绝对值不等式练习题

合集下载

高三数学绝对值不等式试题

高三数学绝对值不等式试题

高三数学绝对值不等式试题1.已知函数(Ⅰ)a=-3时,求不等式的解集;(Ⅱ)若关于x的不等式恒成立,求实数a的取值范围【答案】(Ⅰ) [-1,2] ;(Ⅱ) (-,]【解析】(Ⅰ) 当a="-3" 时,即为≤6,将分成,和三种情况,通过分类讨论去掉绝对值,将原不等式等价转化为三个一元一次不等式组,解这些不等式组即可得到原不等式的解集; (Ⅱ)利用绝对值不等式性质:求出的最小值,由关于x的不等式恒成立及不等式恒成立的知识知,<,解这个不等式,即可得到实数的取值范围.试题解析:(Ⅰ) 当a="-3" 时,为≤6,等价于或或,解得或或,所以不等式的解集为[-1,2];(5分)(Ⅱ) 因为=,所以<,解得实数a的取值范围(-,].(10分)【考点】含绝对值不等式解法,绝对值不等式性质,恒成立问题2.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是()A.[3,+∞)B.(-∞,3]C.(-1,2)D.(-2,3]【答案】B【解析】当x≤-1时,|x+1|+|x-2|=-x-1-x+2=-2x+1≥3;当-1<x≤2时,|x+1|+|x-2|=x+1-x+2=3;当x>2时,|x+1|+|x-2|=x+1+x-2=2x-1>3;综上可得|x+1|+|x-2|≥3,所以只要a≤3.即实数a的取值范围是(-∞,3],故选B.3.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.4.不等式解集是_____________________.【答案】【解析】设,则.由,解得,所以解集为【考点】分段函数图像不等式5.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.6.若存在实数使得成立,则实数的取值范围为.【答案】【解析】在数轴上,表示横坐标为的点到横坐标为的点距离,就表示点到横坐标为1的点的距离,∵,∴要使得不等式成立,只要最小值就可以了,即,∴.故实数的取值范围是,故答案为:.【考点】绝对值不等式的解法.7.已知函数.若关于的不等式的解集是,则的取值范围是 .【答案】【解析】因为函数.若关于的不等式的解集是.即等价于对恒成立.等价于恒成立.即的最小值大于或等于.由绝对值不等式的性质可得.所以即.所以填.【考点】1.绝对值不等式的性质.2.不等式中恒成立问题.3.最值问题.8.已知函数.(1)若恒成立,求的取值范围;(2)当时,解不等式:.【答案】(1);(2).【解析】(1)即求出即可;(2)去绝对值解答.试题解析:(1)即2分又5分(2)当时,当时,当时,综上,解集为10分【考点】不等式选讲、绝对值不等式.9.关于的不等式的解集为,则实数的取值范围是 .【答案】【解析】表示的是到的距离和到的距离之和,表示的是到的距离,当时,此时若时则不能保证的解集为;当时,此时若时则不能保证的解集为;当,即,此时当为时,所以.【考点】1.绝对值不等式的几何意义.10.已知函数(I)若不等式的解集为,求实数的值;(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)的取值范围为(-∞,5].【解析】(Ⅰ)不等式的解集为,求实数a的值,首先解不等式,解得,利用解集为,从而求出的值;(Ⅱ)若对一切实数恒成立,转化为求的最小值,只要实数的取值小于或等于它的最小值,不等式对一切实数恒成立,故关键点是求的最小值,由(Ⅰ)知,故,设,于是,易求出最小值为5,则的取值范围为(-∞,5].试题解析:(Ⅰ)由得,解得.又已知不等式的解集为,所以,解得.(Ⅱ)当时,,设,于是,所以当时,;当时,;当时,.综上可得,的最小值为5.从而若,即对一切实数恒成立,则的取值范围为(-∞,5].【考点】本题考不等式的解法,考查学生数形结合的能力以及化归与转化思想.11.设函数(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)分类去掉绝对值符号,化为整式不等式再解,最后取并集即可.(Ⅱ)把函数f(x)化为分段函数,然后再找出f(x)有最小值的充要条件解之即可.试题解析:(Ⅰ)a=1时,f(x)=+x+3当x≥时,f(x)≤5可化为3x-1+x+3≤5,解得≤x;当x<时,f(x)≤5可化为-3x+1+x+3≤5,解得-,综上可得,原不等式的解集为(Ⅱ)f(x)= +x+3=函数有最小值的充要条件是,解得【考点】1.绝对值不等式;2.分段函数及其求函数值.12.设函数,.(1) 解不等式;(2) 设函数,且在上恒成立,求实数的取值范围.【答案】(1);(2)【解析】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明以及解法等内容.(1)利用数轴分段法求解;(2)借助数形结合思想,画出两个函数的图像,通过图像的上下位置的比较,探求在上恒成立时实数的取值范围.试题解析:(1) 由条件知,由,解得. (5分)(2) 由得,由函数的图像可知的取值范围是. (10分)【考点】(1)绝对值不等式;(2)不等式证明以及解法;(3)函数的图像.13.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。

绝对值不等式高考真题和典型题

绝对值不等式高考真题和典型题

绝对值不等式高考真题和典型题1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.3.已知函数f(x)=|x-a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.4.已知函数f(x)=|x-4|+|x-a|(a∈R)的最小值为a.(1)求实数a的值;(2)解不等式f(x)≤5.5.设函数f(x)=lg (|2x-1|+2|x+1|-a).(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,求实数a的取值范围.参考答案1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解;当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112.综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76. 3.解 (1)当a =1时,f (x )=|x -1|+3x ,由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.所以不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎨⎧ x ≥a ,4x -a ≤0或⎩⎨⎧ x <a ,2x +a ≤0, 即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧ x <a ,x ≤-a 2. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2. 由-a 2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不符合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤a 4. 由a 4=-1,得a =-4.综上,a =2或a =-4.4.解 (1)f (x )=|x -4|+|x -a |≥|a -4|=a ,解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立,当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤112. 5.解 (1)当a =4时,f (x )=lg (|2x -1|+2|x +1|-4),此时x 应满足|2x -1|+2|x +1|>4.当x ≤-1时,1-2x -2x -2>4,解得x <-54;当-1<x <12时,1-2x +2x +2>4,无解;当x ≥12时,2x -1+2x +2>4,解得x >34.综上所述,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x <-54或x >34. (2)函数f (x )的定义域为R ,即|2x -1|+2|x +1|-a >0在R 上恒成立,即a <(|2x -1|+2|x +1|)min .因为|2x -1|+2|x +1|=|2x -1|+|2x +2|≥|(2x -1)-(2x +2)|=3, 所以a <3,即实数a 的取值范围为(-∞,3).。

