(word完整版)高中物理机械能守恒定律经典例题及技巧

合集下载

机械能守恒定律(篇)(Word版 含解析)

机械能守恒定律(篇)(Word版 含解析)

一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。

P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。

则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。

故选CD 。

2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。

将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。

在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。

机械能守恒定律典型例题

机械能守恒定律典型例题

机械能守恒定律典型例题题型一:单个物体机械能守恒问题1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1 m,长2 m,不计空气阻力,物体滑到斜面底端的速度是多大?拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜面底端的速度是多大?2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为θ,求小球运动到最低位置时的速度是多大?.题型二:连续分布物体的机械能守恒问题1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂于桌边,如图所示,现由静止开始使链条自由滑落,当它全部脱离桌面时的速度多大?3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面的高度相等时,右侧液面下降的速度是多大?题型三:机械能守恒定律在平抛运动、圆周运动中的应用(单个物体)1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平直轨道相切,一小球自A点起由静止开始沿轨道下滑。

已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。

求:(1)小球运动到B点时的动能(2)小球下滑到距水平轨道的高度为12R时的速度大小和方向(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大?2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m 运动到最高点B时,对轨道的压力是多大?3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道.若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v0至少应为多大?4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且l>2πR,为使“过山车”能顺利通过圆形轨道,则v0至少应为多大?5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点. 如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力。

机械能守恒定律典型例题剖析

机械能守恒定律典型例题剖析

机械能守恒定律典型例题剖析例1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m 的小球,为使轻质硬棒能绕转轴O 转到最高点,则底端小球在如图示位置应具有的最小速度v=。

解:系统的机械能守恒,ΔE P +ΔE K =0因为小球转到最高点的最小速度可以为0,所以,例2.如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。

一柔软的细线跨过定滑轮,两端分别与物块A 和B 连结,A 的质量为4m ,B 的质量为m ,开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升。

物块A 与斜面间无摩擦。

设当A 沿斜面下滑S 距离后,细线突然断了。

求物块B 上升离地的最大高度H.解:对系统由机械能守恒定律4mgSsin θ–mgS=1/2×5mv 2∴v 2=2gS/5细线断后,B 做竖直上抛运动,由机械能守恒定律mgH=mgS+1/2×mv 2∴H=1.2S 例3.如图所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,忽略小圆环的大小。

(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在两个小圆环间绳子的中点C 处,挂上一个质量M =m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M .设绳子与大、小圆环间的摩擦均可忽略,求重物M 下降的最大距离.(2)若不挂重物M .小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?解:(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大.设下降的最大距离为h , 2由机械能守恒定律得解得(另解h=0舍去)(2)系统处于平衡状态时,两小环的可能位置为两小环同时位于大圆环的底端.b .两小环同时位于大圆环的顶端.c .两小环一个位于大圆环的顶端,另一个位于大圆环的底端.d .除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧α角的位置上(如图所示).对于重物,受绳子拉力与重力作用,有T=mg对于小圆环,受到三个力的作用,水平绳的拉力T 、竖直绳子的拉力T 、大圆环的支持力N.两绳子的拉力沿大圆环切向的分力大小相等,方向相反得α=α′,而α+α′=90°,所以α=45°例4.如图质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

高中物理机械能守恒典型例题解题技巧!

高中物理机械能守恒典型例题解题技巧!

高中物理机械能守恒典型例题解题技巧!单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒;(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类;(2)固定的光滑斜面类;(3)固定的光滑圆弧类;(4)悬点固定的摆动类。

1)阻力不计的抛体类包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。

那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。

因此只有重力做功,物体的机械能守恒。

系统的机械能守恒由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。

不做功,系统的机械能就不变;(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。

系统间的相互作用力分为三类:1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析
题目:一个质量为10kg的物体,从高度为5m的斜面顶端下滑,初始速度为零,斜面底端有一个垂直向上的弹簧。

物体压缩弹簧后被弹起,最后飞出斜面,求物体飞出斜面的速度和弹簧对物体做的功。

解析:根据机械能守恒定律,物体在运动过程中,其重力势能和动能之间相互转化,而总的机械能保持不变。

在本题中,物体在斜面上运动,重力势能转化为动能,而弹簧的弹力对物体做功,将一部分动能再次转化为弹簧的势能,最终物体飞出斜面时,其速度和弹簧的势能分别为:
1.物体飞出斜面的速度
根据机械能守恒定律,物体在斜面上的重力势能和动能之和保持不变,即:
mgh + 0 = 1/2 m v^2
其中,m为物体的质量,g为重力加速度,h为物体在斜面上的高度,v为物体在斜面上的速度。

根据题目给出的条件,可以计算出物体在斜面上的速度:
v = sqrt(2gh) = sqrt(2 x 9.8 x 5) = 7.98 m/s
2.弹簧对物体做的功
弹簧对物体做功,将物体的动能转化为弹簧的势能,根据机械能守恒定律,有:
1/2 m v^2 = W
其中,m为物体的质量,v为物体在斜面上的速度,W为弹簧对物体做的功。

