(完整word)初中几何证明题解题思路及常用原理

合集下载

初二几何证明题的解题思路

初二几何证明题的解题思路

初二几何证明题的解题思路一、题目11. 题目- 已知:在平行四边形ABCD中,E、F分别是AB、CD的中点,连接DE、BF。

求证:四边形DEBF是平行四边形。

2. 解析- 思路:要证明四边形DEBF是平行四边形,根据平行四边形的判定定理,可以从对边平行且相等入手。

- 证明:因为四边形ABCD是平行四边形,所以AB = CD,AB∥ CD。

- 又因为E、F分别是AB、CD的中点,所以BE=(1)/(2)AB,DF=(1)/(2)CD。

- 所以BE = DF。

- 且BE∥ DF(因为AB∥ CD)。

- 根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,所以四边形DEBF是平行四边形。

二、题目21. 题目- 已知:在 ABC中,AD是BC边上的中线,E是AD的中点,连接BE并延长交AC于F。

求证:AF=(1)/(2)FC。

2. 解析- 思路:过点D作DG∥ BF交AC于G,利用中位线定理和平行线分线段成比例定理来证明。

- 证明:过点D作DG∥ BF交AC于G。

- 因为AD是BC边上的中线,所以D是BC中点。

- 又因为DG∥ BF,根据中位线定理,可得G是FC中点,即FG = GC。

- 因为E是AD的中点,DG∥ BF,根据平行线分线段成比例定理,可得AF = FG。

- 所以AF=(1)/(2)FC。

三、题目31. 题目- 已知:在矩形ABCD中,AC、BD相交于点O,AE平分∠ BAD交BC于E,∠ CAE = 15^∘。

求∠ BOE的度数。

2. 解析- 思路:先求出∠ BAE的度数,进而得出 ABE的形状,再求出∠ ACB的度数,最后根据三角形的内角和求出∠ BOE的度数。

- 证明:- 因为四边形ABCD是矩形,AE平分∠ BAD,所以∠ BAE = 45^∘。

- 又因为∠ CAE=15^∘,所以∠ BAC=∠ BAE +∠ CAE = 45^∘+15^∘=60^∘。

- 在矩形ABCD中,AC = BD,OA=OC=(1)/(2)AC,OB =OD=(1)/(2)BD,所以OA = OB。

初中数学几何证明解题思路探析

初中数学几何证明解题思路探析

初中数学几何证明解题思路探析[] 几何比纯代数知识更为复杂,几何证明题不仅涉及计算,对于学生的逻辑思维能力也是巨大的考验. 在教学中,教师应着重分析常见的几何证明解题思路与解题方法.初中几何证明解题基本思路(一)仔细读题,理清题意几何证明题以几何定理为基础,通过对已知条件进行分析,推导出题目给定的结论. 几何证明题的难点在于用已知的定理不能直接推导出答案,这也就造成部分学生知道定理但还是不会证明. 在这样的情况下,教师需要做的就是鼓励学生分析题目条件,结合自身掌握的定理,充分利用已知条件,有时候也可以通过结论倒推条件,将思考过程用几何证明的规范语言反过来写一遍就是证明过程. 在这个过程中,学生的联想能力、逻辑思维能力都得到了提升.例如,人教版九年级数学上册第24章“圆”中有这样一道习题已知AB为圆O的直径,ED与圆O相切于点C,AC是弦,满足AD⊥CE,垂足为D,求证∠BAD被AC平分.在读题时,看到“AB为圆O的直径”这一条件,就要知道∠ACB=90°;“ED与圆O相切于点C”这一条件可以说明OC⊥ED且∠ACD=∠B. 通过对已知条件进行转化,能够得到证明需要的图形关系,最终将本题解答出来.(二)识图,解析图形多数的几何证明题涉及的图形都比较复杂,并不是所有图形都会用到,有实际作用的只是其中一部分. 因此,教师要指导学生学会简化图形,掌握分解以及组合的解题技巧. 学生在面对复杂的几何图形时如果表现出较强的畏难情绪,无法展开联想或者一点解答思路也没有,教师就需要给予适当的帮助,指导学生弄明白复杂的几何图形由哪些基本图形组成,这些基本图形分别具备哪些重要性质,有什么规律. 长此以往,学生在遇到比较复杂的几何题时就会自主地进行分析,对一些常见的基本图形会产生熟知感,便于解题思路的形成.(三)审题,明确要求在解决几何证明的问题时,学生看到题目后的第一感觉往往就是去找解题的关键,当然这种感觉的产生是建立在认真读题、读图的基础上的. 只有做好这两方面的准备,学生的思维才会打开. 在进行几何证明题的训练时,教师要指导学生坚持这种思考方式,在掌握基础知识的前提下充分锻炼思维张性. 时间一长,学生在能解答好几何题的基础上,对其他题型也能做到有的放矢,部分学习能力较强、思维较活跃的学生在解题过程中能充分利用几何知识,大大简化求解过程.还是以上面的习题为例,学生在老师的指导下得出∠BAC=∠CAD,即本题证明完毕. 但如果学生不看清楚要求,就会继续做下去,继而得出其他结论,比如△ACB∽△ADC,=,最终得出AC2=AB×AD.(四)准确书写,规范解答并不是所有的几何题都具备较大难度,学习内容的设置肯定是难易结合的. 