含有绝对值的不等式练习

含有绝对值的不等式练习

含有绝对值的不等式练习【同步达纲练习】A 级一、选择题1.设x ∈R ,则不等式|x |<1是x 2<1成立的( )条件. A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件 2.若a,b,c ∈R ,且|a-c |<|b |,则( )A.|a |>|b |+|c |B.|a |<|b |-|c |C.|a |>|b |-|c |D.|a |>|c |-|b |3.不等式|x 2-x-6|>3-x 的解集是( )A.(3,+∞)B.(-∞,-3)∪(3,+∞)C.(-∞,-3)∪(-1,+∞)D.(-∞,-3)∪(-1,3)∪(3,+∞) 4.设集合A ={x ||2-x -3|<1,x ∈N },则A 中元素个数是( ) A.13 B.12 C.11 D.10 5.下面四个式子:①|a-b |=|b-a | ②|a+b |+|a-b |≥2|a |③2)(a -=a④21(|a |+|b |)≥ab 中,成立的有( )A.1个B.2个C.3个D.4个二、填空题6.对于任意的实数x ,不等式|x+1|+|x-2|>a 恒成立,则实数a 的取值范围是 .7.不等式|x 2+2x-1|≥2的解集是 . 8.不等式|x x 1-|>xx-1的解集是 .三、解答题9.解不等式12+x >x.10.设m 等于|a |、|b |和1中最大的一个,当|x |>m 时,求证:2xbx a +<2.AA 级一、选择题1.设实数a,b 满足ab<0,则( )A.|a+b |>|a-b |B.|a+b |<|a-b |C.|a-b |<|a |-|b |D.|a-b |<|a |+|b |2.不等式组⎪⎩⎪⎨⎧+->+->x 2x 2x 3x 30x 的解集是( )A.{x |0<x<2}B.{x |0<x<2.5}C.{x |0<x<6}D.{x |0<x<3}3.不等式24x -+xx ≥0的解集是( )A.{x |-2≤x ≤2}B.{x |-3≤x<0或0<x ≤2}C.{x |-2≤x<0或0<x ≤2}D.{x |-3≤x<0或0<x ≤3}4.设a>1,方程|x+log a x |=|x |+|log a x|的解集是( )A.0≤x ≤1B.x ≥1C.x ≥aD.0<x ≤a5.设全集为R ,A ={x |x 2-5x-6>0},B ={x ||x-5|<a }(a 为常数),且11∈B ,则( ) A. A ∪B =R B.A ∪B =RC. A ∪B =RD.A ∪B =R二、填空题6.已知|a |≤1,|b |≤1,那么|ab+22)1()1(b a --|与1的大小关系是 .7.对于实数x,y 有|x+y |<|x-y |,则x ,y 应满足的关系是 . 8.不等式|x |+|x-2|≤1的解集是 .三、解答题9.解不等式|x+7|-|3x-4|+223->010.已知f(x)=21x +,当a ≠b 时,求证|f(a)-f(b)|≤|a-b |【素质优化训练】一、选择题1.不等式ba b a ++≤1成立的充要条件是( ) A.ab ≠0B.a 2+b 2≠0C.ab>0D.ab<02.在x ∈(31,3)上恒有|log a x|<1成立,则实数a 的取值范围是( ) A.a ≥3 B.0<a ≤31C.a ≥3或0<a ≤31D.a ≥3或0<a<313.已知x<y<0,设a =|x |,b =|y |,c =21|x-y |,d =xy ,则a,b,c,d 的大小关系是( )A.b<d<c<aB.a<d<c<bC.a<c<d<bD.c<b<d<a4.平面直角坐标系中,横、纵坐标都是整数的点叫做整点,那么满足不等式(|x |-1)2+(|y |-1)2<2的整点(x,y)的个数是( )A.16B.17C.18D.25 5.已知f(x)=|lgx |,若0<a<b<c ,且f(a)>f(c)>f(b),则( ) A.(a-1)(c-1)>0 B.ac>1 C.ac =1 D.ac<1二、填空题6.当0<a<1时,满足|log a (x+1)|>|log a (x-1)|的x 的取值范围是 .7.若α,β∈R +,C ∈R +,则|α+β|2与(1+c)|α|2+(1+c1)|β|2的大小关系是 .8.已知ab+bc+ca =1,则|a+b+c |与3的大小关系是 . 9.不等式)1()10)(3)(2(2----x x x x x ≥0的解集是 .三、解答题10.设不等式5-x>7|x+1|与ax 2+bx-2>0同解,求a,b 的值.11.已知f(x)=x 2-x+13,|x-a |<1,求证:|f(x)-f(a)|<2(|a |+1)补充题:1.关于实数x 的不等式|x-2)1(2+a |≤2)1(2-a 与x 2-3(a+1)x+2(3a+1)≤0(a ∈R)的解集依次为A 和B ,求使A ⊆B 的a 的取值范围.2.已知f(x)=x 2+px+q ,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21.3.设a,b ∈R ,|a |+|b |<1,α、β是方程x 2+ax+b =0的两根,确定|α|、|β|的范围.4.设a ∈R ,函数f(x)=ax 2+x-a(-1≤x ≤1).(1)若|a |≤1,证明|f(x)|≤45. (2)求a 的值使函数f(x)有最大值817.参考答案【同步达纲练习】A 级1.C2.D3.D4.C5.C6.(-∞,3)7.{x |x≥1或x≤-3或x =-1}8.(-∞,0) (1,+∞)9.解:原不等式等价于x<0或⎩⎨⎧>+≥2120x x x ⇒0≤x<1+2,综上得:解集为{x |x<1+2}. 10.证明:∵|x |>m≥|a |. ⎪⎩⎪⎨⎧≥>≥>1m x bm x ⇒|x |2>|b |. ∴|x a +2x b |≤|x a |+|2x b |=xa +2xb <xa +22xx =2,故原不等式成立.AA 级1.B2.C3.B4.B5.D6.|ab+)1)(1(22b a --|≤1 7.x,y 异号 8.空集9.由223-=2-1,于是原不等式可化为:|x+7|-|3x-4|+2-1>0.等价于⎪⎩⎪⎨⎧>-+--+>012)43(734x x x ①或⎪⎩⎪⎨⎧>-+-++≤≤-012437347x x x ②或⎩⎨⎧>+-++--<0243)7(7x x x ③.解①得:34 <x<5+22.解②得:-21-22<x≤34.解③得无解.综上得,原不等式解集为(-422+,4210+). 10.证明:要证|f(a)-f(b)|<|a-b |.(21a +-21b +)2<(a-b)2.即:1+a 2+1+b 2-2)1)(1(22b a ++<a 2+b 2-2ab ,只需证:1+ab<)1)(1(22b a ++. ∵1+ab<|1+ab|,∴只需证|1+ab |<)1)(1(22b a ++.即证:1+2ab+a 2b 2<1+a 2+b 2+a 2b 2.即:2ab<a 2+b 2,又a≠b,故2ab<a 2+b2成立,故原不等式成立.【素质优化训练】1.B2.C3.D4.A5.D6.(2,+∞)7.|α+β|2≤(1+c)|α|2+(1+c1)|β|28.|a+b+c |≥3 9.解集是{x |x<1且x≠0,3≤x≤10或x =2}.10.解不等式5-x>7|x+1|成立的前提条件是:x<5.(1)当-1≤x<5,不等式化为:5-x>7x+7,∴-1≤x<-41.(2)当x<-1,不等式化为:5-x>-7x-7,∴x>-2,因此有:-2<x<-1.综合起来:不等式解为-2<x<-41,∴-2<x<-41为不等式ax 2+bx-2>0的解,∵a<0,不等式变形为x 2+a b x-a 2<0,它与不等式x 2+49x+21<0比较系数得:a =-4,b =-9. 11.证明:∵f(x)-f(a)=x 2-x-a 2+a =(x-a)(x+a-1),∴|f(x)-f(a)|=|(x-a)(x+a-1)|=|x-a ||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a |+2|a |+1<2|a |+2=2(|a |+1)补充题:1.解:A ={x |2a≤x≤a 2+1},由x 2-3(a+1)x+2(3a+1)≤0知(x-2)[x-(3a+1)]≤0,当3a+1≥2时,即a≥31时,B ={x |2≤x≤3a+1},当a≥31时,要使A ⊆B ,则⎩⎨⎧+≤+≤131222a a a ,∴1≤a≤3.当a<31时,B ={x |3a+1≤x≤2}.要使A ⊆B ,则⎩⎨⎧+≤+≤+1312132a a a a ,∴a =-1.故要使A ⊆B 的a 的范围是{a |1≤a≤3或a =-1}.2.证明:假设|f(1)|,|f(2)|,|f(3)|都小于21,则有|f(1)|+2|f(2)|+|f(3)|<21+2×21+21=2,又由于f(x)=x 2+px+q ,可得f(1)-2f(2)+f(3)=1+p+q-(8+4p+2q)+(9+3p+q),所以|f(1)|+2|f(2)|+|f(3)|≥|f(1)-2f(2)+f(3)|=2两式矛盾.故|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21. 3.解:由韦达定理知:α+β=-a,αβ=b ,而|a |+|b |=|α+β|+|αβ|<1.∴|α+β|<1-|αβ|=1-|α||β|.又|α+β|>|α|-|β|,∴|α|-|β|<1-|α||β|,即(|α|-1)(|β|+1)<0,∵|β|+1>0,∴|α|-1<0,即|α|<1,同理|β|<1.即|α|,|β|取范围为:|α|<1,|β|<1.4.证明:(1)∵|x |≤1,|a |≤1,∴|f(x)|=|a(x 2-1)+x |≤|a ||x 2-1|+|x |≤|x 2-1|+|x |=1-|x 2|+|x |=-(|x |-21)2+45≤45. (2)当a =0时,f(x)=x ;当-1≤x ≤1时,f(x)的最大值为f(1)=1不可能满足题设条件,∴a ≠0,又f(1)=a+1-a =1,f(-1)=a-1-a =-1,故f(±1)均不是最大值.∴f(x)的最大值为817,应在其对称轴上,即顶点位置取得.∴a<0.∴命题等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧<=-<-<-0817)21(1211a a f a ⇒⎪⎪⎩⎪⎪⎨⎧=++-=0)81)(2(21a a a ⇒⎪⎪⎩⎪⎪⎨⎧-=-=-<81a 2a 21a 或,∴a =-2.。