根据题目给出的条件,可以计算出弹簧对物体做的功:
W = 1/2 m v^2 = 1/2 x 10 x 7.98^2 = 304.1 J
因此,弹簧对物体做的功为304.1焦耳。

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题(1)只有重力做功时机械能守恒.设一个质量为m 的物体自然下落,经过高度为1h 的A 点(初位置)时速度为1v ,下落到高度为2h 的B 点(末位置)时速度为2v (图8-42),由动能定理得:21222121mv mv W G -=.又由重力做功与重力势能的关系得:21mgh mgh W G -= 则2121222121mgh mgh mv mv -=-或2221212121mgh mv mgh mv +=+ 这表明,在自由落体中,物体的动能与重力势能之和保持不变,则机械能守恒.事实上,上面推导过程中涉及重力做功与动能变化、势能变化的关系,与物体的运动轨迹形状无关,因而物体只受重力作曲线运动(如平抛运动、斜抛运动等)时,机械能也一定守恒.(2)只有弹力作用时机械能守恒.如图8-43所示,一个质量为m 的小球被处于压缩状态的弹簧弹开,速度由1v 增大到2v ,由动能定理得:1221222121k k N E E mv mv W -=-= 由弹力做功与弹性势能的关系得:21p p N E E W -= 则2112p p k k E E E E -=-即2211p k p k E E E E +=+,物体的动能与弹性势能之和保持不变,机械能守恒.(3)既有重力做功,又有弹力做功,并且只有这两个力做功时,机械能也守恒.如图8—44所示,一根轻弹簧一端固定在天花板上,另一端固定一质量为m 的小球,小球在竖直平面内从高处荡下,在速度由1v 增大到2v 的过程中,由动能定理得21222121mv mv W W N G -=+ 又由重力做功与重力势能的关系得21p p G E E W -= 由弹力做功与弹性势能的关系得''21p p N E E W -= 则212221212121mv mv 'E 'E E E p p p p -=-+- 即2222211121'21'mv E E mv E E p p p p ++=++,物体的动能、重力势能和弹性势能之和保持不变,机械能守恒.(4)有除重力和弹力之外的力做功,将使机械能增大或减小,机械能不守恒.例如,升降机匀速提升重物时,重物的动能不变,势能在增大,总的机械能不守恒,原因是除重力做功外,升降机也对重物做功,且做正功,通过做功将电能转化为重物的机械能.又例如,在水平面上运动的汽车刹车后,逐渐减速并停止,汽车的重力势能不变,动能在减小,总的机械能在减少,原因是汽车受到摩擦力做功,且做负功,通过做功将机械能转化为内能.(5)有除重力和弹力之外的力做功,但力所做功的代数和为零,则机械能守恒.例如,汽车在水平面上匀速行驶时,虽然受牵引力与摩擦力的作用,但其动能和势能均不变,机械能守恒.原因是牵引力与摩擦力做功的代数和为零例2 一轻绳通过无摩擦的定滑轮与在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m ,物体m 2由静止从AB 连线为水平的位置开始下滑1m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物体做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和4.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv =0B .Δv =12 m/sC .W =0D .W =10.8 J5.将一物体由地面竖直上抛,如果不计空气阻力,物体能够达到的最大高度为H ,当物体在上升过程中的某一位置时,它的动能是重力势能的2倍,则这一位置的高度为( )A .32H B .2H C .3H D .4H6 、(2010·成都市摸底测试)如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m =2 kg 的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.1.如图8—51所示,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩至最短,若不计弹簧的质量和空气阻力,小球由a →b →c 的运动过程中A .小球的动能逐渐减小B .小球的重力势能逐渐减小C .小球的机械能守恒D .小球的加速度逐渐减小2.两个质量相同的小球A 、B ,分别用细线悬挂在等高的 、 1O 、2O 点,A 球的悬线比B球的长,如图8—52所示,把两球均拉到与悬线水平后由静止释放,以悬点所在平面为参考平面,到两球经最低点时的A. A球的速度等于B球的速度B.A球的动能等于B球的动能C.A球的机械能等于B球的机械能D.A球对绳的拉力等于B球对绳的拉力1.