五年级奥数题:约数与倍数(A)

合集下载

奥数专题数论-约数倍数附答案

奥数专题数论-约数倍数附答案

(数论问题约数倍数)1、 五年级数论问题:约数倍数难度:中难度答:2、五年级数论问题:约数倍数难度:中难度答3、 五年级数论问题:约数倍数难度:中难度答:一个数乘2是4的倍数,乘3是9的倍数,乘4是16的倍数,乘5是25的倍数,乘6是36的倍数,乘7是49的倍数,乘8是64的倍数,乘9是81的倍数.这个数最小是?甲、乙两个自然数的最大公约数是7,并且甲数除以乙数所得的商是l 81.乙数是_____. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友,结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有几个人?4、五年级数论问题:约数倍数难度:中难度爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?答:5、五年级数论问题:约数倍数难度:中难度/高难度两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.答:(数论问题)1、五年级数的约数倍数答案:解答:依题意,这个数同时是2、3、4、5、6、7、8、9的倍数.因此,这个数最小是2,3,4,5,6,7,8,9的最小公倍数,即[2,3,4,5,6,7,8,9]=5×7×8×9=2520.2、五年级数的约数倍数答案:解答:由(甲,乙)=7,且甲:乙=89,得乙数=7×8=56..3、五年级数的约数倍数答案:解答:根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公约数.所以,这个大班的小朋友最多有36人.4、五年级数的约数倍数答案:解答:爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。

爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。

由此推知,他们的年龄差是6,5,4,3,2的公倍数。

奥数专题之约数倍数问题(1篇)

奥数专题之约数倍数问题(1篇)

奥数专题之约数倍数问题(1篇)奥数专题之约数倍数问题 1关于奥数专题之约数倍数问题A卷1.1998的不同约数有()个.A.20B.16C.14D.122.如果1998×a―b×b×b×b(其中a,b为自然数),那么a的最小值是______.3.对于不小于3的自然数n,规定如下一种操作:(n)表示不是n 的约数的最小自然数,如(7)=2,(l2)=5等等,则((19)×(98))=______.(式中的×表示乘法)4.a、b为自然数,且a=1999b,则a、b的最大公约数与最小公倍数的和等于______.5.有一些四位数,它与9的差能被9整除,它与8的差能被8整除,它与7的差能被7整除,它与6的差能被6整除,这样的数有______个.6.把一块长357m,宽105m,高84m的长方体木块锯成若干个大小相同的正方体木块,要求正方体体积最大,且没有剩余的碎木块(损耗不计),所锯成的正方体木块的边长是______.B卷7.设m和n为大于0的整数,且3m+2n=225。

(1)如果m和n的最大公约数为15,则m+n=____.(2)如果m和n的最小公倍数为45,则m+n=____.8.a、b是彼此不等的非零数字,则与4017的最大公约数是____.9.一个自然数与13和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是_____。

10.两个正整数的和是60,它们的最小公倍数是273,则它们的成积是()A.273B.819C.1911D.354911.小学生小明问爷爷今年多大年纪,爷爷回答说:“我今年岁数是你今年岁数的7倍多,过几年变成你的6倍,又过几年变成你的5倍,再过若干年变成你的4倍,你说我今年多少岁?”小明计算一番,明白了爷爷今年是______岁.12.自然数a,b,c,d,e都大于1,其乘积abcde=2000,则其和a+b+c+d+e的最大值为___,最小值为___.13.用(a,b)表示a、b两数的最大公约数,[a,b]表示a、b两数的最小公倍数,例如,(4,6)=2,(4,4)=4,[4,6]=12,[4,4]=4.设a、b、c、d是不相等的自然数,(a,b)=P,(c,d)=Q,[P,Q]=x;[a,b]=M,[c,d]=N,(m,n)=Y.则().A.x是y的倍数,但x不是y的约数B.x是y的倍数或约数都有可能,但x≠yC.x是y的`倍数、约数或x=y三者必居其一D.以上结论都不对C卷14.张华、李亮、王民三位同学分别发出新年贺卡x、y、z张,如果已知x、y、z的最小公倍数为60;x、y的最大公约数为4;y、z的最大公约数为3.那么,张华发出的新年贺卡是多少张?15.甲、乙二人骑自行车于同时同地出发,沿着圆形跑道按逆时针方向行驶,甲每分钟行驶跑道的圈,乙每分钟行驶跑道的圈,那么,从出发时刻起,到他们同时回到出发地,至少需要的时间是()A分B分C分D 分16.23个不同的正整数的和是4845,问:这23个数的最大公约数可能达到的最大的值是多少?写出你的结论,并说明理由。

五年级奥数约数和倍数

五年级奥数约数和倍数

3、约数与倍数一、填空:1、5184的全部约数有个,所有约数的和是。

2、区教委为表彰优秀教师,教师节那天,买来了菊花168支,玫瑰花252支,康乃馨210支。

如果要使每束花中三种花的支数彼此相等,用这些鲜花最多可以表彰______位优秀教师,每束花共有______支。

3、学校要选拔三名运动员参加区田径比赛,选出的这三位运动员的年龄刚好一个比一个大一岁。

体育老师还告诉大家,这三个运动员年龄的最小公倍数是1092。

那么这三个人中年龄最大的是岁。

4、化肥厂包装车间对化肥进行包装,需要经过:扎编织袋、装化肥入袋、缝袋口、搬运4道工序。

每人每小时能扎编织袋24个,或装化肥36袋,或缝袋口18只,或搬运化肥16袋。

这个车间至少要名工人才能进行合理分工。

5、炼化公司的文化广场上有一些五彩缤纷的“烟花”彩灯。

有一座“烟花”彩灯上装有100支彩色灯管,这些灯管的亮暗变化十分有趣,这100个灯管按1~100编号,它们的亮暗变化规律是:第一秒全部变亮,第二秒凡编号为2的倍数灯由亮变暗,第三秒凡编号为3的倍数的灯改变原来的亮暗状态(亮的变暗,暗的变亮);…………………………第100秒100倍数的灯改变原来的亮暗状态。

问第100秒时,亮着的灯管有个。

6、王斌每隔7天去图书馆借一次书,李兴每隔10天去借一次书,陈军每隔15天去借一次书。

已知4月20日他们在一起借书,那么离4月20日最近的是_______月______日,他们三人又在同一天借书。

7、如图是一个小区街道的示意图,街道在B、C处拐弯,现要在街道一侧等距离地装上路灯,并要求在路的两端和拐弯处各装一盏路灯,这条街道最少要装_______盏路灯。

8、有4个自然数,它们的和是1067,这四个数的公约数最大可以是_________。

二、解答题:9、甲、乙两位同学写了两个数给老师看,老师看后告诉大家:甲、乙写的是两个不互质的自然数,甲写的数除以9,乙写的数除以10后,不改变这两个数的最大公约数,甲、乙写的两个数的最小公倍数是180。

五年级数学窍门快速解决倍数和约数问题

五年级数学窍门快速解决倍数和约数问题

五年级数学窍门快速解决倍数和约数问题五年级数学窍门:快速解决倍数和约数问题数学是一门涉及逻辑思维和计算能力的学科,对于小学生来说,掌握好基础的数学概念和解题方法尤为重要。