尽管如此,部分学生在书写时过于随意,证明过程不规范,使得整个推导过程缺乏条理性. 因此,教师要重视学生几何语言的规范性,在日常的作业中就要严格要求,引导学生锻炼文字组织能力,教导学生书写证明过程要依据思路展开,遵循几何证明题的书写规则. 下面以人教版九年级数学下册第27章“相似”为例,展示规范的几何证明过程.1. 题干要求如图2,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,试证明△ABC?c△ADE相似.2. 分析演绎易知,△ADE与△ABC相似,因此可以采用相似的定义进行证明,即证明∠A=∠A,∠ADE=∠B,∠AED=∠C,==. 因为DE不在△ABC的边BC上,不能直接利用结论. 但从要证明的=可以看出,除DE外,AE,AC,BC都在△ABC的边上,只需将DE平移到BC边上去,使得BF=DE,再证明=就可以了. 只要过点E作EF∥AB,交BC于点F,BF就是平移DE所得到的线段.3. 解答过程因为DE∥BC,所以∠ADE=∠B,∠AED=∠C.过点E作EF∥AB,交BC于点F,因为DE∥BC,EF∥AB,所以=,=.因为四边形DBFE是平行四边形,所以 BF=DE.所以=.所以==.因为∠A=∠A,所以△ABC∽△ADE.(四)学习反思,总结经验由于几何证明题条件较多,图像较复杂,因此部分学生在完成证明后就彻底松懈了,但是解题过程到这里并没有完全结束,一个完整的解答过程还包含解析验证. 在日常的解题过程中,老师就需要引导学生养成答题后二次审题的习惯,重新审题,确定题目中没有其他的隐含条件. 在这个过程中学生会收获到更多的知识,同时也是对其学习思维的有效巩固. 通过学习反思,学生能够对自己的证明过程进行核查,强化了学生的信息收集、问题解析能力.初中几何证明解题思考方法(一)综合法综合法指的就是充分利用已知条件,在个人分析的基础上,结合相应几何内容的定义、定理以及法则等知识,一步步向需要证明的结论推进,最终推导出命题的结论.1. 题干要求如图4,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证CE=FD.2. 分析演绎对题干进行观察分析,本题适用综合法进行证明.AB、CD相交于O?圯∠AOC=∠BOD,△ACO≌△BDO?圯CO=DOAO=BOAE=BF?摇?圯EO=FO?圯△ECO≌△FDO?圯CE=DF. 按照这一思考过程进行解答,就能得到本题的证明结果.(二)分析法从一定程度上来说,分析法就是综合法的逆过程,首先就是从待证明的结论出发,假设命题为真,分析命题为真的原因,探求命题成立的条件,像这样一步步逆推,向已知条件靠拢,最终回归到证明过程需要的条件以及题目的已知条件上.1. 题干要求如图5,已知AB∥DE,AC∥DF,BE=CF,求证AB=DE,AC=DF.2. 分析演绎在本题中,欲证AB=DE,AC=DF,即证△ABC≌△DEF,AB=DEAC=DF △ABC≌△DEF∠B=∠DEFAB∥DEBC=EFBE=CF∠ACB=∠FAC∥DF(三)?想法除了以上方法,联想法也比较常用. 在解题过程中,学生需要联想题目和其他题目有没有相同的地方. 如果有,可以试着把之前题目的解法运用到待证明的题目中,当然这个联想过程是需要学生注意不同题目之间的不同点的,万不可盲目套用. 例如在解答平面几何题时,我们经常会遇到示意图复杂或无规律的情况,这就使得题目的已知条件无法与结论产生联系. 在这种情况下,可以试着添加辅助线,构造出基本图形来加强已知条件与待证结论之间的联系. 辅助线的画法因题而异,但是常用的画法并不多,因此很多题型之间存在共同之处.1. 题干要求如图6,已知在△ABC中,AB=AC,D是CB延长线上的一点,∠ADB=60°,E是AD上的一点,且有DE=DB,求证AE=BE+BC.2. 分析演绎要证明一条线段等于其他两条线段长度之和,最容易想到的处理方法就是把两条线段通过各种方式移到一起,先得到两条线段的“和”,然后再证明题目中的相等关系. 而证明两条线段相等的方法比较固定,可以借助三角形的全等来证明. 因此,本题的关键就是添加辅助线并构造全等三角形.3. 解答过程将DC延长至F,使CF=BD,连接AF.因为 AB=AC,所以∠ABC=∠ACB.因为∠ABC+∠ABD=180°,∠ACB+∠ACF=180°,所以∠ABD=∠ACF.所以△ABD≌△ACF.所以 AD=AF.因为∠D=60°,所以△ADF是等边三角形,所以 AD=DF,AE=BF.因为BE=DB=CF,所以 AE=BE+BC.结语在初中数学教学的过程中,如果不讲求方法的科学性,学生解决问题就无从下手,不知怎么解答. 因此,教师一定要不断反思总结,优化自身的教学方式,坚持因材施教,追求教学的实效性,通过科学的练习引导学生自主归纳总结解题思路. 本文系统地分析了几何证明题的解题思路,列举了几种常见的几何证明解题思路与解题方法,希望能够对广大的中学教师与学生形成参考.。

