因此,要想解决这些问题,就必须找到10kV及以下配电线路的雷击故障以及发生故障的原因,从而制定出有针对性的解决方案,努力做好防范应对工作。
1配电线路雷击灾害的原因分析10kV配电线路一般没有设置避雷线进行保护,且线路绝缘水平通常较低,再加上交叉布设的网状结构,不仅增大其直击雷雷害事故发生率,同时感应雷也会产生较大的冲击破坏。
从大量的运行分析和实地调查发现,雷击跳闸事故率约占10kV电网总故障率的80%以上,极大影响了10kV配电线路供电的安全可靠性和节能经济性。
大量研究和运行检修维护经验表明,10kV配电线路发生雷击的原因主要表现在以下三个方面:(1)线路绝缘水平偏低。
10kV架空配电线路遭受雷击的最根本原因是绝缘能力低下,这是因为它特殊的材质,导致10kV架空配电线路在正常的工作运行中很容易在雷雨天气中遭受雷击灾害。
高压低压配电柜的防雷措施与防护方法
高压低压配电柜的防雷措施与防护方法为了确保电力系统的正常运行,高压低压配电柜的防雷措施与防护方法显得尤为重要。
本文将探讨一些有效的防雷措施和防护方法。
一、防雷措施之地面接地系统地面接地系统是高压低压配电柜中最基本的防雷措施之一。
合理的地面接地系统可以将雷电电流引入地下,以免伤害到电气设备。
为了确保防护效果,地面接地系统应符合相关标准,并采用良好的导电材料,如铜排。
此外,地面接地系统的电阻值也应符合规定范围,以确保有效的防护。
二、防雷措施之防雷装置高压低压配电柜中安装防雷装置是一种常见的防护方法。
防雷装置能够迅速将雷电引入地下,并分散到周围环境中,降低雷电对设备的影响。
防雷装置的选择应根据配电柜的具体要求和周围环境而定,常见的防雷装置包括避雷针、避雷网等。
在安装防雷装置时,需要考虑到避免与其他金属构件产生电位差,以免引发其他问题。
三、防护方法之接地保护接地保护是高压低压配电柜中常用的防护方法之一。
通过对电气设备进行良好的接地保护,可以减少雷电对设备的侵害。
接地保护包括对设备本体进行接地保护和对周围区域进行接地保护。
对设备本体进行接地保护时,需要确保接地电阻符合相关标准,并定期检测和维护接地系统。
对周围区域进行接地保护时,可以采用金属网罩等措施,以形成良好的保护环境。
四、防护方法之引导装置引导装置是高压低压配电柜中常用的防护方法之一。
引导装置能够迅速将雷电引导至地下,以免对设备造成损害。
常见的引导装置包括避雷针和避雷线。
在选择和安装引导装置时,需要考虑到设备的特点和需求,并确保其与其他金属构件之间的连接良好,以保证防护效果。
五、防护方法之绝缘保护绝缘保护是高压低压配电柜中重要的防护方法。
通过良好的绝缘保护,可以有效地防止雷电对设备的冲击。
绝缘保护包括对电气设备进行绝缘处理和对设备周围环境进行绝缘处理。
对电气设备进行绝缘处理时,需要使用符合规定的绝缘材料,并确保绝缘性能良好。
对设备周围环境进行绝缘处理时,可以采用绝缘垫等措施,以减少雷电对设备的侵害。
配电系统的防雷与接地问题
配电系统的防雷与接地问题摘要:变电站是集中分配和变换电能电压与电流的场所,也是维系电厂与电力系统之间的纽带,承担着电压变换与分配的重要任务,如果变电站发生雷击事故,不仅会对电厂造成巨大的经济损失,还可能引发一系列的安全问题,所以加强变电站配电系统的防雷工作是不可忽视的问题。
本文从变电站配电系统的接地与防雷内容进行分析,研究了变电站配电系统对接地设计的要求。
关键词:变电站;配电系统;防雷与接地引言:现代的电力系统得到了快速的发展,在工程承建时,变电站配电系统通常由土建企业施工,那么就可能存在施工人员对防雷接地重视程度不足的问题,或是由于技术操作不规范而导致防雷接地施工的质量不合格,针对变电站配电系统的防雷与接地问题,技术人员应当寻求更有效的线路防雷保护措施,并对施工质量加以严格的要求,以保护变电站配电系统中的各项设备。
自然界中产生的雷电伴随着高电压,如果击中变电站配电系统,会瞬间释放大量的电荷,可能导致变电站配电系统瘫痪,或者损坏相关电气设备,将雷电以接地的方式进行引流,才使保护变电站配电系统的良策。