绝对值不等式(高考版)(含经典例题+答案)

绝对值不等式(高考版)(含经典例题+答案)

绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。

b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。

x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。

分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

(整理版)含绝对值的不等式的解法·例题

(整理版)含绝对值的不等式的解法·例题

含绝对值的不等式的解法·例题例5-3-13解以下不等式:(1)|2-3x|-1<2(2)|3x+5|+1>6解(1)原不等式同解于(2)原不等式可化为|3x+5|>5 3x+5>5或3x+5<-5注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。

解5-3-14解不等式4<|x2-5x|≤6。

解原不等式同解于不等式组不等式(i)同解于x2-5x<-4或x2-5x>4不等式(ii)同解于-6≤x2-5x≤6取不等式(i),(ii)的解的交集,即得原不等式的解集其解集可用数轴标根法表示如下:注本例的难点是正确区别解集的交、并关系。

“数轴标根法〞是确定解集并防止出错的有效辅助方法。

例5-3-15解不等式|x+2|-|x-1|≥0。

解原不等式同解于|x+2|≥|x-1| (x+2)2≥(x-1)2注解形如|ax+b|-|cx+d|≥0的不等式,适合于用移项后两边平方脱去绝对值符号的方法。

但对其他含多项绝对值的情形,采用此法一般较繁,不可取。

例5-3-16解以下不等式:解(1)原不等式同解于不等式组左边不等式同解于右边不等式同解于取(i),(ii)的交集,得原不等式的解集为{x|1<x<2} (2)原不等式同解于取(Ⅰ)、(Ⅱ)、(Ⅲ)的并集,得原不等式的解集为例5-3-17解不等式||x+1|-|x-1||<x+2。

分析要使不等式有解,必须x+2>0即x>-2。

又|x+1|,|x-1|的零点分别为-1,1,故可在区间(-2,-1),[-1,1],[1,+∞)内分别求解。

解原不等式同解于注解含多个绝对值项的不等式,常采用分段脱号法。

其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,确定所求解集。

例5-3-18 a>0,b>0,解不等式|ax-b|<x。

解显然x>0,故原不等式同解于注含绝对值的不等式中,假设含有参数,那么先去掉绝对值符号并化简,再根据具体情况对参数进行分类讨论。

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.不等式有实数解的充要条件是_____.【答案】.【解析】记,则不等式有实数解等价于,因为,故【考点】绝对值三角不等式.4.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是_________.【答案】(﹣∞,8]【解析】由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].5.解不等式|2x-4|<4-|x|.【答案】【解析】原不等式等价于①或②或③不等式组①无解.由②0<x≤2,③2<x<,得不等式的解集为.6.已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x 的取值范围.【答案】≤x≤【解析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8. A.(坐标系与参数方程)已知直线的参数方程为 (为参数),圆的参数方程为(为参数), 则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A. ; B.; C.【解析】A. 先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C. 由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.9.不等式的解集是【答案】【解析】解答本题可利用“分段讨论法”,也可利用“几何法”,根据绝对值的几何意义,结合数轴得,不等式的解集是.【考点】绝对值不等式的解法10.已知关于x的不等式|ax-2|+|ax-a|≥2(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围.【答案】(1)(2)a≥4【解析】(1)当a=1时,不等式为|x-2|+|x-1|≥2,由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2.∴x≥或x≤.∴不等式的解集为.注:也可用零点分段法求解.(2)∵|ax-2|+|ax-a|≥|a-2|,∴原不等式的解集为R等价于|a-2|≥2,∴a≥4或a≤0.又a>0,∴a≥4.11.设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.【答案】(1)M={x|0<x<1}(2)ab+1>a+b【解析】(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.12.不等式的解集是 .【答案】【解析】由题意可得,,解得.【考点】绝对值不等式的解法.13.不等式的解集是________.【答案】【解析】,当即时,则或,所以,故此时不成立;当即时,显然恒成立,故答案为.【考点】绝对值不等式的解法.14.已知不等式|x+2|+|x|≤a的解集不是空集,则实数a的取值范围是().A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】D【解析】因为|x+2|+|x|的最小值为2,所以要使不等式的解集不是空集,则有a≥2.15.不等式的解集是.【答案】【解析】含绝对值的不等式我们可以通过根据绝对值的定义通过分类讨论的方法去掉绝对值符号,然后解决问题,本题也可不分类讨论,首先不等式变形为,它等价于,这是二次不等式,解得,还要注意题目要求写成集合形式.【考点】解不等式.16.不等式的解集为 .【答案】【解析】即两边平方得,,,所以,不等式的解集为.【考点】绝对值不等式的解法17.已知函数f(x)=|x+2|+|2x-4|(1)求f(x)<6的解集;(2)若关于的不等式f(x)≥m2-3m的解集是R,求m的取值范围【答案】(1)不等式的解是{x|0<x<};(2)【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力第一问,利用零点分段法进行求解;第二问,利用函数的单调性求出最小值证明恒成立问题试题解析:(I)由题设知:当时,不等式等价与,即; 2分当时,不等式等价与,即; 4分当时,不等式等价与,即无解所以满足不等式的解是 6分(II)由图像或者分类讨论可得的最小值为4 8分则,解之得,【考点】1 绝对值不等式的解法;2 恒成立问题;3 分段函数的最值问题18.设关于的不等式的解集为,且,则实数的取值范围是 .【答案】.【解析】由题意当时,,当时,,即,由,则或,所以实数的取值范围为.【考点】绝对值不等式.19.若关于x的不等式的解集为空集,则实数a的取值范围是 .【答案】【解析】∵|x-1|-|x-2|=|x-1|-|2-x|≤|x-1-x+2|=1,若不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则|x-1|-|x-2|<a2+a+1恒成立,即a2+a+1>1,解得x<-1或x>0.∴实数a的取值范围是(-∞,-1)∪(0,+∞).【考点】1.绝对值不等式的解法;2.函数恒成立问题20.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.21.已知函数,其中实数.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.【答案】(1)不等式的解集为;(2)【解析】(1)将代入得一绝对值不等式:,解此不等式即可.(2)含绝对值的不等式,一般都去掉绝对值符号求解。