中考数学几何证明题答题技巧及解题思路

中考数学几何证明题答题技巧及解题思路

中考数学几何证明题答题技巧及解题思路1500字中考数学几何证明题是中考数学中的重点和难点部分,要想在考试中得到高分,需要具备一定的解题思路和答题技巧。

下面将介绍几种常见的数学几何证明题的解题思路和答题技巧。

1. 利用已知条件进行推理对于数学几何证明题,往往会给出一些已知条件,这些条件可以用来进行推理和证明。

在解题时,需要先理清题意,理解已知条件,然后运用相关的定理和性质进行推导。

2. 运用余角性质和对称性质在几何证明题中,角的余角和角的对称性质经常被使用。

如果已知两个角互为余角,可以根据余角定理进行推理;如果已知两个角互为对称角,可以根据对称性质进行推导。

3. 利用平行线性质几何证明题中经常会涉及到平行线的性质。

如果已知两条直线平行,可以根据平行线的性质来进行推理和证明。

比如,如果已知两个角的对边分别平行,可以推出这两个角相等。

4. 运用等腰三角形和相似三角形的性质在几何证明题中,等腰三角形和相似三角形的性质也经常会被使用。

如果已知两边等长,可以推导出两个角相等;如果已知两个角相等,可以推导出两边等长。

如果已知两个三角形相似,可以运用相似三角形的性质来进行推理。

5. 利用三角形的角平分线和垂直平分线的性质在几何证明题中,三角形的角平分线和垂直平分线的性质也经常会被使用。

如果已知一个角的平分线和垂直平分线重合,可以推导出这个角是直角。

6. 运用勾股定理和正弦定理勾股定理和正弦定理是解决几何证明题中常用的工具。

如果已知一个三角形是直角三角形,可以利用勾股定理进行推导;如果已知三角形的边长和角度,可以利用正弦定理进行推导。

总结起来,解决几何证明题的关键在于理清题意,抓住已知条件,灵活运用相关的定理和性质,进行推理和证明。

熟练掌握几何证明题的解题思路和答题技巧,对于提高解题效率和得到高分非常有帮助。

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。

求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。

从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。

学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答.doc

学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答.doc

学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答今天为大家分享10种基本几何图形解题思路,几何证明题,好多都是有一些基本的图形通过旋转变换,拉伸而出来的图形,然后把已知条件再做改变就出来一道新的题目。

很多学霸都是掌握这一规律,就可以轻松解出看似复杂的集合题,下面我们就来看看他们是怎样变形变换的吧!学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答基本图形(1)这是最常见的直线形状,很简单了,但是有两个重要的规律要记住,若AC=BD则AB=CD,当然相反也是成立的。

基本图形(2)上面一个是线段的最基本的图形,这个是角最基础的图形,这里的规律就是若∠1=∠2,则∠EAC=∠DAB,当然它的逆命题也是成立的。

基本图形(3)——箭头模型这个图形我们在做题时候见得就比较多了,记住一个规律∠1+∠2=∠3+∠4+∠B+∠C,也就是∠BPC=∠A+∠B+∠C。

我们在做题过程中,发现这个形状就能找到这个规律,在我们求角的度数,证明三角形全等等好多情况下都能用到。

基本图形(4)——蝶形这个形状相信都不陌生,都见过它的好多变种,但无论怎么变有一个规律是不会变的,那就是∠A+∠B=∠C+∠D。

基本图形(5)如上图,A、O、B在同一直线上,OD、OE分别平分∠AOC和∠BOC,则有OD⊥OE,或∠DOE=90°。

基本图形(6)上图模型是不是有点熟悉,前面的箭头模型多了点东西,但是如果这个模型还满足BP、CP是角平分线的话,咋还有∠BPC=90°+1/2∠BAC基本图形(7)如上图,①AC平分∠DAB,②AD=CD,③DC∥AB,这个模型如果满足前面三个条件中的任两个,那么就能推出第三个。