其中,倍数和约数问题是数学中常见的考点。

本文将为五年级的同学们介绍一些快速解决倍数和约数问题的窍门。

一、倍数问题倍数是指某个数可以被另一个数整除,也就是一个数是另一个数的倍数。

解决倍数问题的关键在于灵活运用数的基本性质和规律。

以下是一些快速解决倍数问题的技巧:1. 观察数字的个位数:如果一个数的个位数是0、2、4、6、或8,那么他一定能被2整除,即是2的倍数。

同理,如果一个数的个位数是0或5,那么他一定能被5整除,即是5的倍数。

2. 末尾连续零的情况:当一个数字末尾有连续的零时,我们可以直接判断这个数是10或100等的倍数。

例如,末尾有一个零的数是10的倍数,末尾有两个零的数是100的倍数等等。

3. 观察个位数之和:如果一个数的个位数之和能被3整除,那么这个数一定是3的倍数。

例如,12的个位数之和为1+2=3,所以12是3的倍数。

4. 观察个位数是否为5:如果一个数的个位数是5且末尾没有零,那么这个数一定是5的倍数。

例如,75是5的倍数,而80不是5的倍数。

5. 利用数位之间的关系:如果一个数的各个数位之和能被9整除,那么这个数一定是9的倍数。

例如,36的各位数之和是3+6=9,所以36是9的倍数。

以上是一些解决倍数问题的方法,同学们可以根据具体的题目灵活运用。

二、约数问题约数是指能够整除一个数的正整数,也可称为因数。

解决约数问题的关键是了解约数的性质和运算规律。

以下是一些快速解决约数问题的技巧:1. 观察数的因数个数:如果一个数的因数个数大于2,那么这个数一定不是质数。

例如,6的因数有1、2、3和6,共有4个,所以6不是质数。

2. 利用数的质因数分解:对于一个数,可以将其分解为质数的乘积形式。

例如,12可以分解为2×2×3,因此12的所有约数包括1、2、3、4、6和12。

【教育资料】五年级奥数题及答案:约数倍数问题(高等难度)学习精品

【教育资料】五年级奥数题及答案:约数倍数问题(高等难度)学习精品

五年级奥数题及答案:约数倍数问题(高等难度)
结合目前学生的学习进度,查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题约数倍数问题(高等难度),可以帮助到你们!一分耕耘一分收获!奥数习题万变不离其宗,相信大家平时多动脑、多练习、多积累,掌握学习方法与技巧,通过自己的努力,一定能够取得优异的成绩!
约数倍数:(高等难度)
若 a , b , c 是三个互不相等的大于0的自然数,且a + b + c = 1155 ,则它们的最大公约数的最大值为(),最小公倍数的最小值为(),最小公倍数的最大值为()
约数倍数答案:
解答:165、660、57065085
1) 由于a + b + c = 1155,而
1155=3×5×7×11。

令a=mp,b=mq,c=ms.m 为a,b,c的最大公约数,则p+q+s最小取7。

此时m=165.
2) 为了使最小公倍数尽量小,应使三个数的最大公约数m
尽量大,并且使A,B,C的最小公倍数尽量小,所以应使m=165,A=1,B=2,C=4,此时三个数分别为165,330,660,它们的最小公倍数为660,所以最小公倍数的最小值为660。

3) 为了使最小公倍数尽量小,应使三个数两两互质且乘积尽量大。

当三个数的和一定时,为了使它们的乘积尽量大,应使它们尽量接近。

由于相邻的自然数是互质的,所以可以令1155=384+385+386,但是在这种情况下384和386有公约数2,而当1155=383+385+387时,三个数两两互质,它们的最小公倍数为383×385×387=57065085,即最小公倍数的最大值为57065085。

五年级奥数约数与倍数(一)学生版

五年级奥数约数与倍数(一)学生版

1. 五年级奥数约数与倍数(一)学生版2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识, 例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系; (2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念[1]约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;[2]公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;[3]最大公约数:公约数中最大的一个就是最大公约数;[4]0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.[如果最后的除数是1,那么原来的两个数是互质的].例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以知识点拨教学目标5-4-1.约数与倍数(一)n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数[1]倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数[2]公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数[3]最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。

五年级奥数因数与倍数(A级)

五年级奥数因数与倍数(A级)

一、 因数的概念与最大公因数0被排除在因数与倍数之外1. 求最大公因数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=; ②短除法:先找出所有共有的因数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公因数.用辗转相除法求两个数的最大公因数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公因数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公因数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公因数是15.2. 最大公因数的性质①几个数都除以它们的最大公因数,所得的几个商是互质数;②几个数的公因数,都是这几个数的最大公因数的因数;③几个数都乘以一个自然数n ,所得的积的最大公因数等于这几个数的最大公因数乘以n .3. 求一组分数的最大公因数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公因数b ;b a即为所求. 二、倍数的概念与最小公倍数1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=;②短除法求最小公倍数; 例如:2181239632,所以[]18,12233236=⨯⨯⨯=; ③[,](,)a b a b a b ⨯=. 2. 最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公因数是其中较小的数,最小公倍数是较大的数.知识框架 因数与倍数数b;ba即为所求.例如:35[3,5]15[,]412(4,12)4==注意:两个最简分数的最大公因数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦三、最大公因数与最小公倍数的常用性质1.两个自然数分别除以它们的最大公因数,所得的商互质。

五年级奥数约数与倍数

五年级奥数约数与倍数

五年级奥数约数与倍数Prepared on 21 November 2021理解记忆理论部分-☆星级☆约数和倍数;若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

☆公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

☆最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、1218的约数有:1、2、3、6、9、18那么12和18的公约数有:1、2、3、6那么12和18最大的公约数是:6记作(12,18)=6☆求最大公约数的基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

思维方法巩固训练部分-☆星级■经验规律总结:通过举例观察两个数的最大公约数与它们的和、差、积之间的关系。

1.求(26,78)、(196,165)、(55,84,141)2.两个自然数的和是88,最大公约数是8,求这两个数。

3.两个自然数的积是384,最大公约数是8,求这两个数。

4.已知两数的和是104055,这两个数的最大公约数是6937,求这两个数。

5.若两个数的积是5766,它们的最大公约数是31,求这两个数。

6.有男同学27人,女同学18人,一起去划船(每条船不超过6人),要保证每条船上男女同学都分别相等,应该租几条船?7.把一张长120厘米,宽80厘米的长方形的纸裁成同样大小的正方形(纸无剩余),至少能裁多少张?8.9.把长132厘米,宽60厘米,厚36厘米的木料,锯成尽可能大的同样的大小的正方体,求锯成的正方体的棱长与锯成的块数。

小学奥数知识总结手册—约数与倍数.doc

小学奥数知识总结手册—约数与倍数.doc

小学奥数知识总结手册—约数与倍数
约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小
的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法。