中职系列-绝对值不等式测试一

中职系列-绝对值不等式测试一

注意事项:
1,试卷标题、试卷满分必须填写;试卷满分必须填写数字(1-100);
2,题型数量必须与试题数量相等;
3,增加试题必须修改对应类型下的题型数量,再增加试题类型;
4,试题类型只支持:单选题、多选题,判断题,填空题,简答题;
5,分值必须填写数字;
6,难易度可以填写难,中,易,不符合格式的输入默认为易;
7,选择题的正确答案,多选题答案为多个请用逗号隔开,答案列后面填写各个选项,可以填写多于四个的选项;
8,填空题在难易度后面的列上填写每个空对应的答案;
9,没有解析内容时为空。

高中数学-绝对值不等式的解法练习

高中数学-绝对值不等式的解法练习

高中数学-绝对值不等式的解法练习一、选择题1.如果1x <2和|x |>13同时成立,那么实数x 的取值范围是( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13<x <12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-13,或x >13解析:解不等式1x <2,得x <0或x >12.解不等式|x |>13,得x >13或x <-13.∴实数x 的取值范围为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13.答案:B2.不等式2<|2x +3|≤4的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x ≤12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x <12C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x <-52或-12<x ≤12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x ≤-52或-12<x ≤12解析:由2<|2x +3|≤4,可得2<2x +3≤4或 -4≤2x +3<-2.解得-12<x ≤12或-72≤x <-52.答案:C3.关于x 的不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为集合M ,且2∉M ,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫14,+∞ B .⎣⎢⎡⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎦⎥⎤0,12 解析:因为2∉M ,所以2∈∁R M .所以⎪⎪⎪⎪⎪⎪2a -12≤a ,即-a ≤2a -12≤a .解得a ≥14.答案:B4.不等式|3-x |+|x +4|>8的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92或x >72 D .R解析:|3-x |+|x +4|>8⇔⎩⎪⎨⎪⎧x ≤-4,3-x -x -4>8或⎩⎪⎨⎪⎧-4<x <3,3-x +x +4>8或⎩⎪⎨⎪⎧x ≥3,x -3+x +4>8⇔⎩⎪⎨⎪⎧x ≤-4,-1-2x >8或⎩⎪⎨⎪⎧-4<x <3,7>8或⎩⎪⎨⎪⎧x ≥3,2x >7.∴x <-92或x >72.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-92或x >72.答案:C 二、填空题5.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,则a =________. 解析:由原不等式的解集,可知-53,13为原不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3,⎪⎪⎪⎪⎪⎪13a -2=3.解得a =-3. 答案:-36.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则实数x 的取值范围是________. 解析:由已知,有|2x -1|+x +3≤5,即|2x -1|≤2-x .所以x -2≤2x -1≤2-x ,即⎩⎪⎨⎪⎧2x -1≤2-x ,2x -1≥x -2,即⎩⎪⎨⎪⎧x ≤1,x ≥-1.所以-1≤x ≤1.答案:[-1,1]三、解答题7.已知一次函数f (x )=ax -2. (1)当a =3时,解不等式|f (x )|<4; (2)解关于x 的不等式|f (x )|<4;(3)若关于x 的不等式|f (x )|≤3对任意x ∈[0,1]恒成立,求实数a 的取值范围. 解:(1)当a =3时,f (x )=3x -2,所以|f (x )|<4⇔|3x -2|<4⇔-4<3x -2<4⇔ -2<3x <6⇔-23<x <2.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2. (2)|f (x )|<4⇔|ax -2|<4⇔-4<ax -2<4⇔-2<ax <6.当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2a <x <6a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6a <x <-2a . (3)|f (x )|≤3⇔|ax -2|≤3⇔-3≤ax -2≤3⇔-1≤ax ≤5⇔⎩⎪⎨⎪⎧ax ≤5,ax ≥-1.因为x ∈[0,1], 所以-1≤a ≤5.所以实数a 的取值范围为[-1,5].8.已知对区间⎝ ⎛⎦⎥⎤0,54内的一切实数a ,满足关于x 的不等式|x -a |<b 的x 也满足不等式|x -a 2|<12,试求实数b 的取值范围.解:设A ={x ||x -a |<b },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪|x -a 2|<12, 则A ={x |a -b <x <a +b ,b >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a 2-12<x <a 2+12. 由题意,知当0<a ≤54时,A ⊆B .所以⎩⎪⎨⎪⎧a -b ≥a 2-12,a +b ≤a 2+12,0<a ≤54.所以b ≤-a 2+a +12且b ≤a 2-a +12.因为0<a ≤54,所以-a 2+a +12=-a -122+34∈⎣⎢⎡⎦⎥⎤316,34,a 2-a +12=⎝ ⎛⎭⎪⎫a -122+14∈⎣⎢⎡⎦⎥⎤14,1316.所以b ≤316且b ≤14.从而b ≤316.故实数b 的取值范围为⎝ ⎛⎦⎥⎤0,316.一、选择题1.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:由|x -a |<1,得a -1<x <a +1. 由|x -b |>2,得x <b -2或x >b +2. ∵A ⊆B ,∴a -1≥b +2或a +1≤b -2. ∴a -b ≥3或a -b ≤-3.∴|a -b |≥3. 答案:D2.若关于x 的不等式|2x +1|-|x -4|≥m 恒成立,则实数m 的取值范围为( ) A .(-∞,-1] B .⎝ ⎛⎦⎥⎤-∞,-52C .⎝⎛⎦⎥⎤-∞,-92 D .(-∞,-5] 解析:设F (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4.如图所示,F (x )min =-32-3=-92.故m ≤F (x )min =-92.答案:C二、填空题3.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则实数a 的取值范围是________.解析:∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=12-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,即⎪⎪⎪⎪⎪⎪a -14+|a |≤14.根据绝对值的几何意义,知0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 4.若函数f (x )是R 上的减函数,且函数f (x )的图像经过点A (0,3)和B (3,-1),则不等式|f (x +1)-1|<2的解集是________.解析:∵|f (x +1)-1|<2,∴-2<f (x +1)-1<2,即-1<f (x +1)<3.∴f (3)<f (x +1)<f (0).∵函数f (x )在R 上是减函数, ∴0<x +1<3.解得-1<x <2. 答案:{x |-1<x <2} 三、解答题5.如图所示,点O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点.设x 表示点C 与原点的距离,y 表示点C 到点A 的距离的4倍与点C 到点B 的距离的6倍之和.(1)将y 表示为x 的函数;(2)要使y 的值不超过70,实数x 应该在什么范围内取值? 解:(1)依题意,得y =4|x -10|+6|x -20|,0≤x ≤30. (2)由题意,得x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30.(*)当0≤x ≤10时,不等式组(*)化为 4(10-x )+6(20-x )≤70,解得9≤x ≤10. 当10<x <20时,不等式组(*)化为 4(x -10)+6(20-x )≤70,解得10<x <20. 当20≤x ≤30时,不等式组(*)化为 4(x -10)+6(x -20)≤70,解得20≤x ≤23. 综上,实数x 的取值范围是[9,23]. 6.已知函数f (x )=|x -a |.(1)若关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若关于x 的不等式f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:法一 (1)由f (x )≤3,得|x -a |≤3. 解得a -3≤x ≤a +3.又关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5.解得a =2.(2)由(1),得a =2,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5;当x>2时,g(x)>5.综上,函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].法二(1)同法一.(2)由(1),得a=2,f(x)=|x-2|.设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].。

含绝对值不等式的解法练习题高一数学(含解析)

含绝对值不等式的解法练习题高一数学(含解析)