基本图形(8)这个是角平分线定理和逆定理的模型不再说了,就是AP 为角平分线,则PC=PB,反过来也成立!基本图形(9)这个图形已经复杂了,严格地说已经不能算基本图形,但在实际应用中比较常见还是单列,它是蝶形,箭头形状组合而成。

初中几何证明题的解题思路

初中几何证明题的解题思路

初中几何证明题的解题思路初中几何证明题是初中几何中很重要的一部分,加强知识储备和运用技能也必须掌握几何证明题的解题思路和方法。

解决几何证明题,除了要掌握基础的定理、定义、规则和基本的计算技巧外,还应注意以下几点:一、熟练掌握几何证明的基本方法1.逆否命题法:当一个命题成立时,其逆命题不成立,反之亦然,因此,可用该法证明:先把命题的否定形式表达出来,然后用简单的数学推导证明它是有悖常理的,从而由“逆否律”证明原命题的正确性。

2.抽象法:有时可通过抽象的方法,让问题变得更容易解决。

比如,将几何问题抽象成代数问题,或者将几何图形抽象成抽象的风范,可以使得问题变得更加容易理解。

3.反证法:即依据一定的前提,证明假设不符合要求,即可以知识前提及充分条件,利用反证法,证明假设是错误的。

反证法按逻辑关系可分为“反证正确”和“反证错误”两类。

通过反证法,我们可以得到几何定理证明的结论,从而解决几何证明题。

4.归纳法:归纳法也称归绕法,是几何证明题的解决方法之一,是依据一个事实、一个特性或一个定理,从而推出其他一些事实或定理的过程。

它的解法具有一般性,可以应用在各种形式的几何证明题中。

二、逐步解决几何证明题1.第一步:识别几何图形:首先要明确几何图形的形状、大小、位置等特征,然后把图形上的角、弧、线段和点等标出来,注明它们的名称和特点,以及它们之间的关系。

2.第二步:分析题意:要弄清题目所提出的问题,明确要证明的是什么,并对问题和其它已知条件进行分析,总结出题目的本质,找出和解决问题的重点。

3.第三步:确定证明步骤:根据题目的条件和要证明的内容,结合定义、定理和基本性质,确定出证明步骤,并画出证明图形,默写证明式。

4.第四步:设立并证明中间结论:根据证明步骤,依次针对每一步进行证明,首先得出一个中间结论,然后按定义、定理及基本性质等,写出证明式,再根据前一步得出的中间结论,将其作为充分条件,以此推出下一步的中间结论,依次重复反复证明,最终推出原结论。

初中几何证明题的解题思路

初中几何证明题的解题思路

初中几何证明题的解题思路以《初中几何证明题的解题思路》为标题,写一篇3000字的中文文章初中几何证明题是中学数学教学中一个重要的部分,也是学生最头疼的部分之一。

几何证明题要求学生用数学逻辑、独立思考能力,从几何图形中看出规律,并把规律用证明过程解释清楚。

面对几何证明题,解题需要掌握一定的方法和思路。

一、几何证明题解题思路1、仔细观察:解决证明题时,首先要仔细观察图形,发现新的事实和性质,以及与已知的事实的关系。

2、归纳总结:根据发现的新事实,归纳规律性,把规律性化为简单的范式表达式。

3、推导过程:在推导过程中,继承前文,不断发现更多新的性质,使用定理、公理、推论及其他推导工具,组织出合理的证明过程,完成思路的构建。

4、连贯表达:完成推导后,根据证明题的要求,用简洁明了的语言表达出证明结论,并把证明过程分段连贯表达出来,说明证明的步骤及理由,使结论能够得到合理的证明。

二、几何证明题解题具体步骤1、分析题意:找出证明题中的性质、定理、新定义等。

2、确定思路:根据已有性质,分析证明题中列出的性质,确定证明结论,并确定推导时需要用到的定理。

3、把握思路:把握横向思路与纵向思路,总结思路,展开推导过程,完成几何证明。

4、校对结论:完成推导后,检查证明结论是否与题目中描述的一致,检查推导过程是否连贯合理,检查推导过程中的定理的使用是否正确,修改推导过程中的错误,同时注意表达的流畅性,使几何证明完整可靠。