一、变电站配电系统的接地与防雷的相关内容(一)接地电阻接地电阻是指电流在流经地面以后,由流经点和某点之间的物理值概念,即为接地极与电位为零的远方接地极之间的欧姆定律电阻。
在变电站配电系统防雷接地中测量电阻值时,假设雷电流在地下疏散40后电流值等于0,由于土壤结构的不同,接地电阻值也会存在不同[1]。
(二)接地种类变电站配电系统中的接地种类包括工作接地、雷电保护接地、过电压保护接地、防静电保护接地等等。
工作接地就是电力系统的电气装置中,为保护系统的运行所设置的必要的接地;雷电保护接地是专为雷电保护装置设置向大地泄放雷电流的接地;过电压保护接地是为消除雷击和过电压对周围造成的影响而设置的接地;防静电接地是为了消除生产过程中产生的静电而产生的接地。
除此之外,还有屏蔽接地,是为了防止雷电产生的电磁干扰对通信和计算机系统所采取的接地措施;保护接地是包括电气设备的金属外壳、配电装置的构架与线路塔杆等等,绝缘损坏是可能会带电,为防止造成人员触电的危险事故,设置接地措施可以避免危险事故的发生。
2024年配电系统的防雷与接地(三篇)
2024年配电系统的防雷与接地雷电的危害,大家是有目共睹的。
然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。
因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。
1电力线路的防雷与接地1.1输电线路的防雷与接地输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结合当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。
(1)35kV线路不宜全线架设避雷线,一般在变电所的进线段架设1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器。
(2)110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。
(3)220kV线路应全线架设避雷线,同时应采用双避雷线。
对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。
根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。
表1杆塔的接地电阻地壤电阻率(Ω·m)100及以下100以上至500500以上至1000工频接地电阻(Ω)101520对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件:①持续运行电压(有效值)不小于40.8kV;②额定电压(有效值)不小于51kV;③直流1mA参考电压不小于73kV(范围在73~74kV之间);④标准放电电流5kA等级下残压(峰值)不大于:雷电冲击134kV、操作冲击114kV、陡波冲击154kV。
⑤xxμs方波电流(峰值)200A。
⑥对绝缘配置,根据线路污秽等级要求确定。
与输电线路一样,配电线路的防雷也可采用避雷线或者避雷器,对于不同电压等级和不同线路采取的措施也不一样。
配电系统的防雷与接地
配电系统的防雷与接地是保障系统安全可靠运行的重要措施。
防雷是指对于雷电冲击,通过合理布置和选用防雷设施,减少雷电对电力设备的危害,保护系统的正常运行。
而接地是指将电力设备的金属外壳或导体与地面建立好的接地系统相连接,以达到安全接地的目的,防止电流通过人体或设备引起电击或火灾。
1. 防雷措施:为了降低雷击对配电系统设备的影响,需要采取以下防雷措施:(1)避雷针和接闪装置:通过在建筑物或塔桅上安装避雷针或接闪装置,将引雷点置于较高处,使其成为闪电击中的最佳选择,以避免闪电直接击中设备。
(2)金属外壳和屏蔽:为了减少雷电电磁场的干扰,电力设备的金属外壳和屏蔽结构应使用导电材料,并保持良好的接地连接,以形成雷电流循环路径。