奥数讲义数论专题:约数与倍数

奥数讲义数论专题:约数与倍数

华杯赛数论专题:约数与倍数基础知识:1. 如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数.如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数. 自然数a、b、c的最大公约数通常用符号(a,b,c)表示.例如:(8,12)=4,(6,9,15)=3.2. 互质定义:如果两个或几个数的最大公约数为1,则称这两个或几个数互质.3.如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数. 自然数a、b、c的最小公倍数通常用符号[a,b,c]表示.例如:[8,12]=24,[6,9,15]=90.4.约数个数公式、约数和公式.5.求最大公约数和最小公倍数的基本方法:(1)分解质因数法:将每个数分解质因数,观察这些数中包含哪些质因数,①找公共部分,并将这些数的公共部分相乘,所得乘积即为这组数的最大公约数;②观察这些质因数的最高次方,并相乘,所得乘积即为这组数的最小公倍数.(2)辗转相除法: 两数为a、b的最大公约数(a,b)的步骤如下:用b除a,得a =bm......x(0≤x). 若x=0,则(a,b)=b;若x≠0,则再用x除b,得b=xn......y (0≤y).若y=0,则(a,b)=x,若y≠0,则继续用y除x,则继如此下去,直到能整除为止.其最后一个非零除数即为(a,b).(3)两个数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积:(a,b)×[a,b] =a×b.例题:例1.360有多少个约数?【答案】24【解答】,所以360共有24个约数.例2. 一个数是6的倍数,但它的约数之和与6互质,这个数最小是.【答案】36【解答】这个数可以表示成,与6互质,所以x≥2,y≥2,故最小数为.例3.甲、乙两个自然数的乘积比甲数的平方小1988,那么满足上述条件的自然数有几组?【答案】6组【解答】,由此得a和a-b的值为1988的互补因子.1988有(1+1)×(1+1)×(2+1)=12个约数,所以答案为6组.例4.已知将自然数84的全部约数的乘积分解质因数为,那么△+◇+□等于.【答案】24【解答】,它有3×2×2=12个约数.这些约数可以分成两两一组,使得同一组的两个数的乘积就是84,因此所有这些约数的乘积就是 .所以△+◇+□=12+6+6=24.例5.两数乘积为2800,而且已知其中一数的约数个数比另一数的约数个数多1.那么这两个数分别是 .【答案】175和16【解答】,两数的约数个数相差1,则两数约数的个数必为一奇一偶.而一个数的约数个数为奇数,它必为完全平方数,它可能是1、、、、、,经试验只有这个平方数取,另一个数为时,分别有5、6个约数.所以这两个数分别为175和16.例6.三位数A的所有奇约数之和是403,那么A最大可能是多少?【答案】900【解答】先考虑A的奇数部分B,利用奇偶分析可知B有奇数个约数,所以B是完全平方数,又403<21×21,所以B只可能是、……可得B=225. 那么A最大是225×4=900.例7.一个正整数是2004的倍数,且恰有24个约数是偶数,那么这个数最多有个约数是奇数.【答案】12【解答】2004是4的倍数,所以偶约数至少是奇约数的2倍,所以为12个.例8.小文买红蓝两种笔各1支用了17元,两种笔的单价都是整元,并且红笔比蓝笔贵.小张打算用35元来买这两种笔(允许全部买其中一种),可是他无论怎样买都不能恰好把35元用完,问红笔、蓝笔每支各多少元?【答案】红笔每支13元,蓝笔每支4元【解答】35=5×7,两种笔的单价不能是5元和7元(否则35元可全部用完);由于不是5元和7元,那么也不是17-5=12(元)和17-7=10(元);17元可用完,而35元不能用完,那么笔价不会是35-17=18(元)的约数:1、2、3、6、9、18,当然也不会是17-1=16、17-2=15、17-3=14、17-6=11、17-9=8,故笔价又排除了:1、2、3、6、8、9、11、14、15、16.综上所述,只有4和13未被排除,而4+13=17,所以红笔每支13元,蓝笔每支4元.例9.求15708和6468的最大公约数、最小公倍数.【答案】924,109956【解析】方法一:方法二:15708=6468×2+2772 6468=2772×2+9242772=924×3例10.1007、10017、100117、1001117和10011117的最大公约数是 .【答案】53【解析】因为1007×10-10017=53,所以最大公约数肯定是53或1.因为1007=53×19,而且数列中每个数都是前一个数的10倍减去53,所以只要前一个数是53的倍数那么后一个数就也是53的倍数,因此数列中每个数都是53的倍数.例11.已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【答案】147或105【解析】要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b.因为这两个数的最大公约数是21,故设a=21m,b=21n,且(m,n)=1.因为这两个数的最小公倍数是126,所以126=21×m×n,于是m×n=6,因此,这两个数的和为21+126=147,或42+63=105.所以这两个数的和为147或105.例12.已知自然数A、B满足以下两个性质:(1)A、B不互素;(2)A、B的最大公约数与最小公倍数之和为35.那么A+B的最小值是多少?【答案】25【解析】A、B的最大公约数一定是它们最小公倍数的约数.因为A、B的最大公约数与最小公倍数的和是35,所以35是两数最大公约数的倍数.它们的最大公约数可能是5或7.如果A、B的最大公约数是5,则A、B的最小公倍数是30,此时有A=5、B=30或A=10、B=15;如果A、B的最大公约数是7,则A、B的最小公倍数是28,此时有A=7,B=28.所以A+B的最小值为10+15=25.例13.两个数的最小公倍数比它们的最大公约数的3倍多15,请写出这两个数的所有可能值.【答案】1和18, 2和9, 3和24, 5和30,10和15, 15和60【解析】设两个数a、b,则[a,b]=3×(a,b)+15,且15是(a,b)的倍数,故a和b可以为1和18, 2和9, 3和24, 5和30,10和15, 15和60.例14. 三位数☆◇☆与四位数☆☆◇◇的最大公约数是22,那么☆+◇=.【答案】6【解析】两个数的最大公约数是22,☆☆◇◇是11的倍数,所以◇是偶数,22是☆◇☆的约数,☆是偶数,◇=2☆,所以◇=4,☆=2,所以◇+☆=6.例15.试用2,3,4,5,6,7六个数字组成两个三位数,使这两个三位数与540的最大公约数尽可能大?【答案】324、756【解析】因为,而2,3,4,5,6,7中只有一个5,因此这六个数字组成的两个三位数中不会有公约数5,所以这两个三位数与540的最大公约数只可能为,再进行试验,108×2=216,216中1不是已知数字,108×3=324,还剩5,6,7三个数字,而108×7=756,于是问题得到解决.例16.定义表示a和b的最大公约数,那么使得和同时成立的三位数a= .【答案】237【解析】根据题意:是21的倍数,所以a是3的倍数,a除以7余6,a+63是60的倍数,a除以4余1,a除以5余2,所以a=60×4-3=237.例18.已知a与b,a与c,b与c的最小公倍数分别是60,90和36。