含绝对值不等式的解法练习题高一数学(含解析)含绝对值不等式的解法练习题高一数学含绝对值不等式的解法练习题1.不等式1|2x-1|2的解集是( )A.(- ,0)(1, )B.(- ,0)][1, ])C.(- ,0)[1, ]D.(-,- )[1, ]答案:B解析:原不等式等价于-2-1或12.解得-2.假如a0,那么下列各式中错误的是( )A. B.a+cb+c C.adbd D.a-cb-c答案:C解析:反例可举d=0.3.已知a1,则不等式|x|+a1的解集是( )A.{x|a-1C. D.R答案:D解析:由|x|+a1,得|x|1-a.∵a1,1-a0.故该不等式的解集为R.4.在数轴上与原点距离不大于2的点的坐标的集合是( )A.{x|-2C.{x|-22}D.{x|x2或x-2}答案:C解析:由绝对值的几何意义易知.5.关于任意实数x,不等式|x|m-1恒成立,则实数m的取值范畴是_______ __________.答案:m1解析:|x|m-1对一切实数x恒成立,则m-1应不大于|x|的最小值,即m-10,得m1.6.|x-1||x+1|的解集是______________.答案:{x|x0}解析:原不等式可化为(x-1)2(x+1)2,解得x0.7.已知集合A={x||x+7|10},B={x|?|x-5|?2c},又AB=B,求实数c的范畴.解:先解|x+7|10,得x+710或x+7-10,有x3或x-17,即A={x|x3若x-17}.由AB=B得B A,对B讨论如下情形:(1)B= 有c(2)B 有c0,解|x-5|2c,得-2c解得c-11或c1.取c1,即0由(1)(2)知实数c的取值范畴是{c|c{c|0能力提升踮起脚,抓得住!8.已知集合M={x| 1},P={x|x-t0},要使MP= ,则t的取值范畴是( )A.{t|t1}B.{t|t1}C.{t|t1}D.{t|t1}答案:A解析:M={x|-11},P={x|xt},由MP= 知t1.9.若|x-4|+|x-3|A.aB.aC.aD.a3或a-4答案:B解析:由几何意义:|x-4|+|x-3|的最小值为1,则当a1时,原不等式的解集为空集.10.不等式|6-|2x+1||1的解集是________________.答案:{x|x-4或-3解析:原不等式等价于6-|2x+1|1或6-|2x+1|-1,又等价于-55或2x+17或2x+1-7.解之可得.11.不等式|x-2|+|x-3|9的解集是________________.答案:{x|-2解析:当x3时,原不等式为x-2+x-39,解得x7,即有3当23时,为x-2+3-x9,即19成立,即有2当x2时,为2-x+3-x9,解得x-2,即有-2综合得原不等式的解集为{x|37}{x|23}{x|-212.设A={x||2x-1|1},B={x||2x-a|1},AB= ,AB=R,求实数a的值.解:|2x-1|1 2x-11或2x-1-1,即x1或x0,即A={x|x1或x解|2x-a|1,得-11,即,即B={x| }.由AB= ,AB=R,图示如下:可得解得a=1.13.关于实数x的不等式|x- | 与|x-a-1|a的解集依次记为A与B,求使A B的a的取值范畴.解:由|x- | ,得- ,因此2aa2+1.由|x-a-1|a,得-ax-a-1a,则12a+1,要使A B,就必须即故a的取值范畴为2.拓展应用跳一跳,够得着!14.已知aR,则(1-|a|)(1+a)0的解集为( )A.|a|B.aC.|a|D.a1且a-1答案:D解析:(1)a0时,(1-|a|)(1+a)=(1-a)(1+a)a(2)a0时,(1+a)(1+a)=(1+a)20,且a-1.综合知a1,且a-1.15.已知关于x的不等式|x+2|+|x-3|答案:a5解析:∵|x+2|+|x-3|5恒成立,当a5时,|x+2|+|x-3|故要使|x+2|+|x-3|16.设不等式|x+1|-|x-2|k的解集为R,求实数k的取值范畴.解法一:依照绝对值的几何意义,|x+1|能够看作数轴上点P(x)到点A(-1)的距离|PA|,|x-2|能够看作是数轴上点P(x)到点B(2)的距离|PB|,则|x+1|-|x-2|=| PA|-|PB|.如图所示:当点P在线段AB上时,-3|PA|-|PB|3,当P在A点左侧时,|PA|-|PB|=-3,当P在B点右侧时,|PA|-|PB|=3,则不等式-3|x+1|-|x-2|3恒成立.故使原不等式的解集为R的实数k的取值范畴是k-3.解法二:令y=|x+1|-|x-2|课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

绝对值不等式真题练习和答案

绝对值不等式真题练习和答案
2、你知道日食的形成过程吗?(1)当a=1时,求不等式Байду номын сангаас(x)≥g(x)的解集;
10、生物学家列文虎克于1632年出生在荷兰,他制成了世界上最早的可放大300倍的金属结构的显微镜。他用自制的显微镜发现了微生物。(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
20、在观星过程中,我们看到的天空中有一条闪亮的“银河”光带,实际是由许许多多的恒星组成的一个恒星集团,被人们称为银河系。我们生活的地球在银河系。
一、填空:
3、我们在水中发现了什么微生物呢?(P18)
1、人们把放大镜叫作凸透镜(边沿薄、中间厚、透明),它能把物体的图像放大,早在一千多年前,人们就发明了放大镜。放大镜在我们的生活、工作、学习中被广泛使用。
2018.
21、人们发现银河系以外还有类似银河系一样庞大的恒星集团,如:仙女座星系、猎犬座星系,目前人类已发现了超过100亿个河外星系。已知 .
不等式选讲高考真题
2013.
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[- , )时,f(x)≤g(x),求a的取值范围.
2014.
若 ,且 .
(Ⅰ)求 的最小值;
(Ⅱ)是否存在 ,使得 ?并说明理由.
2015.
已知函数 .
(Ⅰ)当 时,求不等式 的解集;
(Ⅱ)若 的图像与 轴围成的三角形面积大于6,求 的取值范围
2016.
已知函数f(x)=∣x+1∣-∣2x-3∣.
(I)在答题卡第(24)题图中画出y=f(x)的图像;
(II)求不等式∣f(x)∣﹥1的解集。

课后练习7.绝对值不等式

课后练习7.绝对值不等式

绝对值不等式1.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是()A.0 B.1 C.-1 D.2【解析】由于|x-2|+|x-a|≥|a-2|,∴等价于|a-2|≥a,解之得a≤1.故实数a的最大值为1.【答案】 B2. 不等式(1+x)(1-|x|)>0的解集是()A. {x|0≤x<1}B. {x|x<0且x≠1}C. {x|-1<x<1}D. {x|x<1且x≠-1}答案:D解析:当x≥0时,(x+1)(x-1)<0,∴0≤x<1.当x<0时,(x+1)2>0,∴x≠-1,综上可知,选D项.3. 设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足()A. |a+b|≤3B. |a+b|≥3C. |a-b|≤3D. |a-b|≥3答案:D解析:由题意可得集合A={x|a-1<x<a+1},集合B={x|x<b-2或x>b+2},又因为A⊆B,所以有a +1≤b-2或b+2≤a-1,即a-b≤-3或a-b≥3.因此选D.4. 已知命题p:∀x∈R,|x+2|+|x-1|≥m,命题q:∃x∈R,x2-2mx+m2+m-3=0,那么,“命题p为真命题”是“命题q为真命题”的()A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件答案:A解析:由绝对值不等式的几何性质可知,∀x∈R,|x+2|+|x-1|≥|(x+2)-(x-1)|=3,故若命题p为真命题,则m≤3;当命题q为真命题时,方程x2-2mx+m2+m-3=0有根,则Δ=(-2m)2-4(m2+m-3)=12-4m≥0,解得m≤3;所以“命题p为真命题”是“命题q为真命题”的充要条件.5.已知不等式|a-2x|>x-1,对任意x∈[0,2]恒成立,则a的取值范围为()A.(-∞,1)∪(5,+∞) B.(-∞,2)∪(5,+∞)C.(1,5) D.(2,5)选B当0≤x<1时,不等式|a-2x|>x-1对a∈R恒成立;当1≤x≤2时,不等式|a-2x|>x-1,即a -2x<1-x或a-2x>x-1,x>a-1或3x<1+a,由题意得1>a-1或6<1+a,a<2或a>5;综上所述,则a 的取值范围为(-∞,2)∪(5,+∞).6.已知不等式|x-2|>1的解集与不等式x2+ax+b>0的解集相等,则a+b的值为_____【解析】由|x-2|>1得x-2<-1或x-2>1,即x<1或x>3.依题意得知,不等式x2+ax+b>0的解集是(-∞,1)∪(3,+∞)于是有⎩⎨⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 【答案】 -17.若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 ▲【答案】24a -≤≤。