(3)避雷母线和避雷器:在配电系统中使用避雷母线和避雷器,可以将雷击流引入地下,从而保护设备。
避雷器一般安装在变压器输入、输出两侧,以引接过电压,保护变压器和其他设备。
(4)电力故障指示器和避雷装置:配电系统中的电力故障指示器和避雷装置可以及时发现电力系统中可能存在的短路故障和电源故障,以防止雷电对设备的损害,并保护人身安全。
(5)屏蔽和绝缘:对于高压设备和线路,应采取屏蔽和绝缘措施,减少雷电冲击对设备的影响。
同时,在设备内部也需要确保绝缘性能良好,以避免雷电对内部电路的损害。
2. 接地措施:配电系统的接地是指将设备的金属外壳或导体与地面建立良好的接地连接,以形成足够的接地回路,以达到以下目的:(1)安全接地:通过良好的接地,可以将电器设备的金属部分或导体与地面保持同志电位,避免触电危险,确保人身安全。
(2)电流回路:接地可以提供一个低阻抗的电流回路,当设备发生故障或雷击时,电流可以顺利地通过接地系统消散,避免对设备造成损害。
(3)抑制噪声:接地可以有效抑制电网中的电磁干扰和高频噪声,减少对设备的干扰。
(4)防止电位上升:在发生电流冲击或短路故障时,接地系统可以迅速将故障电流引入地下,避免设备或人员因过大电位差引起电击或伤害。
配电系统的防雷与接地
防 、信通 与 子I 界 雷通 、讯 电 学
配 电 系统 的 防雷与接 地
口熊激J
摘 要 : 文分析 1k 本 0 V配 网 防 雷 中的 线 路 运 行 的 防 雷 和 1 k 0 V变 压 器 的 防 雷 。 目前 1 k 线 路 的 防 雷 主 要依 0V 靠 1 k 氧 化 锌 避 雷 器 来 实 现 , 文 阐述 了在 重 雷 区 1 k 0V 本 0 V避 雷 器 的 安 装 有 效 距 离 。 本 文 分析 了 1 k 0 V架 空绝 缘线路 、 电缆 线 路 长 期 运 行 情 况 带来 的 雷 电破 坏 情 况 及 解 决 方 法 。针 对 1 k 0 V架 空 线 路与 电缆 线 路 混合 使 用情 况 日益 增 加 的 情 况 , 文 分析 了由 于 架 空 线 路 和 电缆 线 路 两 种 不 同 波 阻 抗 形 成 电波 叠 加 , 成 电 缆 线 路 的破 本 造
坏。1 k 0 V配 电变压器避 雷器 与中性点同一地 点接地时 , 由于接地 电阻在大 雷电流作用下形成 的中性点 电位升
高 , 而 引 起 1 k 配 电 变 压 器 的 损 坏 , 提 出解 决 方法 。 从 0V 并
关 键 词 :0 V 防 雷 : 空 线 路 ; 空 绝 缘 线 : 1k 架 架 电缆 : 变压 器 ; 雷器 避
1 配 电线 路 的防雷 与接 地
与 输 电线 路 一 样 , 电线 路 的 防 雷 也 可 采 用避 雷 线 或者 避 配 雷器 , 对于 不 同 电压 等 级 和 不 同线 路采 取 的 措 施 也 不 一样 。 ( )0 V裸 导 线 线 路 。 对 于 1 k 裸 导 线 路 , 架 设 避 雷 11 k 0V 可 线 , 由于 成 本 高 , 工 不 方 便 , 重 要 的 负 荷 外 ( 本 市 大 丰 但 施 除 如 水 厂 线 )基 本 上 都 不 采 用 避 雷 线 ; 是 在 一 些 雷 电 活动 频 繁 的 , 而 线 段 , 装 避 雷 器 , 时按 照 要 求 做 好 杆 塔 的 接 地 , 有 效 地 降 安 同 能 低 雷害 。 相 隔 多 远 距 离 安 装 一 组 避 雷 器 和 如 何 选 型 呢 ? 根 据 U 2XI /≤ U0得 出 : + Xav 5 %
配电系统的防雷与接地范本(2篇)
配电系统的防雷与接地范本配电系统是现代工业生产和民用建筑中不可或缺的关键设施之一。
然而,频繁的雷电活动给配电系统带来了很大的挑战,因为它们可能导致设备损坏、系统故障甚至火灾等严重后果。
因此,在设计和安装配电系统时,必须重视防雷措施和接地系统的建设。
本文将详细介绍配电系统的防雷与接地范本。
