流体力学基础学习知识知识
第4章 流体基本知识
注:不是流体没有粘性
一、流体的静压强定义:
流体的压强(pressure) :在流体内部或固体壁面所存在的单位 面积上 的法向作用力 流体静压强(static pressure):流体处于静止状态时的压强。
p
lim
A0
P A
4、稳定流和非稳定流
定常流动(steady flow) :流动物理参数不随时间而变化
如:p f ( x, y, z), u f ( x, y, z, )
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f ( x, y, z, t ), u f ( x, y, z, t )
式中μ——黏度或黏滞系数(viscosity or absolute viscosity)。
黏度的单位是:N.s/m2或Pa.s 黏度μ的物理意义:表征单位速度梯度作用下的切应力, 反映了流体黏性的动力性质,所以μ又被称为动力黏度。 与动力黏度μ对应的是运动黏度υ(kinematic viscosity),二 者的关系是
V 0
V 0
V
V
G V
三、流体的压缩性与膨胀性 1、压缩性: 定义:在一定的温度下,流体的体积随压强升高而缩 小的性质 表示方法:体积压缩系数β (The coefficient of compressibility)
1 dV V dp
(1/Pa)
2、膨胀性: 定义: 在一定的压强下,流体的体积随温度的升 高而增大的性质 表示方法:温度膨胀系数α(the coefficient of expansibility)
特别注意:流体静压强的分 布规律只适用于静止、同种、 连续的流体。
流体力学基础知识
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
(完整版)流体力学知识点总结汇总
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
流体力学基础知识
流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。
这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。
3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。
4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。
粘度越大,阻力越大,流动性越差。
气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。
二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。
液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。
②液体内任一点的各个方向的静压力均相等。
2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。
3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。
用Pj表示。
②表压力(或称相对压力):以大气压力Pa为零算起的。
用Pb表示。
③真空:绝对压力小于大气压力,即表压Pb为负值。
绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。
因此,压力和流速是流体运动的基本要素。
②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。
单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。
流量可分为体积流量Qv和质量流量Qm。
Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。
流体力学知识点总结
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
流体力学水力学知识点总结
流体力学水力学知识点总结一、流体力学基础知识1. 流体的定义:流体是一种具有流动性的物质,包括液体和气体。
流体的特点是没有固定的形状,能够顺应容器的形状而流动。
2. 流体的性质:流体具有压力、密度、粘性、浮力等基本性质。
这些性质对于流体的流动行为具有重要的影响。
3. 流体静力学:研究流体静止状态下的力学性质,包括压力分布、压力力和浮力等。
流体静力学奠定了流体力学的基础。