高一数学含绝对值不等式的解法练习题

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法一、选择题1.已知a <-6,化简26a -得( ) A. 6-a B. -a -6C. a +6D. a -62.不等式|8-3x |≤0的解集是( ) A. ∅B. RC. {(1,-1)}D. ⎭⎬⎫⎩⎨⎧38 3.绝对值大于2且不大于5的最小整数是( ) A. 3B. 2C. -2D. -54.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )A. {x |-1<x <5}B. {x |x ≤0或x ≥2}C. {x |-1<x ≤0}D. {x |-1<x ≤0或2≤x <5}5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A 中的元素个数是( ) A. 11 B. 10 C. 16 D. 156.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N ( ) A. {4-≥y y } B. {51≤≤-y y } C. {14-≤≤-y y } D. ∅7.语句3≤x 或5>x 的否定是( )A. 53<≥x x 或B. 53≤>x x 或C. 53<≥x x 且D. 53≤>x x 且 二、填空题1.不等式|x +2|<3的解集是 ,不等式|2x -1|≥3的解集是 .2.不等式1211<-x 的解集是_________________. 3.根据数轴表示a ,b ,c 三数的点的位置,化简|a +b |+|a +c |-|b -c |= ___ .三、解答题1.解不等式 1.02122<--x x 2.解不等式 x 2 - 2|x |-3>03.已知全集U = R , A ={x |x 2- 2 x - 8>0}, B ={x ||x +3|<2},求:(1) A ∪B , C u (A ∪B ) (2) C u A , C u B , (C u A )∩(C u B )4.解不等式3≤|x -2|<9 7.解不等式|3x -4|>1+2x .5.画出函数|21|x-||x y ++=的图象,并解不等式| x +1|+| x -2|<4.6.解下列关于x 的不等式:1<| x - 2 |≤77.解不等式2≤|5-3x |<9 11.解不等式|x -a |>b8.解关于x 的不等式:|4x -3|>2x +19.解下列关于x 的不等式:021522≤---x x x含绝对值的不等式解法答案一、选择题(共7题,合计35分) 1.1760答案:B 2.1743答案:D 3.1744答案:D 4.1773答案:D 5.2075答案:C 6.4109答案:B 7.1672答案:D二、填空题(共5题,合计21分)1.1539答案:{-5<x <1},{x |x ≥2或x ≤-1}2.1725答案:{x |0<x <4}3.1602答案:⎭⎬⎫⎩⎨⎧≤≤-3434x x4.1728答案:a <35.1788答案:0三、解答题(共19题,合计136分) 1.1510答案:{x |x >10或x <-10}2.1502答案:{}33-<>x x x 或3.1509答案:(1) A ∪B = {x |x <-1或x >4=, C U (A ∪B )= {x |-1≤x ≤4}(2) C U A = {x |-2≤x ≤4}, C U B = {x |x ≤-5或x ≥-1}, (C U A )∩(C U B ) = {x |-1≤x ≤4}4.1535答案:⎭⎬⎫⎩⎨⎧>-<317x x x 或5.1597答案:⎭⎬⎫⎩⎨⎧≥-≤2721x x x 或6.1598答案:{x |-7<x ≤-1或5≤x <11}7.1599答案:⎭⎬⎫⎩⎨⎧><553x x x 或8.1600答案:2523<<-x9.1538答案:⎭⎬⎫⎩⎨⎧>-<032x x x 或 10.1554答案:⎭⎬⎫⎩⎨⎧<≤≤<-31437134x x x 或 11.1536答案:当b <0时,解集为R ;当b =0时,解集为{x |x ∈R 且x ≠a };当b >0时,解集为{x |x <a -b 或x >a +b }.12.1601答案:a 的取值范围为a >5 13.1721答案:-5≤x <1或3<x ≤9.14.1722答案:x >2或x <1/3.15.1723答案:|x -1|+|x -2|<3⇔0<x <1或1≤x <2或2≤x <3⇔0<x <3.16.1724答案:当m >0时,原不等式的解集是{x |-3m <x <2m };当m =0时,原不等式的解集是∅;当m <0时,原不等式的解集是{x |2m <x <-3m }. 17.1726答案:x <-1/2或0<x <4.18.1727答案:x ≤-3或2<x ≤519.4121答案:21<a <32。