一、防雷范本1. 选择合适的设备防雷措施的第一步是选择具有良好防雷性能的设备。
对于配电系统来说,主要的设备包括变压器、开关柜、电缆等。
这些设备应具有防雷等级符合国家标准要求,并经过权威机构的检测和认证。
2. 合理布置设备在设计和布置配电系统时,应考虑雷电冲击的传播路径和能量分散问题。
首先,应将设备布置在有利于雷电放电扩散和分散的位置。
其次,设备之间的间距应根据设备的防雷等级和供电要求进行合理规划,避免因电气设备之间的相互干扰而引发雷电事故。
3. 安装避雷装置为了有效地防范雷电对配电系统的影响,必须安装合适的避雷装置。
避雷装置不仅能够减少雷电对设备的直接冲击,还能引导雷电电流通过合适的导体通道,将雷电能量导入地下。
常见的避雷装置包括避雷针、避雷网和避雷线等。
安装避雷装置时,应根据设备的特点和周围环境的条件进行合理布置。
4. 导引和耦合装置的安装为了进一步提高配电系统的防雷性能,可以安装导引和耦合装置。
导引装置的作用是引导雷电电流尽快地传导和扩散,减少电流对设备的影响。
耦合装置则可以将雷电冲击与设备分离,减少雷电对设备的直接侵害。
导引和耦合装置的选择和安装位置应根据具体的配电系统特点和环境条件进行合理设计。
二、接地范本1. 设计合理的接地系统配电系统的接地系统是保证系统安全运行的重要组成部分。
在设计接地系统时,应根据配电网络的规模和特点进行合理规划。
首先,应确定合适的接地电阻的目标值,以确保接地系统的正常运行。
其次,应根据配电系统的整体结构和布置,合理确定接地线路的长度和布置形式。
最后,应选择合适的接地方式,如电力接地和电子设备接地等。
电力配电系统的防雷与接地技术 杨潮彬
电力配电系统的防雷与接地技术杨潮彬摘要:随着我国现代化建设的不断推进,电力配电系统也成为了我们日常生活中用电的基本保障,而配电系统的运作安全性也直接决定了人们日常生活和发展的用电安全。
而雷电是一种不可控的自然现象,不但会造成严重的大范围瘫痪现象,影响人们的用电体验,同时也会造成严重的危险事故,而且线路和设备经受雷击所导致的损坏,也会导致巨大的经济损失。
所以,针对电力配电系统进行防雷接地设计便是至关重要的,在保证电力系统的运作稳定的同时也保证了人们的用电安全。
关键词:电力配电系统;防雷;接地技术一、防雷接地工作原理防雷接地的设计是以雷击原理为基础,其设计的主要目的是通过人为设计使雷电产生的能量可向大地泄入,对建筑物和用电设备达到有效的保护作用。
由于受蒸发作用的影响,水分进入大气后遇到冷空气会凝结成冰晶,积雨云便形成了。
随着大气运动的云层在此过程中会带上电荷,使大地和云层之间出现类似于电容器的带相反电荷的电荷感应,这些电荷量聚集到一定程度就会把大气层击穿,进而产生雷击。
人们通过对该原理进一步分析设计出运用金属导体对雷电电流进行吸引的防雷接地设备,提前把接地网络设置在大地内部,电流通过网络向大地导入,达到减少建筑物遭雷电中较强电流破坏的目的。
二、雷击现象对电力配电系统的危害雷击作为一种常见的自然现象,当大气中出现大量正负两种电荷的雷云时,若是两种不同电荷的雷云相互接触,或是距离过近,以及雷云和地面凸出建筑或物体接近时,这时候便会在物体和雷云之间产生强烈的反应,进而导致一种气体性放点情况,这便是雷电。
自然界经常出现的雷击形式主要有感应雷、直击雷和雷电侵入波等。
若是动物或人遭受雷击,那么会造成严重的伤亡现象,而若是电力配电系统以及设备遭受雷击,那么会瞬间造成高压冲击,破坏设备和配电系统的绝缘层,造成短路甚至是爆炸等危险事件,同时也会导致大范围停电现象,对人们的用电稳定性带来不利的影响。
除此之外,雷击还会导致较为强烈的电排斥力,当建筑物遭受雷击时也会导致其结构的损坏甚至整体坍塌等。
配电系统的防雷与接地分析
放 点是 从接 入 一级 防护 电流接 入 的 电流 进行 第 二次 电流 释 放 和 防护工 作 , 通 过浪 涌 保护 起 限制 电流大 小使 , 其 电流进 入 规 定 范 围 内后 继续 向 内传 导 , 其后接 设备 功率不 限 。 第三 级 电源 防 雷施 工 : 第 三 级 防护 是针对 于 一 些 电学 精 密