以上就是关于解决几何证明题的思路。

几何证明是学习数学的重要组成部分,也是数学学习重要素养体现。

学生若能理解几何证明,无论是运用定理、推论还是独立思考,都会帮助学生更好的把握数学的精髓,更有效的学习数学,更有效的掌握深层次的数学思维,助力学生全面发展。

数学几何证明题解题思路

数学几何证明题解题思路

数学几何证明题解题思路
数学几何证明题是需要通过一定的思考和推理才能解决的问题。

在解题过程中,我们需要掌握一些基本的几何知识和常用的证明方法。

下面是一些常见的数学几何证明题的解题思路:
1. 利用三角形的性质进行证明。

三角形是几何学中最基本的图形之一,因此我们在解决一些几何证明题时,经常会利用三角形的性质进行推理。

例如,我们可以通过证明三角形的两个角相等或两个边相等来证明两个三角形全等。

2. 利用相似三角形的性质进行证明。

相似三角形是指具有相同形状但大小不同的三角形。

在解决几何证明题时,我们可以利用相似三角形的性质进行推理,例如证明两个三角形的边比例相等或者角度相等等。

3. 利用反证法进行证明。

反证法是通过假设所要证明的结论不成立,然后推导出矛盾的结论,从而证明所要证明的结论一定成立的一种证明方法。

在解决几何证明题时,我们可以利用反证法推导出矛盾的结论,从而证明所要证明的结论一定成立。

4. 利用勾股定理进行证明。

勾股定理是数学中最著名的定理之一,也是数学几何证明中常用的证明方法之一。

在解决几何证明题时,我们可以利用勾股定理推导出所需证明的结论。

5. 利用角平分线定理、垂直定理等进行证明。

角平分线定理、垂直定理等都是数学几何中常用的定理,利用这些定理可以推导出许多结论。

在解决几何证明题时,我们可以利用这些定理进行推导,从而证明所需证明的结论。

总之,在解决数学几何证明题时,我们需要在掌握基本几何知识的基础上,灵活运用各种证明方法进行推导,才能成功解决问题。

初中几何证明题解题技巧

初中几何证明题解题技巧

初中几何证明题解题技巧初中几何证明题解题技巧初中几何证明题解题技巧一、强心理攻势——闯畏难情绪关初一、初二学生的年龄,一般都在十三、十四岁左右,从心理学角度来看,正是自觉思维向逻辑思维的过度阶段。

因此,几何证明的入门,也就是学生逻辑思维的起步。

这种思维方式学生才接触,肯定会遇到一些困难。

从自己多年的教学实践来看,有的学生在这时“跌倒了”,就丧失了信心,以至于几何越学越糟,最终成了几何“门外汉”。

但有的学生,在这时遇到了一些困难,失败了,却信心十足,不断地去总结,认真思考,最后越学越有兴趣。

2008学年当我接班伊始,我就注意到那个坐在教室中间的小周:虽然她平时上课能安静听讲,但是集中注意力时间很短,记忆能力也特别差,当老师提问她时,总是羞涩地低下头,默不作声。

她经常偷工减料地写作业,对自己的要求也不高,所以她数学总分只有30多分。

我想自己一定要努力改变这一情况,共同寻找一条适合她的教学之路。

通过与她谈心,让她意识到几何证明题是学习几何的入门,是学生逻辑思维的起步。

“你和同学们同时开始学习几何,相信自己的能力,只要上课认真听讲,在学习过程中不断地总结经验,有不懂的,有疑问的及时问老师,相信自己的能力,同时也是证明自己不比别人差的一个最好的机会。

”“不管在什么情况下,老师做到有问必答,也保证不会有任何批评的话。

老师相信在你自己的不断总结和尝试下,在几何证明这一块上不会输于任何一个学生。

”我让其明白初一、初二正是学习几何证明的一个契机,只要能学好,代数部分也会有所提高,更何况她的前一阶段的数学成绩在个人的努力下还是有所提高,说明思维能力还是比较强的。