4. 流体动力学:研究流体在外力作用下的运动规律,包括速度场、流线、流量、动压、涡量等。
流体动力学研究的是流体的流动行为及其相关问题。
5. 流动方程:流体力学的基本方程包括连续方程、动量方程和能量方程。
这些方程描述了流体的运动规律,是解决流体力学问题的基础。
6. 流体模型:流体力学的研究对象是真实流体,但通常会采用模型来简化问题。
常见的模型包括理想流体模型、不可压缩流体模型等。
二、水力学基础知识1. 水的性质:水是一种重要的流体介质,具有密度大、粘性小、表面张力大等特点。
这些性质对于水力学问题具有重要影响。
2. 水流运动规律:水力学研究水的流动规律,包括静水压力分布、流速分布、流线形状等。
3. 基本水力学定律:包括质量守恒定律、动量守恒定律和能量守恒定律。
这些定律是解决水力学问题的基础。
4. 水流的计算方法:水力学中常用的计算方法包括流速计算、水头损失计算、管道流量计算等,这些方法是解决水力学工程问题的重要手段。
5. 水力学工程应用:水力学在工程中具有广泛的应用,包括水利工程、水电站设计、城市供水排水系统等方面。
6. 液体静力学:水力学中涉及了静水压力、浮力、气压等液体静力学问题。
这些问题对水力工程设计和建设具有重要影响。
三、近年来的流体力学与水力学研究进展1. 流固耦合问题:近年来,液固耦合问题成为流体力学与水力学领域的重点研究方向。
在这个方向上的研究主要涉及流固耦合现象的模拟、流固耦合系统的动力学特性等方面。
2. 多相流动问题:多相流动是指不同相的流体在空间和时间上相互混合流动的现象。
流体力学基础知识汇总
流体力学基础知识汇总流体力学是研究流体静力学和流体动力学的学科。
流体力学是物理学领域中的一个重要分支,广泛应用于工程学、地球科学、生物学等领域。
本文将从流体力学的基础知识出发,概述流体力学的相关内容。
一、流体静力学流体静力学研究的是静止的流体以及受力平衡的流体。
静止的流体不受外力作用时,其内部各点的压力相等。
根据帕斯卡定律,压强在静止的流体中均匀分布。
流体静力学的重要概念包括压强、压力、密度等。
压强是单位面积上受到的力的大小,而压力是单位面积上受到的力的大小和方向。
密度是单位体积内质量的多少,与流体的压力和温度有关。
二、流体动力学流体动力学研究的是流体在受力作用下的运动规律。
流体动力学的重要概念包括流速、流量、雷诺数等。
流速是单位时间内流体通过某一截面的体积。
流速与流量之间存在着直接的关系,流量等于流速乘以截面积。
雷诺数是描述流体流动状态的无量纲参数,用于判断流体流动的稳定性和不稳定性。
三、伯努利定律伯努利定律是流体力学中的一个重要定律,描述了流体在沿流线方向上的压力、速度和高度之间的关系。
根据伯努利定律,当流体在流动过程中速度增加时,压力会降低;当流体在流动过程中速度减小时,压力会增加。
伯努利定律在飞行、航海、液压等领域有着重要的应用。
四、黏性流体黏性流体是指在流动过程中会发生内部层滑动的流体。
黏性流体的流动过程受到黏性力的影响,黏性力会导致流体的内部发生剪切变形。
黏性流体的流动规律可以通过纳维-斯托克斯方程来描述。
黏性流体在润滑、液体运输、地质勘探等领域有着广泛的应用。
五、边界层边界层是指在流体与固体表面接触的区域,流体的速度在边界层内逐渐从0增加到与远离表面的流体速度相等。
边界层的存在会导致流体的阻力增加。
研究边界层的特性可以帮助理解流体与固体的相互作用,对于设计高效的流体系统具有重要意义。
流体力学是研究流体静力学和流体动力学的学科。
流体力学的基础知识包括流体静力学、流体动力学、伯努利定律、黏性流体和边界层等内容。
(整理)流体力学基本知识
第一章流体力学基本知识解析第一节流体及其空气的物理性质流动性是流体的基本物理属性。
流动性是指流体在剪切力作用下发生连续变形、平衡破坏、产生流动,或者说流体在静止时不能承受任何剪切力。
易流动性还表现在流体不能承受拉力。
(一) 流体的流动性通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15cm3的水滴中包含着3×107个水分子,在体积为1mm3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点精品文档精品文档是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
(二)惯性(密度)流体的第一个特性是具有质量。
流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。
在均质流体内引用平均密度的概念,用符号ρ表示:Vm =ρ 式中: m ——流体的质量[Kg];V ——流体的体积[m 3];ρ——流体密度Kg/m 3。