T
肿u
配电系统的防雷与接地分析
ቤተ መጻሕፍቲ ባይዱ黄 鑫
( 惠 州博 罗供 电局 , 广 东惠州
5 1 6 0 0 0 )
摘 要 我 国各 个领 域 的建设 都 离不 开 电力支持 , 现 在我 国人 均用 电量很 大 。配 电系统将 电 力合 理 准确地进 行分 配 与 运输 , 配 电 系统 对 于我们 而言是 非常重要 的 , 做好 配 电系统 的保 护工作 具有 重 大意 义。本文 结合 实 际经验 , 对 配 电系 统 的 防雷接 地工 程进 行 了分析 , 并提 出 了设计 方案 。 关键 词 雷 电作 用方 案设计 ; 配 电 系统 防雷 中图 分类号 : T M 7 文献 标识码 : A 文章 编号 : 1 6 7 1 — 7 5 9 7( 2 O 1 3 )1 5 — 0 0 8 2 — 0 1
的破 坏 。
在我 国要求 在进 入建 筑物前 的 1 5 m 位 置必须将 外 界部 分金 属线 路 管道 经 过低 电流 电源 浪 涌 保护 器 后 才 可 以接入 建 筑 物 主 体 , 将 电流 经过 电气保 护 设备 后 降低 到规 定 范围 内才 可 以 引入 到大 地之 内降低 高压 电流 带来 的损失 和破坏 。 第二 级 浪涌 保 护器 : 作 为 次 级 防雷 器 , 这 一 级 电源 浪 涌 保
接地与防雷措施
接地与防雷措施一、TN-S接零保护系统1、工程采用TN-S接零保护系统,工作零线(N线)必须通过总漏电保护器,保护零线(PE线)必须由电源进线零线重复接地处或总漏电保护器电源侧零线处,引出形成局部TN-S接零保护系统。
2、施工现场临时用电采用三级配电、逐级保护,电源首、末端及线路中间分别设置重复接地,接地电阻不大于10Ω。
所有接地处设置接地标志。
3、保护零线采用黄/绿双色线,严格与相线、工作零线相区别,杜绝混用。
保护接零线的截面积与工作零线相同,且不小于干线截面积的50%,机械强度满足线路敷设方式的要求(架空敷设不小于10mm的铜芯绝缘线)。
4、不得有一部分电气设备接零保护,而另一部分设备接地保护,保护零线不经过开关、熔断器。
5、TN-S接零保护系统中,电器设备的金属外壳必须与PE连接。
下列设备不带电的外露可导电部分应保护接零:1)配电装置的金属箱体、框架及靠近带电部分的金属围栏和金属门;2)电机、变压器、电器、照明灯具、手持电动工具金属外壳;3)电动传动装置的金属部件;4)配电柜与金属柜金属部件。
二、重复接地1、一级箱处PE线做不少于二组重复接地,接地极采用50*50*5热镀锌角钢长度为2.5m,接地线采用40*4的热镀锌扁钢与接地体焊接,接地电阻不大于10Ω。
2、二级箱处PE线做一组重复接地,接地极采用50*50*5热镀锌角钢长度为2.5米,接地线采用40*4的热镀锌扁钢与接地体焊接,接地电阻不大于10Ω。
3、保护零线在配电系统的中间处和末端处做重复接地。
保护零线每处重复接地装置的接地电阻值不大于10Ω。
4、塔吊回路,在专用箱设置重复接地,接地电阻小于4 。
接地体采用50*50*5长度2.5m的热镀锌角钢,间隔5m打入地下。
接地线采用40*4的热镀锌扁钢与接地体焊接,保证接地体和PE线端子做良好的电气连接。
三、防雷接地现场塔吊防雷接地安装采用镀锌40*4扁钢和镀锌Φ20圆钢,三根圆钢两根扁钢焊接为一组,扁钢为三面施焊,圆钢与扁钢搭接焊为圆钢6倍D,圆钢长度2.5m垂直打入地下,留出焊接部分,焊完后,刷防锈漆做防腐处理,每台塔吊两组接地极装置,每组留一处检测点,两组之间设一个短接点,方便分组摇测,塔吊防雷接地电阻值不大于4Ω,摇测时间是每季度一次,雨季施工期间增加摇测频次,并认真做好遥测记录。
配电线路的防雷措施
配电线路的防雷措施
配电架空线路受到需击时,需电冲击波就向导线两端流动。
这种流动的冲击波称为进行波。