高斯小学奥数五年级上册含答案_第10讲_约数与倍数

高斯小学奥数五年级上册含答案_第10讲_约数与倍数

第十讲约数与倍数在前面的章节,我们学习了数论中的整除和质数合数等知识.今天,我们来学习数论中有关约数与倍数的知识.约数和倍数的定义是这样的:对整数a和b,如果|a b,我们就称a是b的约数(因数),b是a的倍数.=⨯=⨯=⨯,根据定义,我们很容易找到一个数的所有约数,例如对12:因为121122634可知12可以被1、2、3、4、6、12整除,那么它的约数有1、2、3、4、6、12,共6个.从上面12的分拆可以看出,约数具有“成对出现....”的特征,也就是:最大约数对应最小约数、第二大约数对应第二小约数等.所以在写一个数的所有约数时,可以逐对写出.另外如果计算较大约数不太方便,可以转而计算与其成对的较小约数.例题1.12345654321的第三大约数是多少?「分析」第三大约数有点大,那我们可以先求出第三小的约数,再根据它计算第三大的约数.12345678987654321的第二大约数是多少?从上面的分析知,可以通过枚举的方法逐对写出一个数的所有约数,从而可就算出它的约数个数.但是对很大的数,例如20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用枚举可知72共12个约数,分别为1、72;2、36;3、24;4、18;6、12;8、9.因为72的约数能整除72,而72的所有质因数也都能整除72,所以对72进行质因数分解,有:32=⨯,那么72的所有约数应当由若干个2与若干个3构成.显7223然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的约数共⨯=个,见下表(注意0214312=、031=):从72的这个例子,我们可以总结出计算约数个数的一个简单做法:约数个数等于指数加1再相乘例题2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」熟练掌握约数个数的计算公式即可.下列各数分别有多少个约数?18, 47, 243, 196, 450.例题3.3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?「分析」约数既然能整除3600,那说明约数一定包含在3600的因数中.我们知道4223600235=⨯⨯,那么3600的所有约数一定是由若干个2、若干个3和若干个5组成的.如果约数是3的倍数,那么它至少要含有多少个3?3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个约数,根据上面关于约数个数的知识我们可以知道,有奇数个约数的数一定是平方数..............,有偶数个约数的数一定不是平方数................ 72 20 21 22 23 30 00231⨯= 10232⨯= 20234⨯= 30238⨯= 31 01233⨯= 11236⨯=212312⨯=312324⨯= 3202239⨯=122318⨯= 222336⨯=322372⨯=例题4.在小于1000的正整数中,有多少个数有奇数个约数?「分析」有奇数个约数的数一定是平方数,所以只要找出有多少个平方数小于1000即可.在2000到3000中,有多少个数有奇数个约数?把一个数分解质因数后,可以知道它的约数个数,反过来,如果知道一个数的约数个数,虽然并不能知道这个数是多少(例如6和10都有4个约数),但可以知道这个数的质因数分解式的形式,例如有2个约数的数一定是质数,有4个约数的数是3a 或b c ⨯(a 、b 、c 都是质数).下面以16个约数为例,来看一下如何反求质因数分解式:先对16进行分解:1628442242222=⨯=⨯=⨯⨯=⨯⨯⨯. 所以质因数分解式为:15、7⨯、33⨯、3⨯⨯、⨯⨯⨯.例题5.有12个约数的数最小是多少?有多少个两位数的约数个数是12个?「分析」有12个约数的数有什么样的特点呢?2310823=⨯,根据约数个数的计算方法可知108有12个约数.除此之外,3223⨯,3225⨯,甚至形如32a b ⨯(a 、b 为不同的质数)均有12个约数.想一想还有没有其他的可能?关于约数的另一类问题是计算约数和,下以72为例,先利用上面的表格列出72的所有约数,并计算出行和:现在把3个行和相加,得到72的约数和是()()012301222223331513195+++⨯++=⨯=.72 20 21 22 23 行和30 0023⨯ 1023⨯ 2023⨯ 3023⨯ 01230(2222)3+++⨯ 31 0123⨯1123⨯2123⨯3123⨯01231(2222)3+++⨯ 320223⨯ 1223⨯ 2223⨯ 3223⨯01232(2222)3+++⨯根据这个例子,我们可以总结出计算约数和的一般方法:32a b c ⨯⨯的约数和为()()()232111a a a b b c +++⨯++⨯+.例题6.计算下列数的约数和:108、144. 「分析」熟练掌握约数和的计算公式即可.完全数(perfect number)如果一个自然数的真因子(除了自己以外的约数)之和恰好等于这个数本身,这个数就被叫做完全数.完全数又称完美数或完备数,是一类特殊的自然数.利用本讲学过的知识不难知道6和28是最小的两个完全数.公元前6世纪的毕达哥拉斯是最早研究完全数的人,他已经知道6和28是完全数.毕达哥拉斯曾说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身.”不过,或许印度人和希伯来人早就知道它们的存在了.有些《圣经》注释家认为6和28是上帝创造世界时所用的基本数字,他们指出,创造世界花了六天,二十八天则是月亮绕地球一周的日数.圣·奥古斯丁说:“6这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,因为这个数是一个完数,所以上帝在六天之内把一切事物都造好了.”完全数诞生后,吸引着众多数学家与业余爱好者像淘金一样去寻找.它很久以来就一直对数学家和业余爱好者有着一种特别的吸引力,他们没完没了地找寻这一类数字.接下去的两个完全数是公元1世纪,毕达哥拉斯学派成员尼克马修斯发现的,他在其《数论》一书中有一段话如下:“也许是这样:正如美的、卓绝的东西是罕有的,是容易计数的,而丑的、坏的东西却滋蔓不已;是以盈数(真因子之和大于自身的数)和亏数(真因子之和小于自身的数)非常之多,杂乱无章,它们的发现也毫无系统.但是完全数则易于计数,而且又顺理成章:因为在个位数里只有一个6;十位数里也只有一个28;第三个在百位数的深处,是496;第四个却在千位数的尾巴上,接近一万,是8128.它们具有一致的特性:尾数都是6或8,而且永远是偶数.”第五个完全数要大得多,是33550336,它的寻求之路也艰难得多,直到十五世纪才由一位无名氏给出.这一寻找完全数的努力从来没有停止.电子计算机问世后,人们借助这一有力的工具继续探索.笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完美人亦非易事.”时至今日,人们一直没有发现有奇完全数的存在.于是是否存在奇完全数成为数论中的一大难题.目前,只知道即便有,这个数也是非常之大,并且需要满足一系列苛刻的条件.作业1.111111111的第二大的约数是多少?作业2.79、128、180分别有多少个约数?作业3.在小于200的正整数中,有多少个数有偶数个约数?作业4.36的所有约数的和是多少?90的所有约数的和是多少?作业5.240有多少个约数?其中有多少个奇约数?有多少个约数是3的倍数?第十讲 约数与倍数例题1. 答案:1763664903详解:12345654321最小的约数是1,第二小的约数是3,第三小的约数是7,那么第三大的约数是1234565432171763664903÷=.例题2. 答案:2;7;6;9;30详解:23为质数,质数有2个约数.6642=,有617+=个约数.27535=⨯,有11216+⨯+=()()个约数.2222535=⨯,有21219+⨯+=()()个约数.42720235=⨯⨯,有41211130+⨯+⨯+=()()()个约数.例题3. 答案:45;30;27;21 详解:4223600235=⨯⨯,有41212145+⨯+⨯+=()()()个约数.41112130+⨯+⨯+=()()(),有41112130+⨯+⨯+=()()()个约数是3的倍数.42222236002354235=⨯⨯=⨯⨯⨯(),有21212127+⨯+⨯+=()()()个约数是4的倍数.4223236002356235=⨯⨯=⨯⨯⨯(),有31112124+⨯+⨯+=()()()个约数是6的倍数,不是6的倍数的约数有21个.例题4. 答案:31详解:平方数有奇数个约数.1000以内的平方数有22221,2,331,因此有31个数有奇数个约数.例题5. 答案:60,5详解:有12个约数的数分解质因数后,可能是11、5⨯、23⨯、2⨯⨯;对应的最小数分别是2048、96、72、60,那么最小的就是60.其中的两位数除了60、72、96之外还有84和90,共5个.例题6. 答案:(1)280;(2)403 详解:(1)2310823=⨯,它的所有约数之和是()()12413927280++⨯+++=.(2)4214423=⨯,它的所有约数之和是()()124816139403++++⨯++=.练习1. 答案:4115226329218107简答:约数是成对出现的,最大的约数对应最小的约数,第二大的约数对应第二小的约数,12345678987654321的第二小的约数是3,对应的第二大的约数是1234567898765432134115226329218107÷=.练习2. 答案:6,2,6,9,18简答:分解质因数后,指数加1连乘即可.练习3. 答案:32;24;24;11简答:73345623=⨯,约数有8432⨯=个.其中3的倍数有8324⨯=个,4的倍数有6424⨯=个,6的倍数有7321⨯=个,那么有322111-=个不是6的倍数.练习4. 答案:10简答:2000~3000之间的平方数有245、246、…、254,共10个,只有这10个数有奇数个约数.作业1. 答案:37037037简答:111111111第二小的约数为3,因此第二大的约数为.作业2. 答案:2个;8个;18个简答:提示,牢记计算约数个数的方法,并能准确分解质因数.作业3. 答案:185个简答:平方数有奇数个约数,小于200的平方数有,共14个,因此有偶数个约数的数有185个.作业4. 答案:91;234简答:提示,牢记求约数和的公式,并能准确分解质因数. 作业5.答案:20个;4个;10个简答:4240235=⨯⨯,有41111120+⨯+⨯+=()()()个约数.奇约数即不含有因子2,有11114+⨯+=()()个奇约数,有10个约数是3的倍数.22221,2,314111111111337037037÷=。