下列叙述中正确的是( )A.合外力对物体做功为零的过程中,物体的机械能一定守恒B.做匀速直线运动的物体机械能一定守恒C.做匀变速运动的物体机械能可能守恒D.当只有重力对物体做功时,物体的机械能守恒2.从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( )A.所具有的重力势能相等B.所具有的动能相等C.所具有的机械能相等D.所具有的机械能不等3.如下图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B点,第二次将物体先拉到C点,再回到B点.则这两次过程中( )A.重力势能改变量相等B.弹簧的弹性势能改变量相等C.摩擦力对物体做的功相等D.弹簧弹力对物体做功相等5.物体由静止出发从光滑斜面顶端自由滑下,当所用时间是下滑到底端所用时间的一半时,物体的动能与势能(以斜面底端为零势能参考平面)之比为( )A.1∶4B.1∶3C.1∶2D.1∶210.如下图所示,ABC是一段竖直平面内的光滑的1/4圆弧形轨道,圆弧半径为R,O为圆心,OA水平,CD是一段水平光滑轨道.一根长2R、粗细均匀的细棒,开始时正好搁在轨道两个端点上.现由静止释放细棒,则此棒最后在水平轨道上滑行的速度为 .11.如下图所示,在细线下吊一个小球,线的上端固定在O点,将小球拉开使线与竖直方向有一个夹角后放开,则小球将往复运动,若在悬点O的正下方A点钉一个光滑小钉,球在从右向左运动中,线被小钉挡住,若一切摩擦阻力均不计,则小球到左侧上升的最大高度是( )A.在水平线的上方B.在水平线上C.在水平线的下方D.无法确定12.如下图所示,OA、OB、BC均为光滑面,OA=OB+BC,角α>β,物体从静止由O点放开,沿斜面到A点所需时间为t1,物体从静止由O点放开沿OBC面滑到C点时间为t2,A、C 在同一水平面上,则关于t1与t2的大小的下述说法中正确的是( )A.t1=t2B.t1>t2C.t1<t2D.条件不足,无法判定13.如下图所示,有许多根交于A点的光滑硬杆具有不同的倾角和方向.每根光滑硬杆上都套有一个小环,它们的质量不相等.设在t=0时,各小环都由A点从静止开始分别沿这些光滑硬杆下滑,那么这些小环下滑速率相同的各点联结起来是一个( )A.球面B.抛物面C.水平面D.不规则曲面16.如下图所示,分别用质量不计不能伸长的细线与弹簧分别吊质量相同的小球A、B,将二球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A、B二球,二球在运动中空气阻力不计,到最低点时二球在同一水平面上,关于二球在最低点时速度的大小是( )A.A球的速度大B.B球的速度大C.A、B球的速度大小相等D.无法判定19.如下图所示,一轻质杆上有两个质量相等的小球A、B,轻杆可绕O点在竖直平面内自由转动.OA=AB=l,先将杆拉至水平面后由静止释放,则当轻杆转到竖直方向时,B球的速度大小为 .3.22.如上图所示,质量相等的重物A 、B 用绕过轻小的定滑轮的细线连在一起处于静止状态.现将质量与A 、B 相同的物体C 挂在水平段绳的中点P ,挂好后立即放手.设滑轮间距离为2a ,绳足够长,求物体下落的最大位移.1.一物体从高处同一点沿不同倾角的光滑斜面滑到同一水平面,则( )A.在下滑过程中,重力对物体做的功相同B.在下滑过程中,重力对物体做功的平均功率相同C.在物体滑到水平面的瞬间,重力对物体做功的瞬时功率相同D.在物体滑到水平面的瞬间,物体的动能相同3.质量为m 的汽车以恒定功率P 在平直公路上行驶,汽车匀速行驶的速率为υ1,若汽车所受阻力不变,则汽车的速度为υ2(υ2<υ1=时,汽车的加速度大小是( ) A.2m v P B. 1m vP C. 2121)(v m v v v P - D. )()(22121v v m v v P +- 6.如下图所示,木块A 放在木块B 上左端,用恒力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W 1,生热为Q 1;第二次让B 可以在光滑地面上自由滑动,这次F 做的功为W 2,生热为Q 2,则应有( )A.W 1<W 2,Q 1=Q 2B.W 1=W 2,Q 1=Q 2C.W 1<W 2,Q 1<Q 2D.W 1=W 2,Q 1<Q 29.如下图所示,小球做平抛运动的初动能为6J ,不计一切阻力,它落到斜面P 点时的动能为( )A.10JB.12JC.14JD.8J8.有一槽状的光滑直轨道,与水平桌面成某一倾角固定.一可视为质点的滑块,从轨道顶端A 点由静止开始下滑,经中点C 滑至底端B 点.设前半程重力对滑块做功的平均功率为P 1,后半程重力对滑块做功的平均功率为P 2,则P 1∶P 2等于( ) A.1∶1 B.1∶2 C.1∶2 D.1∶(2+1)。