通过谈心她表示愿意克服困难,和大家一起学习几何证明。

当她有进步后,及时地给予表扬。

“你做得真好,继续努力!!”“虽然有点小问题,但有进步,加油!”在交上的作业中,总是给予点评,写些鼓励的语言。

在不断的鼓励和帮助下,学习逐渐有了信心,学习成绩在逐步提高。

学好几何证明,起步要稳,因此要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。

初中数学知识归纳几何证明题的解题思路与方法

初中数学知识归纳几何证明题的解题思路与方法

初中数学知识归纳几何证明题的解题思路与方法几何证明题在初中数学中占据着重要的位置,它既考察了学生对基本几何知识的理解,又培养了学生的逻辑思维和推理能力。

本文将对初中数学中归纳几何证明题的解题思路与方法进行归纳总结,帮助学生更好地应对这类题目。

解题思路一:利用基本图形性质归纳几何证明题中经常会涉及到基本图形性质的运用,例如利用三角形的性质、四边形的性质等。

在解题过程中,可以先观察题目中给出的图形,根据其中的线段、角等要素,运用基本图形性质进行推理。

举例说明:证明一个角是直角。

首先,可以观察该角所在的图形,是否能够应用直角三角形的性质进行推理。

如果能找到一个直角三角形,并且该角是该直角三角形的内角或外角,那么该角就是直角。

解题思路二:利用各种等式与平行线性质初中几何证明题还涉及到线段、角的等式,以及平行线性质的应用。

在解题过程中,可以根据题目条件,利用各种等式与平行线性质进行推导与证明。

举例说明:证明两条线段相等。

可以根据题目给出的条件,利用等式性质进行推导。

比如,如果给出了两个三角形的一边和该边对应的角相等,那么可以根据等式来证明两条线段相等。

解题思路三:利用三角形相似性质在初中数学中,三角形相似性质是一个重要的内容。

在解决几何证明题时,可以利用三角形相似性质进行推理与证明。

要注意观察题目中给出的图形,找到相似的三角形,并利用相似比例进行推导。

举例说明:证明两条线段成比例。

可以根据题目给出的条件,利用相似三角形性质进行推导。

如果题目给出了两个三角形中的两条边成比例,那么可以根据相似比例来证明两条线段成比例。

解题思路四:利用等腰三角形与等边三角形性质等腰三角形与等边三角形在初中数学中也是一个重要的内容,并且在几何证明题中经常会用到。

在解题过程中,可以根据题目给出的条件,利用等腰三角形与等边三角形的性质进行推导与证明。

举例说明:证明某个角是等腰三角形的顶角。

可以根据题目给出的条件,利用等腰三角形的性质进行推理。

初中数学几何证明题(多篇)

初中数学几何证明题(多篇)

初中数学几何证明题(精选多篇)初中数学几何证明题分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:(1)正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。