但对于非均质流体,则必需用点密度来描述。
所谓点密度是指当ΔV →0值的极限(dV dm V m V 0 lim ),即: dV dm V m lim V =∆∆=→∆0ρ精品文档 公式中,ΔV →0理解为体积缩小为一点,此点的体积可以忽略不计,同时,又必须明确,这点和分子尺寸相比必然是相当大的,它必定包括多个分子,而不至丧失流体的连续性。
《流体力学基础知识》课件
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。
流体力学基本知识
第二节 流体静力学的基本概念
▪ 2、压强的计量单位
▪ (1)定义式:
▪ 国际单位制(SI)制:1N/m2=1Pa;
1bar=105 Pa
▪ 工程制: 1kgf/cm2=1kg×9.8065[m/s2]/10–4[m2]
▪
=9.8065×104 Pa
第二节 流体静力学的基本概念
▪ (2)用大气压表示: ▪ 1atm(标准大气压)=1.033 kgf/cm2 ▪ =1.033×9.8065×104 Pa=1.0133×105 Pa ▪ =1.0133 bar
第二节 流体静力学的基本概念
(3)用液柱的高度表示: p=F/A=ρVg/A=ρ(AZ)g/A=ρZg
力增大,动力消耗增大,操作费用增大; 当V一定时,u减小,则d增大,管材费用增加,流动
阻力减小,动力消耗减小,操作费用减小;在允许 范围内,从长远利益考虑,一般选择管径较大者。
第三节 管内流体流动的基本方程式
二、流体运动的类型 1、有压流: 流体在压差作用下流动,流体各个过流断面的
整个周界都与固体壁相接触,没有自由表面,这种流体流 动为有压流。 2、无压流: 流体在重力作用下流动,流体各个过流断面的 部分周界与固体壁相接触,具有自由表面,这种流体流动 为无压流。 3、稳定流动:流体在管道中流动时,若任一点的流速、压 力等有关物理参数都不随时间改变,仅随位置改变,即 u=f(x,y,z),ut=ut+△t,则这样的流动为稳定流动。 4、不稳定流动:流体在管道中流动时,若任一点的流速、 压力等有关物理参数不仅随位置改变,而且随时间发生部 分或全部改变,即u=f(x,y,z,t),ut≠ut+△t,这样的流 动为不稳定流动
大学物理流体力学基础知识点梳理
大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
流体力学基本知识
μ=
τ
du / dy 单位: PaS
•运动粘度 动力粘度与密度之比值,没 有明确的物理意义,但是工程实 际中常用的物理量。
ν=
μ
ρ
单位:m2/s, cSt 1 m 2 /s =10 6 cSt
对同一种介质,其运动粘度新旧牌号对比如下表所 示:
压力的概念
压力的分布 压力的表示 压力的传递 压力的计算
压力的概念
静止液体在单位面积上所受的法向力称为静 压力。 F p lim (ΔA→0) A 0 A 液体静压力的特性: 若在液体的面积A上所 液体静压力垂直 受的作用力F为均匀分布 于承压面,方向为该 时,静压力可表示为: 面内法线方向。 p=F/A 液体内任一点所 液体静压力在物理学上 受的静压力在各个方 称为压强,工程实际应用 向上都相等。 中习惯称为压力。
β1β2-动量修正系数,湍流=1,层流=4/3
例题:阀芯打开时受力分析
1.液体受力
Fx=ρq(β2v2cos90–β1v1cosθ)
取β1=1
则 Fx=–ρqβ1v1cosθ 2.阀芯受力
F'x=–Fx=ρqβ1v1cosθ
指向使阀芯关闭的方向
第四节 液体流动时的压力损失
由于流动液体具有粘性,以及流动时突然转弯或 通过阀口会产生撞击和旋涡,因此液体流动时必然 会产生阻力。为了克服阻力,流动液体会损耗一部 分能量,这种能量损失可用液体的压力损失来表示。 压力损失即是伯努利方程中的hw项。 压力损失由沿程压力损失和局部压力损失两部分 组成。液流在管道中流动时的压力损失和液流运动 状态有关。 流态、雷诺数 沿程压力损失 局部压力损失 总压力损失
流体力学知识点总结
流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。
它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。
下面将对流体力学的一些重要知识点进行总结。
一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。
比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。