高中物理必修2机械能守恒定律-例题解析

高中物理必修2机械能守恒定律-例题解析

机械能守恒定律-例题解析应用机械能守恒定律时需要注意下面的步骤:(1)明确研究对象及要研究的物理过程,分析其受力和做功情况,判定机械能是否守恒.(2)根据物体的位置及速度,明确初、末状态的动能和势能.(3)利用机械能守恒定律列出方程并求解、讨论等.(4)机械能守恒定律只涉及初、末两状态的机械能,而不涉及中间运动细节.不管是直线运动还是曲线运动,是加速运动还是减速运动,都可用机械能守恒定律解决.有了机械能守恒定律,我们就可以解决动力学中许多用牛顿运动定律难以求解的复杂问题了.当满足守恒条件,要把守恒定律变成具体的数学方程时,可用两种方法:方法一:按初状态的机械能等于末状态的机械能列方程;方法二:按减少的能量与增加的能量相等列方程.方法一必须规定零势能面,方法二则不需要规定零势能面.无论哪条思路都要注意,机械能包含了重力势能、弹性势能、动能三种能量.【例1】在距离地面20 m高处以15 m/s的初速度水平抛出一小球,不计空气阻力,取g=10 m/s2,求小球落地速度的大小.思路:(1)小球下落过程中,只有重力对小球做功,满足机械能守恒条件,可以用机械能守恒定律求解;(2)应用机械能守恒定律时,应明确所选取的运动过程,明确初、末状态小球所具有的机械能.解析:方法一:取地面为参考平面,抛出时小球具有的重力势能E p1=mgh,动能为E k1=mv02.落地时,小球的重力势能E p2=0,动能为E k2=mv2.根据机械能守恒定律,有E1=E2,即mgh+mv02=mv2落地时小球的速度大小为v== m/s=25 m/s.方法二:本题也可以这样理解:小球下落过程中减少的重力势能等于小球动能的增加,即mgh=mv2-mv02同样可求出落地速度v的值,而且,这种方法不需要规定零势能面.请比较:本题如果用运动的合成与分解知识求解,是简单还是复杂?【例2】已知山谷间有一轨道ACB,AC高度为h1,BC高度为h2.若有一小车要从A滑到B,则在A处小车的速度至少为多大(图4-15)?图4-15思路:小车从A到B,如果不考虑轨道上的阻力,机械能是守恒的.很明显,小车在A处的速度越大,它的机械能就越大.小车只要能滑到B处,在B处速度可以是零.解析:设车在A处时,其重力势能为零,则E A=mv A2,E B=mg(h2-h1)E A=E B,即mv A2=mg(h2-h1)所以在A处小车的速度至少是v A=.【例3】图4-16所示是游乐园里的滑车,滑车至少要从多高处冲下才能使它从圆环内顶端滑过?图4-16思路:游乐园中的滑车从倾斜轨道高处下滑时,速度越来越大,到了圆环底端速度达到最大,接着就沿圆环冲上去,速度逐渐变小.为了滑车能安全地从圆环顶端通过,滑车在顶端必须要有一定的速度,滑车做圆周运动,因此,本题要考虑用圆周运动规律和能量规律求解.解析:在圆环顶点,滑车受到重力、弹力的作用,这两个力的合力为N+mg,此合力提供滑车所需的向心力图4-17N+mg=为使v C最小,让N=0,则v C=滑车在运动过程中,只受重力和轨道对它的弹力作用,摩擦力很小可以忽略不计.弹力方向处处与滑车运动方向垂直,因此弹力做功为零,这样小球在运动过程中机械能是守恒的,即E A=E C,则mgH=mv C2+mg·2R将v C=代入上式,得H=R.【例4】一根长为L的均匀绳索,一部分放在光滑水平桌面上,长为L1的另一部分自然垂在桌面下,如图4-18所示,开始时绳索静止,释放后绳索将沿桌面滑下.求绳索刚滑离桌面时的速度大小.图4-18思路:绳索下滑过程中,只有重力做功,整根绳索的机械能守恒.解析:设整根绳索的质量为m,把绳索分为两部分:下垂部分的质量为m1=L1m/L,在桌面上部分质量为m2=m(L-L1)/L.选取桌面为零势能参考面.释放时绳索的机械能E1=-m1gL1/2=-mgL12-2L刚离开桌面时绳索的机械能E2=mv2/mgL由机械能守恒定律得解得v=.点评:(1)对绳索、链条之类的物体,由于在考查过程中常发生形变,其重心位置相对物体来说并不是固定不变的.能否正确确定重心的位置,常是解决该类问题的关键.一般情况下常分段考虑各部分的势能,并用各部分势能之和作为系统总的重力势能.至于参考平面,可任意选取,但以系统初、末重力势能便于表示为宜.(2)此题也可运用等效法求解:绳索要脱离桌面时重力势能的减少,等效于将图中在桌面部分移至下垂部分下端时重力势能的减少,然后由ΔE p=ΔE k列方程求解.【例5】如图4-19所示,一根轻质弹簧和一根细绳共同拉住一个重2 N的小球,平衡时细绳恰好水平,若此时烧断细绳,并且测出小球运动到悬点正下方时弹簧的长度正好等于未烧断细绳时弹簧的长度.试求:小球运动到悬点正下方时向心力的大小.图4-19解析:由于已知量太少,需引入一些分析问题需要的辅助参数.设弹簧原长为L0,初始状态平衡时弹簧长为L,令此时弹簧与竖直方向的夹角为θ,小球的质量为m,开始为平衡态,有k(L-L0)cosθ=mg=2 N①设小球运动到最低点时速度为v,由向心力公式有m=k(L-L0)-mg ②未烧断线时的位置和最低点位置弹簧的长度相同,所以初、末位置的弹性势能相同,设为E p(从初位置到末位置的整个过程中,弹性势能变不变?)从初位置到末位置的整个过程用机械能守恒定律有:E p+mgL(1-cosθ)= mv2+E p所以2mg(1-cosθ)=m ③①②代入③得2(1-cosθ)=-1所以θ=60°所以k(L-L0)= =2mg所以向心力为:F向=k(L-L0)-mg=mg=2 N.点评:本题是一道综合题,虽然已知数据只有一个,但是由于条件恰到好处,使得问题巧妙地解决了. 该题表面上涉及弹性势能的计算,实际上计算时并不需要.。