奥数技巧倍数与约数

奥数技巧倍数与约数

奥数技巧倍数与约数在数学学科中,奥数(奥林匹克数学)是指一种高难度的数学竞赛,旨在培养学生的数学思维能力和解决问题的能力。

奥数涉及的内容广泛,其中的技巧和方法对于提高数学水平和解决实际问题非常有帮助。

本文将重点介绍奥数技巧中与倍数与约数相关的知识和方法。

1.倍数倍数是数学中的一个重要概念,指的是某个数可以被另一个数整除的情况。

具体来说,如果一个数可以被另一个数除尽,那么前者就是后者的倍数。

在奥数中,寻找和计算倍数有一些常用的技巧。

1.1 规律法对于某个给定的数,通过观察它的倍数列表,可以发现其中的规律。

例如,我们想找到50的倍数,可以列出50的倍数表:50,100,150,200,250...我们可以发现,这些数每次增加50。

因此,50的倍数可以用递推公式表示为:50n(n为正整数)这样,我们就可以快速计算任意的50的倍数。

1.2 分解法有时候,我们需要找到一个数的所有倍数。

这时可以通过分解的方法来寻找。

以10为例,我们可以将10分解为2和5的乘积。

因此,10的倍数可以由2和5的倍数相乘得到。

例如:2的倍数:2,4,6,8,10,...5的倍数:5,10,15,20,...因此,10的倍数可以由2和5的倍数相乘得到:10的倍数:10,20,30,40,...2.约数与倍数相反,约数指的是可以整除某个数的因数。

寻找和计算约数也是奥数中的常见问题。

2.1 列举法对于某个数,我们可以逐个列举出所有小于等于它的正整数,看是否可以整除该数。

这种方法适用于小数。

以12为例,我们可以列举出12的所有约数:1,2,3,4,6,12可以看到,1和12都是12的约数,2和6也都是12的约数。

其中的规律是,12的约数可以用两个数相乘得到。

因此,我们可以通过分解12来找到它的约数。

2.2 分解法分解法是寻找约数的一种常用方法。

对于一个数,我们可以将它分解为质数的乘积,然后找到所有可能的组合。

以24为例,我们将24分解为2、2、2和3的乘积:24 = 2 * 2 * 2 * 3根据分解的结果,我们可以得到24的所有约数:1,2,3,4,6,8,12,24通过分解法,我们可以更快地找到一个数的所有约数。

五年级下册第二单元约数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元约数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元约数和倍数能力提高题和奥数题(附答案)一、约数1. 根据题目选择合适的公因数问题:小明有23个同色气球和46个不同色气球,他想将这些气球分成若干组,每组要求气球个数相同且同组的气球颜色必须不同。

那小明可以将这些气球分成几个组?解答:首先,我们需要找出23和46的约数。

23的约数是1和23,46的约数是1、2、23和46。

根据题目要求,分组时气球的个数相同,且颜色不同。

如果每组的气球个数为1个,则颜色相同的气球只能分到同一组,显然不符合题意。

如果每组的气球个数为23个,则颜色相同的气球必然可以分到不同的组中,符合题意。

因此,小明可以将这些气球分成$ \frac{46}{23} = 2 $个组。

2. 利用最大公约数求解问题:小明有36个草莓和30个樱桃,他想将这些水果放在盘子里,每个盘子里的水果个数要相同且相同类别的水果只能放在同一个盘子里。

那小明可以将这些水果放在几个盘子里?解答:首先,我们需要找出36和30的最大公约数。

36和30的最大公约数是6。

根据题目要求,每个盘子里的水果个数要相同,且相同类别的水果只能放在同一个盘子里。

因此,小明可以将这些水果放在$ \frac{36}{6} = 6 $个盘子里。

二、倍数1. 确定最小公倍数问题:电车每隔15分钟经过一次车站,公交车每隔12分钟经过一次车站,那么电车和公交车将同时经过这个车站的最早的时间点是什么时候?解答:我们首先找出电车和公交车的最小公倍数。