为了保护与线路连接的电气设备不受进行波的冲击,在10kV及以下的配电系统中,主要依靠阀型避雷器作为防雷保护。
10kV配电线路是三相三线制中性点不接地的供电方式,因此,发生单相接地时往往不会造成开关掉闸。
所以在防雷保护中,主要是防止相间短路,常采用的保护措施有:
(1)10kV架空线路,大多使用混疑土杆,铁质横担对于雷电冲击波相当于自然接地状态。
为了防止雷击引起绝缘子击穿,造成导线相间短路,烧断导线,可采取提高瓷绝缘等级的办法,并定期进行清扫维护保持其耐压水平,防止和减少绝缘子击穿事故。
(2)配电线路上的柱上油路器和荷开关,由于绝缘水平不高,相间距离较小,应防正受雷击时引起闪络,造成短路。
通常在设备的一侧或两侧装设阀型避雷器进行保护。
其接地线要与被保护设备的金属外壳相连接,接地电阻值不大于10Ω。
(3)10kV配电线路相互交叉或与低压线路、通信线路等交叉时,其垂直距离应不小于2mo交叉档两端杆塔的瓷绝缘铁脚应可靠接地。
(4)低压配电线路绝缘水平较低,当遭受雷击时,雷电冲击波可能沿线路侵入室内,引起人身和设备事故。
为了降低雷电波的幅值,可以把引入线上的绝缘子螺杆接地,接地电阻不超过300。
为保护直人式电度表,特装设低压阀型避雷器作为防雷保护。
配电线路防雷接地技术规程
配电线路防雷接地技术规程一、引言配电线路的防雷接地技术是确保电力系统运行安全和稳定的重要环节之一。
为了有效防止雷击对电力设备造成损害,并保障电力供应可靠性,制定配电线路防雷接地技术规程是必要的。
本文将介绍配电线路防雷接地技术的相关要点和规范,供工程师、电力从业人员和相关人士参考。
二、配电线路防雷接地技术规程要求1. 防雷接地系统的设计防雷接地系统的设计应根据所在地区的地质、气候条件、雷电频率和设备性质等因素进行充分考虑。
接地系统的总体设计应满足以下要求:(1)合理布置:根据地形、设备布置和电力线路的特点等因素,合理布置接地装置。
(2)有效接地电阻:接地装置的电阻应在规定范围内,确保瞬态过电压能通过接地装置迅速分散。
(3)可靠性:接地装置应具有稳定的性能和可靠的工作寿命。
2. 接地装置的选择和安装根据现场情况选择合适的接地装置,包括接地电极、接地网和接地体。
选择和安装时应注意以下要点:(1)接地电极:选择合适的接地电极类型,如水平接地电极或垂直接地电极,以确保接地电极的有效接地。
(2)接地网:根据设备容量和雷电活动频率,合理配置接地网,保证接地电阻低于规定值。
(3)接地体:根据土质条件和工程要求选择合适的接地体材料和尺寸,确保接地效果。
3. 现场施工及验收在进行配电线路防雷接地工程施工时,应遵循以下程序:(1)施工前准备:组织施工队伍,确认施工计划和材料准备。
(2)定位和测量:根据设计要求,在现场确定接地装置的位置,并进行精确测量。
(3)施工过程控制:按照规范,进行接地电极、接地网和接地体的安装。
(4)完工验收:对施工完成的接地工程进行全面检查和测试,确保接地电阻符合规定范围。
4. 运维管理和检修配电线路防雷接地系统的正常运行需要定期的检修和维护。
相关管理和维护措施包括:(1)巡检:定期巡视接地装置,检查接地电阻、接地导体的连接情况。
(2)维护:保持接地装置的清洁,确保接地装置表面与土壤之间的良好接触。
工厂供电系统的防雷和接地
力系统的导线或电气设备受到直接雷击或雷电感应而引起的 过电压。
二、雷电的基本知识
1. 雷电现象:雷云放电的过程称为雷电现象。
雷云→雷电先导→迎雷(回击)先导 →主放电阶段 →余辉阶段
2. 雷电流的特性
雷电流波形
➢波头:指雷电流从零上升到最大幅值这一部分,一般只有 1~4μs; ➢波尾:指雷电流从最大幅值 开始,下降到二分之一幅值所 经历的时间,约数十微妙。
雷电流的陡度:指雷电流在 波头部分上升的速度,即
di dt
雷电流波形图
3. 雷电过电压的基本形式
➢直击雷:雷电直接击中电气设备、线路、建筑物等物体。
➢感应雷:由雷电对线路、设备或其他物体的静电感应或电 磁感应而引起的过电压。
感应雷的形成过程如图所示。