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。

它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。

下面,我们就来一起探讨一些机械能守恒定律的典型例题。

例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。

解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。

初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。

因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。

这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。

例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。

解析:物体竖直上抛时,动能逐渐转化为重力势能。

在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。

由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。

这个例题与自由落体运动相反,是动能转化为重力势能的过程。

例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。

解析:物体在斜面上运动时,重力势能转化为动能。

初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。

因为斜面光滑,没有摩擦力做功,机械能守恒。

根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。

所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。

这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。

高中物理必修二机械能守恒定律解题方法技巧

高中物理必修二机械能守恒定律解题方法技巧

(每日一练)高中物理必修二机械能守恒定律解题方法技巧单选题1、如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长,弹簧在弹性限度内,则物体在振动过程中()A.弹簧的最大弹性势能等于2mgAB.弹簧的弹性势能和物体动能总和不变C.物体在最低点时的加速度大小应为2gD.物体在最低点时的弹力大小应为mg答案:A解析:A.因物体振动到最高点时,弹簧正好为原长,此时弹簧弹力等于零,物体的重力mg=F回=kA当物体在最低点时,弹簧的弹性势能最大等于2mgA,故A正确;B.由能量守恒知,弹簧的弹性势能和物体的动能、重力势能三者的总和不变,故B错误;C.在最低点,由故C错误;D.在最低点,由F弹-mg=F回得F弹=2mg故D错误。

故选A。

2、如图所示,一传送带的上表面以v1向右做匀速运动,其右侧平台上有一质量为m的物体以初速度v0向左冲上传动带。

若传送带足够长,并且v1>v0,则物体在返回平台的瞬间,其动能与刚离开平台瞬间相比,变化了()A.0B.12mv02C.12mv12-12mv02D.12mv12+12mv02答案:A解析:物块以速度v0滑上传送带后,在滑动摩擦力作用下向左做匀减速直线运动,直至速度为零,此后在滑动摩擦力作用下向右做匀加速运动,由于v1>v0,传送带足够长,所以根据对称性可知,物体在返回平台的瞬间速度大小为v0,则物体动能的变化量为ΔE k=12mv02-12mv02=0故A正确,BCD错误。

3、如图所示为质量为m的汽车在水平路面上启动过程的v﹣t图象,Oa为过原点的倾斜直线,ab段是汽车以额定功率行驶时的加速阶段速度随时间变化的曲线,bc段是与ab段相切的水平直线。

整个启动过程中阻力恒为f,则下列说法正确的是()A.0~t1时间内汽车牵引力F=f+m v1t1B.0~t1时间内汽车以恒定功率做匀加速运动C.t1~t2时间内汽车的平均速度为v1+v22D.t1时刻汽车的牵引力小于t2时刻汽车的牵引力答案:A解析:A.0~t1时间内汽车的加速度为a=v1 t1在此过程中,水平方向受到牵引力和阻力,根据牛顿第二定律F−f=ma 解得F=f+mv1 t1故A正确;B.0~t1时间内汽车做匀加速运动,牵引力恒定,速度逐渐增大,根据P=Fv 可知,汽车的功率逐渐增大,故B错误;C.t1~t2时间内汽车做变加速直线运动,平均速度v̅≠v1+v22故C错误;D.t1~t2时间内汽车的功率不变,速度增大,牵引力减小,t2时刻后,牵引力减小到与阻力相同,汽车做匀速直线运动,故t1时刻汽车的牵引力大于t2时刻汽车的牵引力,故D错误。