2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。
膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。
液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。
3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。
粘性的大小用动力粘度μ 或运动粘度ν 来表示。
牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。
4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。
表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。
二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。
2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。
3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。
4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。
真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。
5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。
6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。
第一节 流体力学基础知识
精品文档
3.密度与容重的关系
GMgg
VV
4.密度和容重与压力、温度的关系
❖ 压力升高
流体的密度和容重增加;
❖ 温度升高
流体的密度和容重减小。
精品文档
(二)流体的粘滞性
精品文档
1. 流体粘滞性的概念
流体内部质点间或流层间因相对运动而产生内摩
擦力(粘滞力)以反抗流体相对运动的性质。
精品文档
注意:自然界中都是非恒定流,工程中取为恒定流。
3、流线与迹线 (1)流线:同一时刻连续流体质点的流动方向线。 (2)迹线:同一质点在连续时间内的流动轨迹线。
精品文档
精品文档
4、均匀流与非均匀流 (1)均匀流:流体运动时,流线是平行直线的流 动。 (2)非均匀流:流体运动时,流线不是平行直线 的流动。
化时,迫使主流脱离边壁而形成漩涡,流体质点间产 生剧烈的碰撞,所形成的阻力。
局部水头损失 ------为了克服局部阻力而消耗的单
-68KN/m2;68KN/m2
2、绝对压力为0.4个大气压,其真空度为(D )。
A.0.4个大气压
B.0.6个大气压
C.—0.4个大气压
D.—0.6个大气压
精品文档
练习
3、油的密度为800kg/m3,油处于静止状态,油面与大气接触,
则油面下0.5m处的表压强为 kPDa。
(A)0.8 ;(B)0.5;(C)0.4;(D)3.9
精品文档
作业
• 水在粗细不均匀的水平管中作稳定流动。已知截面S1处 的压强为110Pa,流速为0.2m/s,截面S2处的压强为5Pa, 求S2处的流速(内摩擦不计)。
精品文档
(二)实际气体总流的能量方程式
流体力学基础知识
返回 上页 下页
流体力学基础知识
(2)相对压强 相对压强是以大气压强(p0)为零点计算的压强。
用符号p表示。 在实际工程中,因为被研究对象的表面均受大气压
强作用,因此不需考虑大气压强的作用,即常用相对 压强。 p gh
如果液体是自由表面,则自由表面压强:
p gh
返回 上页 下页
流体力学基础知识
对变化量 。
1 dV
V0 dT
流体压缩性的大小,一般用压缩系数β(Pa-1)
来表示。压缩系数是指单位压强所引起的体积相对
变化量。
1 dV
V0 dp
返回 上页 下页
流体力学基础知识
一般结论: 水的压缩性和热膨胀性是很小的,在建筑设备
工程中,一般计算均不考虑流体的压缩性和热膨胀 性。
气体的体积随压强和温度的变化是非常明显的 ,故称为可压缩流体。
参数不随时间而变化的流动。 非恒定流动是指流体中任一点压强和流速等参数
随时间而变化的流动。 自然界的流体流动都是非恒定流动,在一定条件
下工程上近似认为是恒定流。
返回 上页 下页
流体力学基础知识
3.压力流和无压流 压力流是流体在压差作用下流动时,流体各个
过流断面的整个周界都与固体壁相接触,没有自由 表面。
、f Z
FZ m
返回 上页 下页
流体力学基础知识
当流体所受质量力只有重力时,由G=mg可得 单位质量力为:
fX 0、fY 0、fZ -g
2、表面力 表面力是指作用在流体表面上的力,其大小与
受力表面的面积成正比。 流体处于静止状态时,不存在黏性力引起的内
摩擦力(切向力为零),表面力只有法向压力。对于 理想流体,无论是静止或处于运动状态,都不存在 内摩擦力,表面力只有法向压力。
流体力学基本知识
二、流动的两种形态——层流和紊流 流体在流动过程中,呈现出两种不同的流 动形态。当液体流速较低时,呈现为成层 成束的流动,各流层见并无质点的掺混现 象,这种流态就是层流。加大流速到一定 程度,质点或液团相互混掺,流速愈大, 混掺程度愈烈,这种流态就成为紊流。 判断流动形态,雷诺氏用无因次量纲——雷 诺数Re来判别。
(二)流速系数C经验公式 (1)曼宁公式 (2)海澄-威廉公式
五、局部水头损失 在实际水力计算中,局部水头损失可以采 用流速水头乘以局部阻力系数后得到,即 v2 hj=ζ 2 g (1-35) 式中ζ——局部阻力系数。ζ值多是根据管配件、 附件不同,由实验测出。 v——过流断面的平均流速;它应与ζ值 相对应。除注明外,一般用阻力后的流速; g——重力加速度。
第二节 流体静压强及其分布规律
流体静止是运动中的一种特殊状态。 由于流体静止时不显示其黏滞性,不存在 切向应力,同时认为流体也不能承受拉力, 不存在由于粘滞性所产生运动的力学性质。 因此,流体静力学的中心问题是研究流体 静压强的分布规律。
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
或者写为
p1
v12
2g
p2
2 v2ห้องสมุดไป่ตู้
2g
h12
实际气体总流的能量方程与液体总流的能量方程比 较,除各项单位以压强来表达气体单位体积平均 能量外,对应项意义基本相近
第四节 流动阻力和水头损失
一、流动阻力和水头损失的两种形式 (一)沿程阻力和沿程水头损失 流体在长直管(或明渠)中流动,所受的摩擦 阻力称为沿程阻力。为了克服沿程阻力而消耗的 单位重量流体的机械能量,称为沿程水头损失hf。 (二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫使 主流脱离边壁而形成漩涡,流体质点间产生剧烈 地碰撞,所形成的阻力称局部阻力。为了克服局 部阻力而消耗的重力密度流体的机械能量称为局 部水头损失hj。
流体力学知识点总结
流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。
2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。
3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。
4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。
二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。
2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。
3、流体的流动受力不受力,受力的变化很小。
4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。
三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。
2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。
3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。
4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。
6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。
四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。
§1-1 流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学内容和知识要点:2.1 易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ=VM——流体的质量,kg ;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103kg/ m3Ρ水银=13.6×103kg/ m3基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ=VG——流体的重量,N ;V——流体的体积,m3。
∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3 粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。
由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。
平板实验(2)牛顿内摩擦定律基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律:当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体阻抗剪切变形速度的特性。
μ——是比例系数,称为动力粘度,μ越大,流体越粘,流动性越差。
单位为Pa..sν——运动粘度,m2/s; ν=μ/ρ液体的粘度随温度升高而减小——分子间的引力即内聚力是形成粘性的主要因素;气体的粘度是随温度的升高而增大——分子间的热运动而引起的动量交换是形成粘滞性的主要因素。
需要强调的是:牛顿内摩擦定律只适用于牛顿流体和层流运动,牛顿流体是指在温度不变的情况下切应力τ与流速梯度成正比,这时粘滞系数μ为常数。
对于静止液体,液体质点之间没有相对运动,因而也就不存在粘滞性。
(3.)理想流体基本概念:所谓理想流体是指无粘滞性,即μ=0。
例一平板在油面上作水平运动,已知平板的运动速度为40cm./s,有层厚度为5mm,油的动力粘度μ=0.1Pa..s,求作用于平板单位面积上的粘性阻力2.4 压缩型和膨胀性(1)液体的压缩性和膨胀性基本概念:压缩性是流体受压,分子间距离缩小,体积缩小的性质。
液体的压缩性通常用压缩系数来表示膨胀性当作用于流体上的温度升高,体积膨胀,温度降低体积收缩称为流体的膨胀性。
液体的膨胀性通常用膨胀系数来表示液体的压缩性和膨胀性都比较小。
如水压强增加一个大气压,体积压缩率约为1/20000,在常温下,温度升高1℃,体积膨胀率约为1.5/100000 (2)气体的压缩性和膨胀性气体的压缩型和膨胀性比较显著,在常温下符合理想气体状态方程,即P/ρ=RT.。
§1-2 流体静压强及其分布规律1.本节教学内容和要求:1.1 本节教学内容:(1)静水压强的两个特性及有关基本概念。
(2)重力作用下静水压强基本公式和物理意义。
(3)静水压强的表示和计算。
1.2 教学要求:(1)正确理解静水压强的两个重要的特性和等压面的性质。
(2)掌握静水压强基本公式和物理意义,会用基本公式进行静水压强计算。
(3)掌握静水压强的单位和三种表示方法:绝对压强、相对压强和真空度;理解位置水头、压强水头和测管水头的物理意义和几何意义。
(4)掌握静水压强的测量方法和计算。
1.3 教学难点和重点:难点:静水压强的两个特性及有关基本概念。
重力作用下静水压强基本公式和物理意义。
静水压强的表示和计算。
重点:重力作用下静水压强基本公式和物理意义。
2.教学内容和知识要点:2.1 流体静压强及其特性(1)基本概念:取静止流体中的隔离体,设作用于隔离体上某一微小面积△w 上的总压力为△P,则△w面上的平均压强为:p = △P/△w(N/m2)当所取的面积无限缩小为一点,则平均压强的极限值为这个极限值称为该点的静压强。
(2)流体静压强的单位是帕(牛/米2),以P a表示。
1Pa=1 N/m2,105 Pa称为1巴(bar).(3)流体静力学的两个特征:a..流体静压强必定沿着作用面的内法线方向。
b.任一点的流体静压强只有一个值,它不因作用面的方位改变而改变。
2.2 流体静压强的分布规律在静止流体中去上表面与流体自由表面相重合的微小柱体,其底面积为△w,高为h,其自由表面的压强p0,则该微小柱体沿垂直方向的受力分别为自由面的压力,重力,下底面的静水压力。
侧面的静水压力与轴垂直,在轴向投影为零。
此铅直小圆柱体处于静止状态,故其轴向力平衡为:化简后的:——静止液体中任一点的压强;——表面压强;——液体的容重;——所研究的点在自由表面下的深度。
此方程式为静水压强的基本方程式,又称静水力学基本方程式。
该方程式的含义:a.静水压强与水深成正比的直线分布规律;b.作用于液面上的表面压强是等值地传递到静止液体的每一点上;c.方程适用于静止气体压强的计算,p=p0.;d.压强只与深度有关,而与受压面的大小,形状无关应用静水压强方程式分析问题时,要抓住等压面这个概念。
等压面——流体中压强相等的点组成的面叫等压面。
推论:静止连续的同种液体的水平面是等压面;静止的互不混杂的两种液体的交界面是等压面。