高一数学绝对值不等式试题

高一数学绝对值不等式试题

高一数学绝对值不等式试题1.(2014•江西)对任意x,y∈R,|x﹣1|+|x|+|y﹣1|+|y+1|的最小值为()A.1B.2C.3D.4【答案】C【解析】把表达式分成2组,利用绝对值三角不等式求解即可得到最小值.解:对任意x,y∈R,|x﹣1|+|x|+|y﹣1|+|y+1|=|x﹣1|+|﹣x|+|1﹣y|+|y+1|≥|x﹣1﹣x|+|1﹣y+y+1|=3,当且仅当x∈[0,],y∈[0,1]成立.故选:C.点评:本题考查绝对值三角不等式的应用,考查利用分段函数或特殊值求解不等式的最值的方法.2.(2014•宜春模拟)若关于x的不等式|x﹣1|+|x﹣3|≤a2﹣2a﹣1在R上的解集为∅,则实数a的取值范围是()A.a<﹣1或a>3B.a<0或a>3C.﹣1<a<3D.﹣1≤a≤3【答案】C【解析】|x﹣1|+|x﹣3|表示数轴上的x对应点到1和3对应点的距离之和,其最小值等于2,再由a2﹣2a﹣1<2,解得a的取值范围.解:|x﹣1|+|x﹣3|表示数轴上的x对应点到1和3对应点的距离之和,其最小值等于2,由题意|x﹣1|+|x﹣3|≤a2﹣2a﹣1的解集为空集,可得|x﹣1|+|x﹣3|>a2﹣2a﹣1恒成立,故有2>a2﹣2a﹣1,解得﹣1<a<3,故选:C.点评:本题考查绝对值的意义,绝对值不等式的解法,得到2>a2﹣2a﹣1,是解题的关键,属于中档题.3.(2014•衡阳三模)设函数f(x)=|x2﹣2x﹣1|,若a>b>1,且f(a)=f(b),则ab﹣a﹣b的取值范围为()A.(﹣2,3)B.(﹣2,2)C.(1,2)D.(﹣1,1)【答案】D【解析】作出函数f(x)的图象,由a>b>1,且f(a)=f(b)可得(a﹣1)2+(b﹣1)2=4.设a﹣1=2cosθ,b﹣1=2sinθ,θ∈(0,),根据ab﹣a﹣b=2sin2θ﹣1,利用正弦函数的定义域和值域求得ab﹣a﹣b的范围.解:作出函数f(x)的图象,如图:可得f(x)=|x2﹣2x﹣1|的图象关于直线x=1对称,且f(1﹣)=f(1+)=0,f(3)=f(﹣1)=f(1)=2,由a>b>1,且f(a)=f(b),得a2﹣2a﹣1=﹣(b2﹣2b﹣1),整理得(a﹣1)2+(b﹣1)2=4.设a﹣1=2cosθ,b﹣1=2sinθ,θ∈(0,),则ab﹣a﹣b=(a﹣1)(b﹣1)﹣1=2sin2θ﹣1,由sin2θ∈(0,1),可得2sin2θ﹣1∈(﹣1,1),即ab﹣a﹣b∈(﹣1,1),故选:D.点评:本题主要考查绝对值不等式的解法,三角代换、正弦函数的定义域和值域,体现了转化、数形结合的数学思想,属于中档题.4.(2014•梧州模拟)不等式|x2﹣1|>3的解集为()A.(﹣2,2)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,1)D.(﹣∞,﹣2)∪(2,+∞)【答案】D【解析】由原不等式可得可得 x2﹣1>3,或 x2﹣1<﹣3,分别求得每个不等式的解集,再取并集,即得所求.解:由不等式|x2﹣1|>3,可得 x2﹣1>3,或 x2﹣1<﹣3.解x2﹣1>3,可得 x>2,或 x<﹣2;解x2﹣1<﹣3可得 x无解.综上可得,不等式的解集为[x|x>2,或 x<﹣2},故选:D.点评:本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.5.(2014•九江三模)若关于x的不等式|x﹣1|+x≤a无解,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】通过去掉绝对值符号化简不等式的左侧为函数的表达式,通过函数的最值求出a的范围.解:令y=x+|x﹣1|=,∴函数的最小值为1,∴要使关于x的不等式x+|x﹣1|≤a无解,实数a的取值范围为a<1.故答案为:A点评:本题考查绝对值不等式的解法,函数的最值的应用,绝对值的基本知识的考查,属于中档题.6.(2013•临沂一模)已知集合A={},B={x||x﹣1|≤1},则A∩B=()A.{﹣1,0}B.{0,1}C.{0}D.{1}【答案】B【解析】依题意,可求得A={﹣1,0,1},解不等式|x﹣1|≤1可求得集合B,从而可求得A∩B.解:∵A={x|x=sin,k∈Z},∴A={﹣1,0,1};∵|x﹣1|≤1,∴﹣1≤x﹣1≤1,∴0≤x≤2.∴集合B={x|0≤x≤2},∴A∩B={0,1}.故选B.点评:本题考查绝对值不等式的解法,考查交集及其运算,求得A={﹣1,0,1}是关键,属于中档题.7.(2013•红桥区二模)集合A={x||x﹣2|≤2},B={y|y=﹣x2,﹣1≤x≤2},则A∩B=()A.{x|﹣4≤x≤4}B.{x|x≠0}C.{0}D.∅【答案】C【解析】解绝对值不等式|x﹣2|≤2可求得集合A,由y=﹣x2,﹣1≤x≤2可求得集合B,从而可得A∩B.解:∵|x﹣2|≤2,∴﹣2≤x﹣2≤2,∴0≤x≤4,即A={x|0≤x≤4};又B={y|y=﹣x2,﹣1≤x≤2}={y|﹣4≤y≤0},∴A∩B={0}.故选C.点评:本题考查绝对值不等式的解法,考查函数的值域,考查交集及其运算,求得集合A与集合B是关键,数中档题.8.(2014•重庆一模)若函数的定义域为R,则实数m的取值范围为.【答案】(﹣∞,﹣6]∪[2,+∞).【解析】由于|x+2|+|x﹣m|≥|m+2|,结合题意可得|m+2|≥4,由此求得m的范围.解:由于|x+2|+|x﹣m|≥|(x+2)﹣(x﹣m)|=|m+2|,故由函数的定义域为R,可得|m+2|≥4,解得m≥2,或m≤﹣6,故m的范围是(﹣∞,﹣6]∪[2,+∞),故答案为:(﹣∞,﹣6]∪[2,+∞).点评:本题主要考查绝对值的性质,绝对值不等式的解法,属于中档题.9.(2014•陕西一模)若不等式|x+1|+|x﹣3|≥a+对任意的实数x恒成立,则实数a的取值范围是.【答案】(﹣∞,0)∪{2}.【解析】不等式对任意的实数x恒成立转化为a+小于等于函数y=|x+1|+|x﹣3|的最小值,根据绝对值不等式的几何意义可知函数y=|x+1|+|x﹣3|的最小值为4,因此原不等式转化为分式不等式的求解问题.解:令y=|x+1|+|x﹣3|,由绝对值不等式的几何意义可知函数y=|x+1|+|x﹣3|的最小值为4,∵不等式对任意的实数x恒成立∴原不等式可化为≤4解得a=2或a<0故答案为:(﹣∞,0)∪{2}.点评:考查绝对值不等式的几何意义,把恒成立问题转化为求函数的最值问题,体现了转化的思想方法,属中档题.10.(2014•南昌三模)若关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,则实数a的取值范围是.【答案】(﹣∞,﹣1)∪(0,+∞)【解析】根据绝对值的性质,我们可以求出|x﹣1|﹣|x﹣2|的最大值,结合不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,可得|x﹣1|﹣|x﹣2|<a2+a+1恒成立,即a2+a+1大于|x﹣1|﹣|x﹣2|的最大值,解不等式可得实数a的取值范围.解:∵|x﹣1|﹣|x﹣2|=|x﹣1|﹣|2﹣x|≤|x﹣1﹣x+2|=1若不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,则|x﹣1|﹣|x﹣2|<a2+a+1恒成立即a2+a+1>1解得x<﹣1或x>0∴实数a的取值范围是(﹣∞,﹣1)∪(0,+∞)故答案为:(﹣∞,﹣1)∪(0,+∞)点评:本题考查的知识点是绝对值不等式的解法,函数恒成立问题,其中根据绝对值的性质求出不等式左边的最值是解答的关键.。

绝对值三角不等式练习

绝对值三角不等式练习

1. 绝对值三角不等式 一层练习1.若|x -a |<m ,|y -a |<n ,则下列不等式一定成立的是( )A .|x -y |<2mB .|x -y |<2nC .|x -y |<n -mD .|x -y |<n +m答案: D2.设ab >0,下面四个不等式:①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |.其中正确的是( )A .①②B .①③C .①④D .②④答案: C3.若a ,b ∈R ,且|a |≤3,|b |≤2,则|a +b |的最大值是________,最小值是________. 答案: 5 04.方程|x |+|log a x |=|x +log a x |(a >1)的解集是________________.答案: {x |x ≥1}二层练习5.|x -A |<ε2,|y -A |<ε2是|x -y |<ε的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件答案: A6.若不等式|x -4|+|x -3|>a 对一切实数x 恒成立,则实数a 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(3,4)D .[3,+∞)答案: A7.“a <4”是“对任意实数x ,|2x -1|+|2x +3|≥a 成立”的( )A .必要条件B .充分不必要条件C .必要不充分条件D .即不充分也不必要条件解析:∵|2x -1|+|2x +3|≥|2x -1-(2x +3)|=4,∴当a <4时⇒|2x -1|+|2x +3|≥a 成立,即充分条件;当|2x -1|+|2x +3|≥a ⇒a ≤4,不能推出a <4,即必要条件不成立.答案:B8.函数y =|x -3|-|x +1|的最大值是________,最小值是________.解析:解法一 ∵||x -3|-|x +1||≤|(x -3)-(x +1)|=4,∴-4≤|x -3|-|x +1|≤4.∴y max =4,y min =-4.解法二 把函数看作分段函数y =|x -3|-|x +1|=⎩⎪⎨⎪⎧4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.∴-4≤y ≤4,∴y max =4,y min =-4.答案:4 -49.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,|x -2y +1|的最大值是________. 解析:|x -2y +1|=|x -1-2(y -2)-2|≤|x -1|+2|y -2|+|-2|≤1+2+2=5. 答案:510.(2022·江西高考文科)x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为____________.解析:由|a |+|b |≥|a -b |知,|x |+|x -1|≥|x -(x -1)|=1,同理|y |+|y -1|≥1,故|x |+|y |+|x -1|+|y -1|=2,所以0≤x ≤1且0≤y ≤1,即0≤x +y ≤2.答案:[0,2]三层练习11.(2022·新课标全国卷Ⅱ高考理科数学)设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0),证明:f (x )≥2.解析:(1)由a >0,有 f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a -(x -a )=1a+a ≥2. 所以f (x )≥2.12.设a ,b ∈R 且|a +b +1|≤1,|a +2b +4|≤4,求|a |+|b |的最大值.解析:|a +b |=|(a +b +1)-1|≤|a +b +1|+|-1|≤1+1=2|a -b |=|3(a +b +1)-2(a +2b +4)+5|≤3|a +b +1|+2|a +2b +4|+5≤3×1+2×4+5=16.①当ab ≥0时,|a |+|b |=|a +b |≤2;②当ab <0时,则a (-b )>0,|a|+|b|=|a|+|-b|=|a+(-b)|≤16.总之,恒有|a|+|b|≤16.而a=8,b=-8时,满足|a+b+1|=1,|a+2b+4|=4,且|a|+|b|=16.因此|a|+|b|的最大值为16.。