15和12的最小公倍数是60。

根据题目,我们只需要找出电车和公交车同时经过这个车站的最早的时间点,即找出60分钟的整数倍。

因此,电车和公交车将同时经过这个车站的最早的时间点是60分钟后,即1小时后。

2. 判断是否满足给定条件问题:某工厂的产品每7天生产一批,每21天进行一次质检。

那么多少天后他们会同时发生?解答:我们首先分别找出产品生产和质检的最小公倍数。

7和21的最小公倍数是21。

五年级奥数教师解析版含答案 14.约数与倍数

五年级奥数教师解析版含答案  14.约数与倍数

一个整数的约数个数与约数和的计算方法,两数的最大公约数与最小公倍数之间的关系,分数的最小公倍数.涉及一个整数的约数,以及若干整数最大公约数与最小公倍数的问题,其中质因数分解发挥着重要作用.1.数360的约数有多少个?这些约数的和是多少?【分析与解】 360分解质因数:360=2×2×2×3×3×5=23×32×5;360的约数可以且只能是2a×3b×5c,(其中a,b,c均是整数,且a为0~3,6为0~2,c为0~1).因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24.我们先只改动关于质因数3的约数,可以是l,3,32,它们的和为(1+3+32),所以所有360约数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的约数,可以是l,2,22,23,它们的和为(1+2+22+23),所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5).于是,我们计算出值:13×15×6=1170.所以,360所有约数的和为1170.评注:我们在本题中分析了约数个数、约数和的求法.下面我们给出一般结论:I.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)Ⅱ.约数的和是在严格分解质因数后,将M的每个质因数最高次幂的所有约数的和相乘所得到的积.如:21000=23×3×53×7,所以21000所有约数的和为(1+2+22+23)×(1+3)×(1+5+52+53)×(1+7)=74880.2.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?【分析与解】设这个数为A,有A=25×33×56×7,99=3×3×11,98=2×7×7,97均不是A的约数,而96=25×3为A的约数,所以96为其最大的两位数约数.3.写出从360到630的自然数中有奇数个约数的数.【分析与解】一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.4.今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆?【分析与解】显然堆数是42的约数,是112的约数,是70的约数.即为42,112,70的公约数,有(42,112,70)=14.所以,最多可以分成14堆.5.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?【分析与解】为了使生产均衡,则每道工序每小时生产的零件个数应相等,设第一、二、三道工序上分别有A、B、C个工人,有6A=10B=15C=k,那么k的最小值为6,10,15的最小公倍数,即[6,10,15]=30.所以A=5,B=3,C=2,则三道工序最少共需要5+3+2=10名工人.6.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚?【分析与解】设在x分钟后3人再次相聚,甲走了120x米,乙走了lOOx米,丙走了70x米,他们3人之间的路程差均是跑道长度的整数倍.即120x-100x,120x-70x,lOOx-70x均是300的倍数,那么300就是20x,50x,30x的公约数.有(20x,50x,30x):300,而(20x,50x,30x)=x(20,50,30)=lOx,所以x=30.即在30分钟后,3人又可以相聚.7.3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、内3人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3人都在旗杆的正东方向,里圈跑道长15千米,中圈跑道长14千米,外圈跑道长38千米.甲每小时跑312千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点?【分析与解】甲跑完一圈需11235235÷=小时,乙跑一圈需114416÷=小时,丙跑一圈需335840÷=则他们同时回到出发点时都跑了整数圈,所以经历的时间为235,116,340的倍数,即它们的公倍数.而213,,351640⎡⎤⎢⎥⎣⎦[]()2,1,335,16,4=661==.所以,6小时后,3人第一次同时回到出发点.评注:求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.8.甲数和乙数的最大公约数是6最小公倍数是90.如果甲数是18,那么乙数是多少?【分析与解】有两个数的最大公约数与最小公倍数的乘积等于这两数的乘积.有它们的最大公约数与最小公倍数的乘积为6×90=540,则乙数为540÷18=30.9.A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B 两数的和等于多少?【分析与解】方法一:由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以21,01x xy y==⎧⎧⎨⎨==⎩⎩4xy=⎧⎨=⎩或.对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以2mn=⎧⎨=⎩.对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=2550.方法二:由题中条件知A、B中有一个数质因数中出现了两次5,多于一次3,那么,先假设它出现了N次3,则约数有:(2+1)×(N+1):3×(N+1)个12与10其中只有12是3的倍数,所以3(N+1)=12,易知N=3,这个数是A,即A=33×52=675.那么B的质数中出现了一次3,多于两次5,则出现了M次5,则有:(1+1)×(M+1)=2(M+1)=10,M=4.B=3×54=1875.那么A,B两数的和为675+1875=2550.10.有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2. 它们的和为:a+b=(a,b)ql+(a,b)q2=(a,b)(q1+q2)=297………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)qlq2+(a,b)=(a,b)(qlq2+1)=693,且(q1,q2)=1.………………………………………………………………②综合①、②知(a,b)是297,693的公约数,而(297,693)=99,所以(a,b)可以是99,33,1l,9,3,1.第一种情况:(a,b)=99,则(q1+q2)=3,(qlq2+1)=7,即qlq2=6=2×3,无满足条件的ql,q2; 第二种情况:(a,b)=33,则(q1+q2)=9,(q1q2+1)=21,即q1q2=20=22×5,则ql=5,q2=4时满足,a=(a,b)q1=33×5=165,b=(a,b)q 2=33×4=132,则a-b=165-132=33;第三种情况:(a,b)=11,则(q1+q2)=27,(q1q2+1)=63,即q q2=62=2×31,无满足条件的q1,q2;一一验证第四种情况,第五种情况,第六种情况没有满足条件的q1q2. 所以,这个两个自然数的差为33.11.两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组? 【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2=(a,b)(ql+q 2)=60…………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=60,且(q1,q2)=1…………………………………………………………………②联立①、②有(ql+q2)=(q1q2+1),即ql+q2-qlq2=1,(ql-1)(1-q2)=0,所以ql=1或q2=1. 即说明一个数是另一个数的倍数,不妨记a=kb(k 为非零整数),有()[]60,60a b kb b a b b a b kb +=+=⎧⎪⎨+=+=+=⎪⎩a,b ,即()160k b +=确定,则k 确定,则kb 即a 确定60的约数有2,3,4,5,6,10,12,15,20,30,60这11个,b 可以等于2,3,4,5,6,10.12,15,20,30这10个数,除了60,因为如果6=60,则(k+1)=1,而k 为非零整数. 对应的a 、b 有10组可能的值,即这样的自然数有10组.进一步,列出有(a,b)为(58,2),(57,3),(56,4),(55,5),(54,6),(50,10),(48,12),(45,15),(40,20), (30,30).评注:如果两个自然数的和等于这两个数最大公约数与最小公倍数的和,那么这两个数存在倍数关系.12.3个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少?【分析与解】 若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半; 若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积. 则当a,a+1,a+2中有2个偶数时,a(a+1)(a +2)=9828×2, 当a,a+1,a+2中有1个偶数时,a(a+1)(a+2)=9828.对9828分解质因数:9828=2×2×3×3×3×7×13,我们注意,13是其最大的质因数,验证不存在3个连续的自然数的积为9828.则这三个自然数的积只能是9828×2,此时这三个数中存在两个偶数,有9828×2=2×2×2×3×3×3×7×13.13×2=26,有26,27,28三个数的积为9828×2,所以这三个连续的自然数为26,27,28,其中有两个偶数,满足题意.所以,这三个数的和为26+27+28=81.评注:我们知道两个连续的自然数互质,而两个互质的数的公倍数等于它们的积,即[0,b]=a×b.记这3个连续的自然数为a,a+1,a+2.有[a,a+1,a+2]=[a,a+1,a+1,a+2]=[[a,a+1],[a+1,a+2]]=[a×(a+1),(a+1)×(a+2)]=(a+1)×[a,a+2].因为a,a+2同奇同偶,当a,a+2均是偶数时,a,a+2的最大公约数为2,则它们的最小公倍数为()22a a⨯+;当a,a+2均是奇数时,a,a+2互质,则它们的最小公倍数为a×(a+2).所以(a+1)×[a,a+2]=()()()()21212a aa aa a a a⨯+⎧+⨯⎪⎨⎪+⨯⨯+⎩为偶数为奇数.即[a,a+1,a+2]为a(a+1)(a+2)或()()122a a a++若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.13.甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?【分析与解】对90分解质因数:90=2×3×3×5.因为5126,所以5甲,即甲中不含因数5,于是乙必含因数5.因为2105,所以2乙,即乙中不含因数2,于是甲必含2×2.因为9105,所以9乙,即乙最多含有一个因数3.第一种情况:当乙只含一个因数3时,乙=3×5=15,由[甲,乙]=90=2×32×5,则甲=2×32=18;第一种情况:当乙不含因数3时,乙=5,由[甲,乙]=90=2×32×5,则甲=2×32=18,综上所需,甲为18.评注:两个数的最小公倍数含有两数的所有质因子,并且这些质因数的个数为两数中此质因数的最大值.如a=2×33×52×7,b=23×32×5×7×11,则A、B的最小公倍数含有质因子2,3,5,7,11,并且它们的个数为a、b中含有此质因子较多的那个数的个数.即依次含有3个,3个,2个,1个,1个,即[a,b]=23×33×52×7×11.14.a>b>c是3个整数.a,b,c的最大公约数是15;a,b的最大公约数是75;a,b的最小公倍数是450;b,c的最小公倍数是1050.那么c是多少?【分析与解】 由(a,b)=75=3×52,[a,b]=450=32×2×52=75×3×2,又a ﹥b 所以45075a b =⎧⎨=⎩或225150a b =⎧⎨=⎩[b,c]=1050=2×3×52×7. 当 45075a b =⎧⎨=⎩ 时有 ()()[][]450,75,75,15,75,1050c c b c c ⎧==⎪⎨==⎪⎩,因为两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积,所以(75,c)×[75,c]=75×c=15×1050,得c=210,但是c>b,不满足;当225150a b =⎧⎨=⎩时有()()[][]225150,75,15,150,1050c c b c c ⎧==⎪⎨==⎪⎩,,则c=105,c ﹤b,满足,即225150105a b c =⎧⎪=⎨⎪=⎩为满足条件的为一解. 那么c 是105.15.有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少? 【分析与解】 设这4个不同的自然数为A 、B 、C 、D ,有A+B+C+D=1111.将1111分解质因数:1111=11×101,显然A 、B 、C 、D 的最大公约数最大可能为101,记此时A=101a ,B=101b,C=101c,D=101d,有a+b+c+d=11,当a+b+c+d=1+2+3+5时满足,即这4个数的公约数可以取到101. 综上所述,这4个不同的自然数,它们的最大公约数最大能是101. 评注:我们把此题稍做改动:“有5个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?”,大家不妨自己试试.。