2.3压强的计量单位与表示方法(1) 压强的计量单位:a 从压强的定义出发——单位面积上的力,N/m2b 大气压强的倍数1个标准大气压(0度,纬度为45度的海平面上的压强,用atm表示)1atm=760mm汞柱对底部产生的压强1atm=1.013*105Pa1个工程大气压(海拔200m的正常大气压,用at表示)1at=736nn汞柱对底部产生的压强。
1at=9.8*104Pac 用液柱的高度表示——常用水柱高度或汞柱高度表示(2) 压强的表示方法;a.绝对压强——以完全真空作为压强的起点叫绝对压强。
(p’)b.相对压强——以当地大气压强pa作为压强起点记的压强叫响度压强p.p= p’–pa以后所指的压强均为相对压强,除非给出特殊说明。
绝对压强永远为正,而相对压强可正可负。
c.真空压强——指流体中某点的绝对压强小于大气压强的部分,而不是指绝对压强本身(也就是该点点相对压强的绝对值)(pv)Pv=pa-p’§1-3 流体运动的基本知识1、本节教学内容和要求:1.1本节教学内容:(1) 液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面平均流速,恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。
(2)恒定总流连续性方程。
(3)恒定总流的能量方程。
1.2 教学要求:(1)理解液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面平均流速,恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。
(2)掌握并会应用恒定总流连续性方程。
(3)掌握并会应用恒定总流的能量方程解决一些工程实践中的问题。
1.3 教学难点和重点:难点:恒定总流的能量方程。
重点:恒定总流连续性方程,恒定总流的能量方程。
2.教学内容和知识要点:2.1 流体运动的基本概念:a. 压力流和无压流压力流:流体在压差作用下流动,流体整个周围都和固体笔相接触,没有自由表面。
无压流:液体在重力作用下流动时,液体的部分周界与固体壁面相接处,不分界面与大气相接触,形成自由表面。
b. 恒定流域非恒定流恒定流:流场中液体质点通过空间点时所有的运动要素都不随时间而变化的流动称为恒定流;非恒定流:反之,只要有一个运动要素随时间而变化,就是非恒定流。
非恒定流的流速、压强等运动要素是时间的函数,由于描述液体运动的变量增加,使得水流运动分析更加复杂和困难。
虽然自然界的水流绝大部分是非恒定流,但在一定条件下,常将非恒定流简化为恒定流进行讨论。
本课程主要讨论恒定流运动。
c. 迹线与流线迹线:迹线是液体质点运动的轨迹,它是某一个质点不同时刻在空间位置的连线,迹线必定与时间有关。
流线:流线是某一瞬间在流场中画出的一条曲线,这个时刻位于曲线上各点的质点的流速方向与该曲线相切。
对于恒定流,流线的形状不随时间而变化,这时流线与迹线互相重合;对于非恒定流,流线形状随时间而改变,这时流线与迹线一般不重合。
流线有两个重要的性质,即流线不能相交,也不能转折,否则交点(或转折)处的质点就有两个流速方向,这与流线的定义相矛盾。
也可以说某瞬时通过流场中的任一点只能画一条流线。
流线的形状和疏密反映了某瞬时流场内液体的流速大小和方向,流线密的地方表示流速大,流线疏处表示流速小。
d. 均匀流与非均匀流均匀流:流线是相互平行的直线的流动称为均匀流。
这里要满足两个条件,即流线既要相互平行,又必须是直线,非均匀流:其中有一个条件不能满足,这个流动就是非均匀流。
均匀流的概念也可以表述为液体的流速大小和方向沿空间流程不变。
流动的恒定、非恒定是相对时间而言,均匀、非均匀是相对空间而言;恒定流可是均匀流,也可以是非均匀流,非恒定流也是如此,但是明渠非恒定均匀流是不可能存在的,请注意区分。
均匀流具有下列特征:1)过水断面为平面,且形状和大小沿程不变;2)同一条流线上各点的流速相同,因此各过水断面上平均流速v相等;3)同一过水断面上各点的测压管水头为常数。
e. 元流、总流、过水断面、流量与断面平均流速元流:元流是横断面积无限小的流束,它的表面是由流线组成的流管。
总流:由无数个元流组成的宏观水流称为总流。
过水断面:与元流或总流的所有流线正交的横断面称为过水断面。
过水断面的形状可以是平面(当流线是平行的直线时)或曲面(流线为其它形状)。
流量:单位时间内流过某一过水断面的液体体积称为流量,流量用Q表示,单位为(m3/s)。
引入元流概念的目的有两个:1)、元流的横断面积dA无限小,因此dA面积上各点的运动要素(点流速u和压强p)都可以当作常数;2)、元流作为基本无限小单位,通过积分运算可求得总流的运动要素。