解含绝对值的不等式专题练习有详细答案

解含绝对值的不等式专题练习有详细答案

解“含纽对值的不等成”专題练习册级学号一•选择題:1.不等衣|x + 2|<3的解集是()(A) - 5<x<1 ( B ) x< - 5 或x>1 ( C ) x< - 5 ( D ) x>12.不等衣|2z-1 |>2的解集是()1 3 1 3(A ) x> 1 或x<- 1 ( B ) A <一一或A > - ( C ) --<x<- ( D ) - 1 <x<32 2 2 23•不等衣3v|2x —l|v5的解集为()A. {x|2<x<31B. {x|-2<x<-1}C. {x|-2<x<-1 或2<x<3}D. {x|-2<x<3}4•不等S0<|2x-l|<5的解集为( )A. {x|-2<x<3}B. {x|-2<x<2} C・(x|x<-2 或x>3} D. {x|-2<x<3 fl -}25•不等衣I2x —5I>3的解集是()(A) {x I x > 4} (B){xl 1 <x< 4}(C) {x I x<一1弧 > 4)(D) {x\x< 1 或兀 > 4)6•关于x的不等氏叱vO(“ + 〃vO)的瞬集是()b_x(A) {x\x< -a} (B){x I x < > /?}(C) {x I x < /?或x: > -a} (D){xl/?<x< -a}7•不等itlx2-xl<2的解集是( )(A) {x \ x < -lgJcx > 2) (B) {x I -1 v x v 2} (C)x e 7? (D)08•不等式(l + x)(l-lxl) >0的解集是()A. {xIOSxvl} B・{xlx vO,xH-l}C. {xl-1 <x< l)D.{xlx<9•已知集合A={x卜2<x<4},B=(x|xMa},若AnB=4>, fl AuB中不含元素5,则下列值中a可能是A. 3B. 4C. 5D. 6 ( )10•若不等直丄v2和卜|>抑时应立,呱x的取值X围是()A. —丄vxvlB. x> 丄或vv-丄C. x>-D. x> -2 3 2 3 2 3 211.设集合P={X|X2-4X-5<0},Q = {X^x\-a>0}, i 能便PflQ = 0 成立的a 的值是( ) A. {a\a>5} B. {a|a>5}C. {d|-lva<5}D. ^a\a > 1}12•不等衣奸¥+凶》0的解集是( )A. {x|-2<x<2}B. 0或0K2}C. {x|-2<x<0«lc0<J<2)D. {x|-辰x<0或0W>/T}13.E »a>o,不等此卜一 4|+卜一 3|<“在实数集R 上的解集不是空集,剧“的取值X 围是( A. a >0B. a > 1 C ・ a>\ D. a >22、•一]14 •设集合4 = {人•卜一牛2}, 3 =杯二卜若A^B 9収的収值X 围是(x I 2A. {切0<«< ljB. {切0<a<\}C. {G |0 va v 1} D ・{a|0<a<\} 二填空題: 15•不等S|X +1|+|X-1|<2的解集是 ______________________17•不等贰|x+1 |+|x-11>2的解集是 ___________________________ ・1&若a>O,be/?,般不等j{\-3x + b\< "的解集是 _____________________ .19•不等jt|x +1|-|x-1>a 的解集是R,则a 的取值集合 __________________________________ 20•不等氏/-5^|+6<0.的解集是 _________________ 21•巳知集合 A={x||x+2>5EB={x|-屮+6乂・ 5>0},M AuB=三.解笞題:22. 解下列不等衣 (1)|1-2x>2⑵(x-1 ) 2<100(3)解不等 S X 2-9<X +3 (4)解不等式 |x-|2x+1||>1.16.x 2 +3x JV + 2>卞的解集是 -----------------------(5)l3x + 2lvlxl(6) I x2 -4x+2 | >-;2 (7 ) | x+3 | - | x - 3 | >3.23.BflA = {x||x-a|<4}1B = {x|x2-4x-5>0}, fl AuB=R.XX 数a 的取值X 围.24.M BlA = {xllx-ll<c,c>O},B = {xllx-3l>4},KAn^ = 0» 求C 皿值的XU。

高二数学绝对值不等式试题

高二数学绝对值不等式试题

高二数学绝对值不等式试题1.函数若不等式f(x)≥6的解集为(—∞,-2][4,+∞),则实数a的值为.【答案】3.【解析】∵a>0,故f(x)=|x+1|+|x-a|=,∴当x≤-1时,解-2x+a-1≥6得:x≤;当-1<x<a时,f(x)=1+a;当x≥a时,解2x+1-a≥6得:x≥;又f(x)≥6的解集为(-∞,-2]∪[4,+∞),∴=-2且=4且1+a∈[4,+∞),解得a=3.故应填入:3.【考点】绝对值不等式的解法.2.设函数(1)求不等式的解集;(2)若不等式(,,)恒成立,求实数的范围.【答案】(1);(2).【解析】(1)欲解不等式,需去掉绝对值,考虑到含有两个绝对值,因此分三段去,然后解.(2)要使不等式恒成立,则,考虑到不等式性质,不等式右侧可化简.试题解析:去绝对值,函数可化为,分三段解不等式,可得解集为:.由, 可得, 由(1)可解得:【考点】(1)含绝对不等会的解法;(2)恒成立问题(一般采用分离常数).3.已知.(1)求不等式的解集A;(2)若不等式对任何恒成立,求的取值范围.【答案】(1) (2)【解析】(1)把不等式转化为即可. (2) 恒成立转化为,即.(1)∴(2)恒成立对恒成立.∴取值范围是【考点】绝对值不等式的解法;简单的不等式恒成立的问题.4.不等式A.B.C.D.【答案】D【解析】因为,所以,,故不等式,选D。

【考点】绝对值不等式解法点评:简单题,绝对值不等式解法,通常以“去绝对值符号”为出发点。

有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。

5.已知关于x的不等式的解集是非空集合,则的取值范围是【答案】【解析】根据题意,关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,即为存在y=|x+a|+|x-1|的图形在y=2013-a的下方. y=|x+a|+|x-1|的图形是一条有两个折点的折线.y=2013-a是一条平行于x轴的直线.a的取值范围是(-∞,1006);6所以答案为:(-∞,1006).【考点】绝对值不等式点评:(1)关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,等价于存在y=|x+a|+|x-1|的图形在y=2013-a的下方.与恒成立是有本质区别的.(2)y=|x+a|+|x+b|的图形为一条带有两个折点的直线.6.已知函数(1)当的解集(2)若的解集包含[1,2],求的取值范围【答案】(1)(2)[-3,0]【解析】解:(1)当,当无解,当,故(2)当,即由条件得,故满足条件的的取值范围为[-3,0]【考点】绝对值不等式点评:主要是考查了绝对值不等式的求解,以及运用不等式来得到参数的范围,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档