五年级高斯奥数之约数和倍数含答案

五年级高斯奥数之约数和倍数含答案

第7讲约数与倍数内容概述掌握约数与倍数酌概念.学会约数个数与约数和的计算方法;掌握最大公约数、最小公倍数的常用计算方法;能够利用最大公约数和最小公倍数的性质解决相关的整数问题.典型问题兴趣篇1.(1)请写出105的所有约数;(2)请写出72的所有约数.2.(1) 20000的约数有多少个?(2) 720的约数有多少个?3.计算:(1) (28,72), [28,72]; (2) (28,44,260), [28, 44, 260].4.两个数的差是6,它们的最大公约数可能是多少?5.(1)求1085和1178的最大公约数和最小公倍数;(2)求3553,3910和1411的最大公约数.6.教师节到了,校工会买了320个苹果、240个桔子、200个香蕉来慰问退休老职工.请问:用这些水果最多可以分成多少份同样的礼物?在每份礼物中,苹果、桔子、香蕉各有多少个?7.一块长方形草地,长120米,宽90米,现在在它的四周种树,要求四个角和各边中点都要求种树,且相邻两棵树之间的距离都相等,请问:最少要种多少棵树?8.甲数和乙数的最大公约数是6,最小公倍数是90.如果甲数是18,那么乙数是多少?9.有甲、乙两个数,它们的最小公倍数是甲数的27倍.已知甲数是2、4、6、8、10、12、14、16的倍数,但不是18的倍数;乙数是两位数.乙数是多少?10.小悦、冬冬、阿奇在黑板上各写了一个自然数,这三个自然数的最大公约数是35,最小公倍数是70.这三个数的和可能是多少?拓展篇1.72共有多少个约数?其中有多少个约数是3的倍数?2.5400共有多少个约数?并求出所有约数乘积的质因数分解形式.3.两数乘积为2800,已知其中一个数的约数个数比另一个数的约数个数多1.这两个数分别是多少?4.计算:(1) (391, 357), [391, 357]; (2) (18, 24, 36), [18, 24, 36].5.1547、1573、1859这三个数的最大公约数是多少?最小公倍数是多少?6.张阿姨把225个苹果、350个梨和150个桔子平均分给小朋友们,最后剩下9个苹果、26个梨和6个桔子没分出去,请问:每个小朋友分了多少个苹果?7.一个数和16的最大公约数是8,最小公倍数是80.这个数是多少?8.两个自然数不成倍数关系,它们的最大公约数是18,最小公倍数是216.这两个数分别是多少?9.两个数的最大公约数是6,最小公倍数是420,如果这两个数相差18,那么较小的数是多少?10.有4个不同的正整数,它们的和是1111.请问:它们的最大公约数最大能是多少?11.甲、乙两个数的最小公倍数是90,乙、丙两个数的最小公倍数是105,甲、丙两个数的最小公倍数是126.请问:甲数是多少?12.甲、乙是两个不同的自然数,它们都只含有质因数2和3,并且都有12个约数,它们的最大公约数是12.请问:甲、乙两数之和是多少?超越篇1.360共有多少个奇约数?所有这些奇约数的和是多少?2.求出所有恰好含有10个约数的两位数,并求出每个数的所有约数之和.3.已知口与易的最大公约数是4,以与c 、易与c 的最小公倍数都是100,而且a ≤ b .满足条件的自然数a 、b 、c 共有多少组?4.所有70的倍数中,共有多少个数恰有70个约数?5.自然数n 是1,2,3,…,10的公倍数,而且它恰有72个约数,n 的最小值是多少?6.三条圆形跑道,圆心都在操场中的旗杆处.里圈跑道长51千米,中圈跑道长41千米,外圈跑道长83千米.甲、乙、丙三人分别在里圈、中圈、外圈沿同样的方向跑步,开始时,三人都在旗杆的正东方向,甲每小时跑321千米,乙每小时跑4千米,丙每小时跑5千米.他们同时出发.请问:几小时后,三人第一次同时回到出发点?7.如图11-1,在一个600×600的方格表ABCD 中,将AB 与线段CD 上除端点外的所有格点N 1,N 2,N 3,…,N 599分别相连,得到599条线段.请问,在这些线段中:(1)不会与其他格点相交的线段共有多少条?(2)经过格点最多的线段共经过多少个格点(不包括它的端点)?(3)除去端点,还恰好经过29个格点的直线有多少条?8.有些自然数等于自身约数个数的平方,例如l 和9都具有此性质,请问:是否还有其他自然数具有此性质?如果有,请举例;如果没有,请说明理由.第11讲 约数与倍数内容概述掌握约数与倍数酌概念.学会约数个数与约数和的计算方法;掌握最大公约数、最小公倍数的常用计算方法;能够利用最大公约数和最小公倍数的性质解决相关的整数问题.典型问题兴趣篇1.(1)请写出105的所有约数;(2)请写出72的所有约数.答案:(1) 1、3、5、7、15、21、35、105(2)1、2、3、4、6、8、9、12、18、24、36、72分析:1051105335521715=⨯=⨯=⨯=⨯7217223632441861289=⨯=⨯=⨯=⨯=⨯=⨯2.(1) 20000的约数有多少个? (2) 720的约数有多少个?答案:(1)30个 (2) 30个分析:(1) 542000025=⨯, 约数的个数=(51)(41)30+⨯+=个(2) 42720235=⨯⨯,约数的个数=(41)(21)(11)+⨯+⨯+=30个3.计算:(1) (28,72), [28,72]; (2) (28,44,260), [28, 44, 260].答案:(1) 4,504 (2) 4,20020分析:(1) 22827=⨯,327223=⨯,所以()228,7224==;[]3228,72237504=⨯⨯= (2) 22827=⨯,244211=⨯,22602513=⨯⨯,所以()228,44,26024==, []228,44,260257111320020=⨯⨯⨯⨯=4.两个数的差是6,它们的最大公约数可能是多少?答案:1,2,3,6.分析:两个数的最大公因数一定是它们差的因数。