机械能守恒定律知识点和典型例题

机械能守恒定律知识点和典型例题

机械能守恒定律知识点和典型例题机械能守恒定律复习【知识要点】⼀功1、做功的两个必要因素⼀个⼒作⽤在物体上,物体在⼒的⽅向上发⽣了位移,就说此⼒对物体做了功.功是⼒在其作⽤空间上的累积,过程量,是能量转化的标志和量度.做功的两个必要因素:⼒和在⼒的⽅向上发⽣的位移.2公式W=Fscosα(恒⼒求功)即式中的F必须为恒⼒,s是对地的位移,α指的是⼒与位移间的夹⾓.功的国际单位:焦⽿,符号J.3、正功和负功功是标量,但也有正,负之分.功的正负仅表⽰⼒在物体运动过程中,是起动⼒还是阻⼒的作⽤.从表达式看,功的正,负取决于⼒F与位移s的夹⾓α.当0≤α<90°时,W为正,表⽰⼒F对物体做正功,这时的⼒是动⼒.当a=90°时,W=0,表⽰⼒对物体不做功,这时的⼒既不是动⼒,也不是阻⼒.当90°<α≤180°时,W为负,表⽰⼒F对物体做负功,这时的⼒是阻⼒.4、总功的计算总功的计算有两种⽅法:(1)若合⼒是恒⼒,先求合⼒F的⼤⼩和⽅向,再求合⼒F所做的功,即为总功.W=Fscosα(合⼒为恒⼒)(2)先求作⽤在物体上的各个⼒所做的功,再求其代数和.(不要⽤平⾏四边形定则,要带⼊正负)W=W1+ W2+ W3+ W4+……(⼀般情况下采⽤第⼆种⽅法计算总功)5、变⼒做功(1)对于随位移均匀变化的⼒F,可先求平均⼒F,再利⽤W=F平均s cosα求功;或利⽤F-S图像与(必是⼀条倾斜的直线)坐标轴围成的图形⾯积表⽰功例:物体A所受的⼒F随位移S发⽣如图8所⽰的变化,求在这⼀过程中,⼒F对物体做的功是多少?物体A所受的⼒F随位移S发⽣如图8所⽰的变化,求在这⼀过程中,⼒F对物体做的功是多少?(2)若⼒是⾮均匀变化的,则⼀般⽤动能定理间接地求功.⼆功率功与完成这些功所⽤时间的⽐值叫做功率,它是描述⼒做功快慢的物理量.在国际单位制中,功率的单位是w(⽡特).1、平均功率:P平均=W/t ,由W=FScosα可知,平均功率也可表⽰为P平均=Fv平均cosα,其中v平均为时间t内的平均速度,α则为⼒与平均速度之间的夹⾓。

机械能守恒定律典型例题

机械能守恒定律典型例题

机械能守恒定律典型例题一、单物体在重力作用下的机械能守恒1. 例题- 质量为m = 1kg的物体从离地面h = 5m高处以初速度v_0= 10m/s水平抛出,不计空气阻力,求物体落地时的速度大小。

2. 解析- (1)首先分析物体的运动过程,物体在平抛运动过程中,只有重力做功。

- (2)取地面为零势能面,根据机械能守恒定律E_1=E_2。

- (3)物体抛出时的机械能E_1包括动能E_k1和重力势能E_p1。

- 动能E_k1=(1)/(2)mv_0^2=(1)/(2)×1×10^2 = 50J。

- 重力势能E_p1=mgh = 1×10×5=50J。

- 所以E_1=E_k1 + E_p1=50 + 50 = 100J。

- (4)物体落地时的机械能E_2只有动能E_k2(因为重力势能E_p2 = 0)。

- (5)由E_1=E_2,即100=(1)/(2)mv^2,解得v=√(frac{2×100){1}} =10√(2)m/s。

二、系统内物体间机械能守恒(轻绳连接)1. 例题- 如图所示,一轻绳跨过定滑轮,两端分别系着质量为m_1和m_2的物体(m_1,m_2开始时静止在地面上,当m_1由静止释放下落h高度时(m_1未落地),求此时m_2的速度大小。

(不计滑轮质量和摩擦)2. 解析- (1)对于m_1和m_2组成的系统,只有重力做功,系统机械能守恒。

- (2)设m_1下落h高度时,m_1和m_2的速度大小均为v。

- (3)以地面为零势能面,系统初始机械能E_1为m_1的重力势能m_1gh。

- (4)系统末态机械能E_2为m_1的动能(1)/(2)m_1v^2、m_1的重力势能m_1g(h - h)(此时m_1相对于初始位置下降了h),以及m_2的动能(1)/(2)m_2v^2和m_2的重力势能m_2gh。

- (5)根据机械能守恒定律E_1=E_2,即m_1gh=(1)/(2)m_1v^2+(1)/(2)m_2v^2+m_2gh。

机械能守恒定律典型例题精析(附答案)(样例5)

机械能守恒定律典型例题精析(附答案)(样例5)

机械能守恒定律典型例题精析(附答案)(样例5)第一篇:机械能守恒定律典型例题精析(附答案)机械能守恒定律一、选择题1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。

两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。

A、W1=W2,E1=E2B、W1≠W2,E1≠E2C、W1=W2,E1≠E2D、W1≠W2,E1=E22.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是() A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小B.匀速上升和加速上升机械能增加,减速上升机械能减小C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况D.三种情况中,物体的机械能均增加3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是()A.小球动能减少了mgHB.小球机械能减少了F阻HC.小球重力势能增加了mgHD.小球的加速度大于重力加速度g4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中()A.小球和弹簧组成的系统机械能守恒B.小球和弹簧组成的系统机械能逐渐增加C.小球的动能逐渐增大D.小球的动能先增大后减小二、计算题1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD 段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。