➢雷电波侵入:架空线路 遭到直接雷击或感应雷而 产生的高电位雷电波,沿 架空线侵入变电所或其他 建筑物而造成危险。
1) 避雷针 避雷针通常采用镀锌圆钢或镀锌焊接钢管制成。
针长1m以下时,圆钢直径不小于12 mm,钢管直径不小于20 mm; 针长1~2m时,圆钢直径不小于16mm,钢管直径不小于25mm。
单支避雷针的保护范围
建筑物防雷类别 第一类防雷建筑物 第二类防雷建筑物 第三类防雷建筑物
滚球半径hr(m)
30 45 60
A
(a)
(2)两相触电(相间触电)
C B A C
(b)
A B C
Байду номын сангаас
(3)跨步电压触电
A B C
Ⅰ U
Ⅱ
跨步 电压
20 m
S
(4)接触电压触电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电系统的防雷和接地
近几年随着电网的改造,配电系统大量采用电缆化、绝缘线和中压环网设备,配网的供电可靠性有所提升,然而由于雷电引起的设备事故仍时有发生,对系统稳定运行具有一定的破坏性。
为有效避免雷电对配电系统的危害,本文针对10kV 配网线路及配电变压器等设备的防雷措施现状,分析10kV架空线路、电缆线路和配电变压器等配电设备长期运行中发生的雷电破坏情况,提出解决方法和防雷措施,为运行人员提供一定的帮助。
标签:10kV配电线路;10kV配电设备;防雷;接地;措施
雷击虽然是自然界中一种常见的放电现象,但雷击过程中的直击雷、感应雷或雷电侵入波对配电系统的设备产生高电压冲击,直接影响到配电系统的绝缘水平,容易形成设备短路、爆炸以及火灾等问题,最终造成配电网络大面积的停电故障。
特别是随着配电系统大量采用电缆化、绝缘线和中压环网设备,所以雷击产生的配电设备的损失都比较严重,可见如何提高配电系统的防雷接地水平,有效降低雷害损失,已成为运行人员当前重要的任务。
1 10kV线路的防雷和接地
1.1 10kV裸导线线路
配电线路的防雷措施可以选择避雷线或避雷器等设施,具体需要考虑配电线路的电压等级和线路情况,例如10kv裸导线路可以通过架设避雷线来预防雷击,但考虑到施工成本和便利性,实际工程中通常仅在重要负荷处采用避雷线,在雷电活动频繁地段采用避雷器的方式来达到防雷目的。
实践数据表明,对于架空线路按每500-600米加装一组避雷器较为有效、可靠,只要规范做好杆塔接地措施,便能够十分有效的降低或避免雷击事故侵害。
1.2 10kV架空绝缘线线路
随着城市配电网的改造,大部分的配电线路都换成了交联聚乙烯电缆,但是相比裸导线而言防雷措施并没有随之改进,导致雷击绝缘线事故时有发生,其原因在于雷击过电压闪络,大气压中的大电流放电。
雷电侵入架空绝缘线路时,瞬间电流虽然时间较短,但电流较大,虽不能烧断导线,但能在电缆绝缘层击穿出孔。
当雷电经过两相或三相的金属性短路通道时,就会引发数千安培工频电流,时间在0.2秒左右,会导致跳闸事故,架空绝缘电缆的绝缘层会阻碍电弧滑动,电弧根固定于击穿点处,且在断路器动作前烧坏导线。
针对上述问题,可采用以下措施:(1)增强绝缘子耐压水平,更换防雷绝缘子来强化雷电效果;(2)增加闪烁路径来达到熄灭电弧的效果,增加线路局部的绝缘强度,具体可以增加导线绝缘强度、绝缘子绝缘强度、长闪烁路径避雷器。
1.3 10kV电缆线路
自从配电网络电缆进行更新之后,雷电导致的事故次数大大降低,同时对配电变压器和连接的电缆也都进行了保护,可是在安装电缆之后的10年左右,雷电导致的事故又会明显增多,原因在于电路电缆化之后被雷电击中的几率比较少,因而在更新配电网络电缆时对电缆的保护不够充分。
目前广泛使用的交联聚乙烯电缆在潮湿环境中容易形成水树枝,在电场影响下变成电树枝,受工作环境中电压反复冲击的影响会加快绝缘劣化,导致电贯穿。
由于变压器绝缘结构与电缆绝缘结构不同,在电树枝劣化的影响下,交联聚乙烯电缆的耐电压低于变压器电压,是整个配电系统中绝缘效果的薄弱点。