五年级奥数题约数与倍数A

五年级奥数题约数与倍数A

五年级奥数题约数与倍数APleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】四 约数与倍数(A)年级 班 姓名 得分一、填空题1.28的所有约数之和是_____.2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是_____.4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_____.6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.10. 含有6个约数的两位数有_____个.11.写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解12.和为1111的四个自然数,它们的最大公约数最大能够是多少13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米14. 已知a与b的最大公约数是12,a与c的最小公倍数是300,b与c的最小公倍数也是300,那么满足上述条件的自然数a,b,c共有多少组(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组) ———————————————答案——————————————————————答案:1. 5628的约数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的约数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2⨯2⨯7,所以28的约数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23⨯29,所以这班师生每人种的棵数只能是667的约数:1,23,29,667.显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.所以,一班共有28名学生.5. 40或20两个自然数的和是50,最大公约数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.[注]这里的关键是依最大公约数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的约数,又要是108的约数,即一定是36和108的公约数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公约数.36和108的最大公约数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36÷36=1(只)每个小朋友可分得桔子: 108÷36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公约数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公约数.因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公约数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公约数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数.180,45和18的最大公约数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个约数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个约数的数,用a 和b 表示M 的质因数,那么5a M =或b a M ⨯=2因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:72,52,32222⨯=⨯=⨯=M M M ,172,132,112222⨯=⨯=⨯=M M M ,23,232,192222⨯=⨯=⨯=M M M ,113,73,53222⨯=⨯=⨯=M M M ,27,35,25222⨯=⨯=⨯=M M M .所以,含有6个约数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公约数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.将1111作质因数分解,得1111=11⨯101最大公约数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101⨯2,101⨯3,101⨯5,它们的和恰好是101⨯(1+2+3+5)=101⨯11=1111,它们的最大公约数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”499,即跳了499411÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了299÷29=11次掉进陷井.经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是214⨯9=(米). 14. 先将12、300分别进行质因数分解:12=22⨯3300=22⨯3⨯52(1)确定a 的值.依题意a 只能取12或12⨯5(=60)或12⨯25(=300).(2)确定b 的值.当a =12时,b 可取12,或12⨯5,或12⨯25;当a =60,300时,b 都只能取12.所以,满足条件的a 、b 共有5组: a =12 a =12 a =12 a =60 a =300b =12, b =60, b =300, b =12, b =12.(3)确定a ,b ,c 的组数.对于上面a 、b 的每种取值,依题意,c 均有6个不同的值:52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a 、b 、c 共有5⨯6=30(组)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四约数与倍数(A)
_____ 年级______ 班姓名___________ 得分______
一、填空题
1 . 28的所有约数之和是 ______ .
2. 用105个大小相同的正方形拼成一个长方形,有________ 中不同的拼法•
3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数
字的积是24.这个两位数是______ .
4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树
667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____ 人.
5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是________ .
6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给 _____ 小朋友,每个小朋友得梨_______ 个,桔 _____ 个.
7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形
布片_____ 块.
8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)__ 块.
9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____ 个.
10. 含有6个约数的两位数有______ 个.
11. 写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?
12. 和为1111的四个自然数,它们的最大公约数最大能够是多少?
13. 狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳4丄米,黄鼠狼每次跳2-米,
2 4
它们每秒钟都只跳一次.比赛途中,从起点开始每隔12-米设有一个陷井,当它们
8
之中有一个掉进陷井时,另一个跳了多少米?
14. 已知a与b的最大公约数是12, a与c的最小公倍数是300,b与c的最小公倍数也是300,那么满足上述条件的自然数a, b, c共有多少组?
(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组)
--------------------------- 答案 -------------------------------------------- 答案:
1. 56
28的约数有1,2,4,7,14,28,它们的和为
1+2+4+7+14+28=56.
2. 4
因为105 的约数有1,3,5,7,15,21,35,105 能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.
3. 64
因为28=2 2 7,所以28的约数有6个:1,2,4,7,14,28. 在数字0,1,2,…,9 中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.
故符合题目要求的两位数仅有64.
4. 28
因为667=23 29, 所以这班师生每人种的棵数只能是667 的约
数:1,23,29,667. 显然,每人种667棵是不可能的.
当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.
当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.
当每人种 1 棵树时, 全班人数应是667-1=666, 但666 不能被 4 整除, 不可能. 所以, 一班共有28 名学生.
5. 40 或20
两个自然数的和是50,最大公约数是5,这两个自然数可能是5和45,15 和35,它们的差分别为(45-5=)40,(35-15=)20, 所以应填40或20.
[注]这里的关键是依最大公约数是5的条件,将50分拆为两数之和:50=5+45=15+35.
6. 36,1,3.
要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的约数,又要是108的约数,即一定是36和108 的公约数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公约数.36 和108的最大公约数是36,也就是可分给36个小朋友.
每个小朋友可分得梨: 36 36=1( 只)
每个小朋友可分得桔子: 108 36=3( 只)
所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.
7. 56
剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48 与42的公约数,题目又要求剪出的正方形最大, 故正方形的边长是48与42 的最大公约数.
因为48=2 2 2 2 3,42=2 3 7,所以48与42的最大公约数是 6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7 块,共可剪(48 6) (42 6)=8 7=56(块)正方形布片.
8. 200
根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除, 即正方体的棱长是1 80,45和1 8的公约数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数.180,45 和18的最大公约数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180 9) (45 9) (18 9)=200块棱长是9厘米的正方体.
9. 150
根据3与5的最小公倍数是 1 5,张老师傅以5元钱买进15个苹果,又以6元钱
卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.
10. 16
含有6个约数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M表示含有6个约数的数,用a和b表示M的质因数,那么
M a5或M a2 b
因为M是两位数,所以M= a5只有一种可能M=25,而M= a2 b就有以下15种情况:
M
223,M
22
5,M
227,
M2211,M2213,M22
17,
M2219, M2223, M
32
2,
M325,M327,M3211,
M522,M523,M722.
所以,含有6个约数的两位数共有
15+1=16(个)
11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公约数只
能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.
12. 四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.将1111作质因数分解,得
1111=11 101
最大公约数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有
1+2+3+5=11,
即存在着下面四个数
101,101 2,101 3,101 5,
它们的和恰好是
101 (1+2+3+5)=101 11=1111,
它们的最大公约数为101.
所以101为所求.
13. 黄鼠狼掉进陷井时已跳的行程应该是2-与123的“最小公倍数” 99,
4 8 4
qq 11 1 3
即跳了99 ^=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是41和123的
4 4 2 8“最小公倍数” 99,即跳了99 -=11次掉进陷井.
2 2 2
经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是
1
4- 9=40.5(米).
14. 先将12、300分别进行质因数分解:
12=2 2 3
300=2 2 3 52
(1)确定a的值.依题意a只能取12或12 5(=60)或12 25(=300). ⑵确定b的值.
当a=12时,b可取12,或12 5,或12 25;
当a=60,300时,b都只能取12.
所以,满足条件的a、b共有5组:
ra=12 r a=12 r a=12 r a=60 j a=300
[b=12, I b=60, I b=300, 1 b=12, t b=12.
(3)确定a, b, c的组数.
对于上面a、b的每种取值,依题意,c均有6个不同的值:
2 2 2 2 2 2 2 2
5,5 2, 5 2,5 3, 5 2 3, 5 2 3, 即卩25, 50, 100, 75, 150, 300.
所以满足条件的自然数a、b、c共有5 6=30 (组)。

相关文档
最新文档