一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A点到CD间的竖直高度为h,CD(或BD)间的距离为s,求推力对物体做的功W为多少?2.一根长为L的细绳,一端拴在水平轴O上,另一端有一个质量为m的小球.现使细绳位于水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度.(1)这个初速度至少多大,才能使小球绕O点在竖直面内做圆周运动?(2)如果在轴O的正上方A点钉一个钉子,已知AO=2/3L,小球以上一问中的最小速度开始运动,当它运动到O点的正上方,细绳刚接触到钉子时,绳子的拉力多大?3.如图所示,某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移s1=3m,着地时由于存在能量损失,着地后速度变为v=4m/s,并以此为初速沿水平地面滑行s2=8m后停止,已知人与滑板的总质量m=60kg。

(word完整版)高中物理机械能守恒定律经典例题及技巧

(word完整版)高中物理机械能守恒定律经典例题及技巧

一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。

(2)固定的光滑斜面类。

(3)固定的光滑圆弧类。

(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。

那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

高一物理人教版必修2(第21课时 机械能守恒定律) Word版含解析

高一物理人教版必修2(第21课时 机械能守恒定律)  Word版含解析

绝密★启用前第七章 机械能守恒定律 8. 机械能守恒定律第Ⅰ部分 选择题一、选择题:本题共8小题。

将正确答案填写在题干后面的括号里。

1.以下说法正确的是( )A .物体做匀速运动,它的机械能一定守恒B .物体所受合力的功为零,它的机械能一定守恒C .物体所受的合力不等于零,它的机械能可能守恒D .物体所受的合力等于零,它的机械能一定守恒2.在下列几个实例中,机械能守恒的是()A .在平衡力作用下运动的物体B .在光滑水平面上被细线拴住做匀速圆周运动的小球C .如图甲所示物体沿固定光滑14圆弧面下滑 D .如图乙所示,在光滑水平面上压缩弹簧过程中的小球3.如图所示,弹簧固定在地面上,一小球从它的正上方A 处自由下落,到达B 处开始与弹簧接触,到达C 处速度为0,不计空气阻力,则在小球从B 到C 的过程中()A .弹簧的弹性势能不断增大B .弹簧的弹性势能不断减小C .系统机械能不断减小D .系统机械能保持不变4.如图所示,细绳跨过定滑轮悬挂两物体M 和m ,且M >m ,不计摩擦,系统由静止开始运动的过程中()A .M 、m 各自的机械能分别守恒B .M 减少的机械能等于m 增加的机械能C .M 减少的重力势能等于m 增加的重力势能D .M 和m 组成的系统机械能守恒5.把质量为3kg 的石块从20m 高的山崖上以沿水平方向成30°角斜向上的方向抛出(如图所示),抛出的初速度v 0=5m/s ,石块落地时的速度大小与下面哪些量无关(g 取10 m/s 2,不计空气阻力)()A .石块的质量B .石块初速度的大小C .石块初速度的仰角D .石块抛出时的高度6.以相同大小的初速度v 0将物体从同一水平面分别竖直上抛、斜上抛、沿光滑斜面(足够长)上滑,如图所示,三种情况达到的最大高度分别为h 1、h 2和h 3,不计空气阻力(斜上抛物体在最高点的速度方向水平),则()A .h 1=h 2>h 3B .h 1=h 2<h 3C .h 1=h 3<h 2D .h 1=h 3>h 27.如图是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底部B 处安装一个压力传感器,其示数N 表示该处所受压力的大小.某滑块从斜面上不同高度h 处由静止下滑,通过B 时,下列表述正确的有()A .N 小于滑块重力B .N 大于滑块重力C .N 越大表明h 越大D .N 越大表明h 越小8.有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为()A.24v gB.23v gC.223v gD.243v g第Ⅱ部分 非选择题二、非选择题:本题4个小题。

高中的物理机械能守恒定律经典例题和技巧

高中的物理机械能守恒定律经典例题和技巧

一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。

(2)固定的光滑斜面类。

(3)固定的光滑圆弧类。

(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。

那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

机械能守恒定律典型例题.

机械能守恒定律典型例题.