顾名思义,就是从相反的方向思考问题。

运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。

这种方法是推荐学生一定要掌握的。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。

如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。

对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。

正逆结合,战无不胜。

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。

掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。

在这里结合自己的经验,谈谈自己的一些方法与大家一起分享。

(word完整版)八年级数学几何题证明技巧

(word完整版)八年级数学几何题证明技巧

图二B图三图五B 一、角平分线专题 例题:1.已知,CE 、AD 是△ABC 的角平分线,∠B =60°。

求证:AC =AE +CD 。

2.已知,AB =2AC ,∠1=∠2,DA =DB 。

求证:D C ⊥AC 。

3.已知,四边形ABCD 中,ABCD ,∠1=∠2,∠3=∠4。

求证:BC =AB +CD 。

4.已知,在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB =2AC 。

求证:(1)∠C =90°;(2)AE=2CE 。

5.已知,在RT △ABC 中,∠A =90°,AB =AC ,BD 是∠ABC 的平分线。

求证:BC =AB +AD 。

图八D图十图十一注意:只要看到平分线上的点,要想到向两边作垂线了(点分线,垂两边)7.已知,在△ABC 中,∠A =90°,AB =AC ,∠1=∠2。

求证:BC =AB +AD 。

8.已知,AB >AD ,∠1=∠2,CD =BC9.已知,A B >AD ,∠1=∠2,C E ⊥AB , AE =21(AB +AD )。

求证:∠D +∠B =180°。

10.已知:∠1=∠2,∠3=∠4, 求证:AP 平分∠BAC 。

2.角平分线+垂线,角平分线+平行线,等腰三角形要呈现,线段和差倍分都实现。

图1G 图2-1图2-2图2图3例题1. 已知,∠1=∠2,A B >AC ,C D ⊥AD 于D ,H 是BC 求证:DH =21(AB -AC )。

2. 已知,AB =AC ,∠BAC =90°,∠1=∠2,C E ⊥BE 。

求证:BD =2CE 。

3. 已知,∠1=∠2,CF ⊥AE 于E ,BE ⊥AE 于E , G 为BC 中点,连接GE 、GF 。

求证:GF =GE 。

初中几何证明题的解题思路

初中几何证明题的解题思路

初中几何证明题的解题思路几何证明题是中学数学学习中的重要组成部分,它不仅是对几何知识的检验,更是考查学生逻辑思维能力、归纳推理能力等综合能力的练习。

解决几何证明题,主要要求学生按照一定的推理步骤来解题,以便最终达到正确解题的目的。

解决几何证明题,主要应按照以下步骤进行:第一步:认真分析题目认真阅读题目,弄清楚题目要求的内容,辨清关键词,把握题目的意思,以便更好地理清思路。

在解题过程中要注意图形及其上的图形,以及图形上的特殊点,还要注意题目中提出的几何性质。

如果有必要,则要把题目中出现的性质重新表达一遍,以便更清楚明了地理解其含义。

第二步:抓住关键点找出题目的关键点,将题目的要求准确地表达出来,并且把它清楚地写出来,这是解决几何证明题的基础。

它可以仔细分析问题,从而更好地获得几何性质的结果,并让其之间有联系。

第三步:定义特殊点并联系在解题时,根据题意,先定义一些基本概念,它们可以是几何形状上特殊的点,如平分线上的点,夹角的角点,三角形的顶点等。

大部分情况下,这些特殊点在题目中有特殊的定义,如等腰三角形的顶点,夹角的角点,共线的两点等,也可能没有特殊定义,那么我们就需要根据题意来定义这些特殊点,然后把它们放在图形中。

接着,要将上述概念与题意中的相关概念联系起来,并做好有关的记录,以便以后推导时使用。

第四步:使用相关原理证明使用相关原理来证明特殊概念,如等腰三角形的关系,共线的点的关系,夹角的角等。

在这一过程中要认真分析所使用的定理,抓住它们之间的联系,有效地连接它们,并加以运用。

第五步:根据结论给出结论有时题目要求对某一性质作出判断,我们可以根据证明的结果,判断出这一性质是存在的,还是不存在的。

例如,求等腰三角形的中点的关系,只要证明了它们共线,就可以判断出它们共线,这是题目中的要求。

第六步:结果检验最后一步是要检验前面所得到的结果,以确定证明是否正确。

此外,还要检查题意中的关键点是否都被正确证明了。

几何证明题解题技巧

几何证明题解题技巧

几何证明题解题技巧几何证明题需要运用几何性质和定理来推导和证明,以下是一些解题技巧可以帮助更好地解决几何证明题:1.理解题意和图形:仔细阅读题目,理解题目要求和给出的条件。

绘制图形,并标出已知信息,以便更好地理解问题。

2.利用已知条件:根据题目给出的已知条件,利用几何定理和性质进行分析。

观察可以得到什么信息,可以使用什么定理或性质来解决问题。

3.运用推理和推导:运用逻辑推理和几何性质来推导出需要证明的结论。

使用相关几何定理和性质来推断出中间结果,并逐步向目标推进。

4.利用反证法:反证法是一种常用的证明技巧,在证明中假设结论不成立,然后通过推理和推导推出矛盾,从而证明结论的正确性。

5.利用相似性和比例:利用相似三角形的性质和比例关系来解决几何问题。

观察图形中是否存在相似的部分,并利用比例关系求解问题。

6.利用等边和等角:等边三角形和等角三角形具有特殊的性质,可以利用这些性质来解题。

观察图形中是否存在等边或等角的情况,并利用相应的性质进行推理。

7.联想和类比:将问题与已知的几何定理和解决方法进行类比。

寻找类似的几何形状或已知问题,并应用相应的解决方法。

8.重点观察特殊点和特殊线段:特殊的点和线段往往具有重要的性质和关系,观察并利用这些特殊点和线段来解决问题。

9.综合运用多个定理和性质:将多个几何定理和性质综合运用,逐步推进解题思路,获得所需的证明结论。

10.反复练习和复习:几何证明需要大量的练习和熟悉,通过反复练习和复习,加深对几何定理和性质的理解和应用,提高解题能力。

以上的解题技巧可以帮助更好地解决几何证明题。

初中数学几何图形中的折叠问题解题思路-word

初中数学几何图形中的折叠问题解题思路-word

初中数学几何图形中的折叠问题解题思路折叠问题中的背景图形通常有,三角形、正方形、矩形、梯形等,解决这类问题的关键是一定要灵活运用轴对称和背景图形的性质。

轴对称性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

典型例题:例题1、如图,在Rt△ABC 中,∠ACB=90°,AB=10,AC=8,E、F 分别为 AB、BC 上的点,沿线段 EF 将 ∠B 折叠,使点 B 恰好落在 AC 上的点 D 处,试问当△ADE 恰好为直角三角形时,此时 BE 的长度为多少?解题思路:△ADE 为直角三角形分两种情况:①∠ADE =90°,②∠AED = 90°,此题需要分类讨论,结合三角形的相似、折叠的性质,来求折叠中线段的长度,关键是能画出折叠后的图形。