当前提升电缆使用寿命的常见方法是采用金属氧化锌避雷器,然而电缆自身的特点、电缆与其他电气设施连接的要求,决定了要在电缆终端头的周围装置避雷器,还要保证终端头的屏蔽接地。
而且电缆电容是架空线路30倍左右,电缆的储能也大于架空线路,因此在避雷器的选择上要结合电缆的种类和参数,综合考虑各类因素。
1.4 10kV架空与电缆混合线路
架空与电缆混合线路存在不同阻抗的线路相联,雷电波入侵时结点处易发生电压突变,架空线路与电缆连接的首段与末端连接处波阻抗不同,雷电波入侵的情况下连接点之间的行波会多次折反射,末端电压经过折反射后将高于入侵电压,因此,可以选择在首末端安装避雷器来避免过电压过高。
通常可以在电缆的首末端加装避雷器来限制过电压。
1.5 低压线路
针对低压线路,应该在变压器的出口位置装置一个低压避雷器,并且处理好接地问题,接地的电阻要低于4欧姆,低压电力网中中性点接地时应选择在电源点接地,而且干线、分支线终端需要反复接地,同时其电阻要低于10欧姆。
针对比较长的线路,重复接地要多于3次,尤其是为了避免雷电对配电线路造成损坏,接户线上的绝缘子铁角要接地,电阻要低于30欧姆,这类问题在电能表装置的改造上重视起来。
2 10kV配电设备的防雷保护
2.1 配电变压器的防雷保护
配电网广泛采用△/Y0、Y/Y0接线方式的10kV变压器,在雷电波侵入时避雷器动作,在接地电阻上流经大电流时产生压降,使得中性点电压升高。
在中性点电位的作用下,低压绕组上流经冲击电流。
由于低压三相绕组中流经的电流大小相等、方向相同,低压绕组中的冲击电流全部成为激磁电流,产生很在的零序磁通,使得高压侧感应出很高的电势,感应电势沿绕组分布,在中性点的幅值最大,引起中性点绝缘击穿,同时由于层间和匝间的电位梯度相应增大,引起高压
绕组层间和匝间击穿。
由于中性点电压是接地电阻引起的,因此可以分开中性点接地与高压侧避雷器接地,通过单独的接地线、接地网来接地,同时确保接地网之间距离>5m,借助大地的雷电波衰减作用来削除中性点电压过高导致的绝缘击穿。
雷电波在低压侧入侵时冲击电流流经低压绕组,随之高压绕组有感应电动势产生,导致高压侧中性点电压升高,层间与匝间电位梯度升高,最终导致高压绕组层间、匝间击穿。
因此,我们可以采用低压侧加装避雷器的方式来解决此类问题,通过在低压侧装设低压避雷器,同时低压侧避雷器、高压侧避雷器、低压侧中性点、变压器外壳“四点共一地”接地。
2.2 柱上开关的防雷保护
配网运行中往往忽略了柱上开关设备的防雷保护,在柱上开关和刀闸处有些没有安装避雷器,或者仅仅在开关一侧装设避雷器保护,当开关断开时,将会造成雷电波的全反射,在雷击事故发生时造成开关设备自身的损坏。
因此,应在开关或刀闸两侧安装避雷器,强化柱上开关的雷电保护。
2.3 电缆分支箱的防雷保护
电缆分支箱和环网柜在配电系统中的使用越来越广泛,它的防雷问题目前成为一个突出的问题。
在10kV电缆化的环网供电系统中,必须采取措施抑制感应雷过电压。
一般做法是采用避雷器,避雷器保护点位置的选择一是每个单元均安装避雷器,二是有选择地安装避雷器保护。
第一种方法经济性较差,这两种方法需要根据实际情况选择,需要注意的是,如环网回路中存在架空线路,那么应该对架空线路两端单元安装避雷器。
另外,对于避雷器的选择,通常推荐具备防爆脱离功能且免维护的无间隙金属氧化锌避雷器。
3 结束语
通过上述分析,要最大限度降低雷电损害程度,科学地建设防雷接地系统设备是关键,因此,配电系统的防雷与接地工作应结合实际的雷电分布情况来采取针对性的防雷方案,严格控制电气设备、防雷设施的质量与可靠性,确保共用接地网符合规范要求,将防雷措施与接地措施相结合,最大限度降低雷击对配电线路及设备造成的破坏。
参考文献
[1]童凌.配电系统的防雷与接地措施研究[J].科技风,2014(4):13.
[2]王茂成,吕永丽,等.10kV绝缘导线雷击断线机理分析和防治措施[J].高电压技术,2007,33(1):102-105.
[3]李凡,施围.线路避雷器的绝缘配合[J].高电压技术,2005,31(8):18-23.。