系统间的相互作用力分为三类: 刚体产生的弹力:比如轻绳的弹力,斜面的弹力, 轻杆产生的弹力等 弹簧产生的弹力:系统中包括有弹簧,弹簧的弹 力在整个过程中做功,弹性势能参与机械能的转 换。 其它力做功:比如炸药爆炸产生的冲击力,摩擦 力对系统对功等。 在前两种情况中,轻绳的拉力,斜面的弹力,轻 杆产生的弹力做功,使机械能在相互作用的两物 体间进行等量的转移,系统的机械能还是守恒的。 虽然弹簧的弹力也做功,但包括弹性势能在内的 机械能也守恒。但在第三种情况下,由于其它形 式的能参与了机械能的转换,系统的机械能就不 再守恒了。

在整个机械能当中,只有A的重力势能减小, A球的动能以及B球的动能和重力势能都增 加,我们让减少的机械能等于增加的机械 能。有:
1 1 2 2 mg 2 L mgL mv A mv B 2 2
根据同轴转动,角速度相等可知
v A 2v B
2 2 gLvB gL 所以: v A 2 5 5 需要强调的是,这一类的题目要根据同轴转动, 角速度相等来确定两球之间的速度关系
v0 s 2 g sin
例3:固定的光滑圆弧竖直放置,
半径为R,一体积不计的金属球在 圆弧的最低点至少具有多大的速度 才能作一个完整的圆周运动?
分析:物体在运动过程中受到重力和圆弧的 压力,但只有重力做功,因此物体的机械 能守恒,选物体运动的最低点为重力势能 的零势面,
1 1 2 2 mv 0 mg 2 R mv t 2 2
在能量转化中,m的重力势能减小,动能增加, M的重力势能和动能都增加,用机械能的减少 量等于增加量是解决为一类题的关键
1 1 2 2 mgh Mgh sin Mv mv 2 2 可得 2 gh(m M sin )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。

(2)固定的光滑斜面类。

(3)固定的光滑圆弧类。

(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。

那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。

因此只有重力做功,物体的机械能守恒。

例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为θ,然后从静止释放,求小球运动到最低点小球对悬线的拉力分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等221)cos 1(t mv mgL =-θ 得:)cos 1(22θ-=gL v t 由向心力的公式知:Lmv mg T t 2=-可知θcos 23mg mg T -= 作题方法:一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。

注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。

这在计算中是要特别注意的。

习题:1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a >L b >L c ,则悬线摆至竖直位置时,细线中张力大小的关系是( )A T c >T b >T aB T a >T b >T cC T b >T c >T aD T a =T b =T c2、一根长为l 的轻质杆,下端固定一质量为m 的小球,欲使它以上端o 为转轴刚好能在竖直平面内作圆周运动(如图),球在最低点A 的速度至少多大?如将杆换成长为L 的细线,则又如何?3、如图,一质量为m 的木块以初速V 0从A 点滑上半径为R 的光滑圆弧轨道,它通过最高点B 时对轨道的压力FN 为多少?4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:(1)小球滑至圆环顶点时对环的压力;(2)小球至少要从多高处静止滑下才能越过圆环最高点;(3)小球从h 0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。

二、系统的机械能守恒由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。

不做功,系统的机械能就不变。

(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。

系统内物体的重力所做的功不会改变系统的机械能系统间的相互作用力分为三类:1) 刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2) 弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3) 其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。

虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。

但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。

归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。

(4)悬点在水平面上可以自由移动的摆动类。

(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,倾角为θ的光滑斜面上有一质量为M 的物体,通过一根跨过定滑轮的细绳与质量为m 的物体相连,开始时两物体均处于静止状态,且m 离地面的高度为h ,求它们开始运动后m 着地时的速度?分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。

它们分别是:M 所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用力F 。

M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键222121sin mv Mv Mgh mgh ++=θ 可得mM M m gh v +-=)sin (2θ 需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的速度关系例:如图,光滑斜面的倾角为θ,竖直的光滑细杆到定滑轮的距离为a ,斜面上的物体M 和穿过细杆的m 通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m 的轻绳处于水平状态,放手后两物体从静止开始运动,求m 下降b 时两物体的速度大小?(2)轻杆连体类这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,质量均为m 的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L 、2L ,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A 球受到的重力、B 球受到的重力、轴对杆的作用力。

两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A 球做负功,对B 球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有A 的重力势能减小,A 球的动能以及B 球的动能和重力势能都增加,我们让减少的机械能等于增加的机械能。

有:2221212B A mv mv mgL L mg ++= 根据同轴转动,角速度相等可知B A v v 2=所以:⎩⎨⎧==gL v gL v B A 52522 需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系(3)在水平面上可以自由移动的光滑圆弧类。

光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:四分之一圆弧轨道的半径为R ,质量为M ,放在光滑的水平地面上,一质量为m 的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?分析:由圆弧和小球构成的系统受到三个力作用,分别是M 、m 受到的重力和地面的支持力。

m 的重力做正功,但不改变系统的机械能,支持力的作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆弧和球之间的弹力,弹力对m 做负功,对M 做正功,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有m 的重力势能减小,m 的动能以及M 球的动能都增加,我们让减少的机械能等于增加的机械能。

有:222121m M mv Mv mgR += 根据动量守恒定律知 M m Mv mv -=0 所以:⎩⎨⎧+=+=)(2)(2m M M gR M v m M M gR m v M m (4)悬点在水平面上可以自由移动的摆动类。

悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:质量为M 的小车放在光滑的天轨上,长为L 的轻绳一端系在小车上另一端拴一质量为m 的金属球,将小球拉开至轻绳处于水平状态由静止释放。

相关文档
最新文档