解答过程:当 ∠ADE = 90°时,如下图所示:证明:先来证明四边形 DEBF 为棱形:∵ 在Rt△ABC 中,∠ACB=90°,∠ADE =90° ,∴ DE∥BC ,∴ ∠DEF = ∠EFB ,又∵ 沿线段 EF 将 ∠B 折叠,∴ DE = BE ,DF = BF ,∠DFE = ∠BFE ,∴ ∠DEF = ∠DFE ,DE = DF = BF ,∴ 四边形 DEBF 为棱形。

(一组对边平行且相等的四边形是平行四边形,邻边相等的平行四边形是棱形)。

再来证明 R t△ADE ∽ Rt△ACB (相似三角形判断图形中的“A”字型)∵ 在三角形 ACB 中,DE∥BC ,∴ Rt△ADE ∽ Rt△ACB ,设棱形 DEBF 的边长为 x , 则有 DE = x , AE = 10 - x ,在Rt△ACB 中,AB = 10 , AC = 8 ,由勾股定理得:BC = 6 。

几何证明题的解题思路与方法备课教案

几何证明题的解题思路与方法备课教案

几何证明题的解题思路与方法备课教案自然数中的一类常见问题便是几何证明题,涉及到数学中的几何知识和解题思路,同样也需要老师们为学生提供相应的教学方法。

解决几何证明题的方法通常并不仅仅是在脑海中构建几何图形的图像,还包括多种几何推理和选择适合的几何定理来解决问题。

下面是本教案的详细步骤,希望能够对老师们的教学有所帮助。

一、了解几何证明题的类型首先,我们需要说明有哪些类型的几何证明题,以便我们为学生们找到更好的教学方法。

一些常见类型的几何证明题包括:1. 证明两个角或线段是相等的;2. 证明两个角或线段是垂直的;3. 证明两个角或线段的和等于180度;4. 证明两个三角形或四边形是相似的或等于的。

在备课过程中,老师们应该牢记这些类型,并为学生们提供合适的解题方法。

二、提供准确的解题思路几何证明题的解题思路通常应从已知条件开始,一步步推导出所需证明的结论。

为更好地帮助学生获得准确的解题思路,老师们应该:1. 鼓励学生将所需证明的结论写在纸上。

2. 建议学生在纸上列出已知条件。

3. 推广使用图表,让学生们通过画图来理解和掌握几何图形。

4. 提醒学生需依据已知条件进行逻辑推断,并简要说明每一步的目的。

三、掌握重要的几何定理解题过程中,学生需要掌握和正确使用基本的几何定理,其中包括:1. 三角形角度和定理:三角形内角和等于180度。

2. 直角三角形定理:直角三角形斜边平方等于两腰平方之和。

3. 垂线定理:从顶点到斜边的垂线把底边分成了两部分,使得斜边上的两个三角形相似。

这些定理不仅能够让学生更好地理解几何图形,还能够快速地解决几何证明题。

四、选择实际的例子进行练习为确保学生能够理解和掌握解题方法,老师们应该为学生提供实例训练。

例如,可以选取简单的三角形或矩形并向学生提供几何证明练习,以帮助学生更好地理解和掌握解题方法。

五、总结和练习为确保学生能够稳步进展并从训练中收获,最后需要进行总结和练习。

我们可以通过以下步骤实现:1. 复习和总结几何证明题的类型和解题思路。

初中数学:常用几何题的原理及解题思路

初中数学:常用几何题的原理及解题思路

初中数学:常用几何题的原理及解题思路几何证明题入门难,证明题难做,已经成为许多同学的共识…今天小瑞老师和同学们分享的是几何证明题思路及常用的原理,希望对大家有帮助!证明题的思路很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

对于证明题,有三种思考方式:1.正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。

顾名思义,就是从相反的方向思考问题。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

3.正逆结合。

对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。

正逆结合,战无不胜。

证明题要用到哪些原理要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键…下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题…证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

初中数学几何证明题的答题技巧

初中数学几何证明题的答题技巧

初中数学几何证明题的答题技巧一要审题。

很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。

我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。

这里的记有两层意思。

第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。

如给出对边相等,就用边相等的符号来表示。

第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。

难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。

分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。

看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。

)结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。

很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:(1)正向思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何证明题解题思路及常用原理
一、解题思路
很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

对于证明题,有三种思考方式:
1.正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。

顾名思义,就是从相反的方向思考问题。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

若读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:
可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

3.正逆结合。

对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。


我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。

正逆结合,战无不胜。

二、证明题常用数学原理
A. 证明两线段相等
1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

B. 证明两个角相等
1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

C. 证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

D. 证明两直线平行
1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

E. 证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

F. 证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

G. 证明线段不等
1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

H. 证明两角的不等
1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

I. 证明比例式或等积式
1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

J. 证明四点共圆
1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

5.到顶点距离相等的各点共圆。

相关文档
最新文档