四年级奥数讲义-多位数计算 通用版
(完整版)小学四年级奥数多位数计算
第三讲:多位数计算学习内容:提升版凑整法、提公因数、平方差公式。
学习目标:灵活运用简便方法,提高做作业的计算速度以及准确率。
一、凑整法【例1】(★★★)计算:999999999×111111111原式=(10000000000-1)×111111111=1111111111000000000-1111111111=11111111088888888999……9常用处理方式——化为(100……0-1)【例2】(★★★★)计算:66666×133332原式=33333×2×3×44444=(33333×3)×(2×44444)=99999×88888=(100000-1)×88888=8888800000-88888=888871111299......9的亲戚:33......3 ,66 (6)【例3】(★★★★)求算式99……9×88……8÷66……6的计算结果的各位数字之和。
2009个9 2009个8 2009个6原式=99......9×44......4÷33 (3)2009个9 2009个4 2009个3=3×44 (4)2009个4=133 (32)2008个解析:抵消思想。
133……32之和=3×2009=60272008个3【例4】(★★★★)计算:88......82-11 (12)2010个8 2010个1(解析:利用平方差公式)原式=(88……82+11……12)×(88……82-11……12)2010个8 2010个1 2010个8 2010个1=99......9×77 (7)个9个7=(100......0-1)×77 (7)2010个02010个7=77......700......0-77 (7)2010个72010个02010个7=77......7622 (23)2009个7 2009个2二、提公因数【例5】(★★★)计算:22222×99999+33333×33334原式=22222×3×33333+33333×33334=666666×33333+33333×33334=33333×(66666+33334)=33333×100000=3333300000公因数常见给法——倍数关系【例6】(★★★★)计算99……9×99……9+199……9结果末尾有多少个连续的零?100个9 100个9 100个9原式=99......9×99......9+99......9+100 0100个9 100个9 100个9 100个0=99......9×(99......9+1)+100 01009 1009 1000=99......9×100......0+100 01009 100个0 1000=100……0×(99……9+1)1000 100个9=100......0×100 0100个0 100个0=100 02000计算结果末尾处有200个0。
小学奥数-多位数计算
多位数计算教学目标多位数的运算在奥数计算体系里面一般都扮演难题角色,因为多位数计算不仅能体现普通数字四则运算的一切考法,还有自身的“独门秘籍”,那就是“数字多的数不出来”,只能依靠观察数字结构发现数字规律的方式掌握多位数的整体结构,然后再确定方法进行解题。
多位数的主要考查方式有1.用带省略号的描述方式进行多位数的具体值四则计算2.计算多位数的各个位数字之和知识点拨一、多位数运算求精确值的常见方法1.利用99999101k k =-个,进行变形2.“以退为进”法找规律递推求解二、多位数运算求数字之和的常见方法M ×k 9999...9 个的数字和为9×k .(其中M 为自然数,且M ≤k 9999...9 个).可以利用上面性质较快的获得结果.例题精讲模块一、多位数求精确值运算【例1】计算:200720073555333⋅⋅⋅⨯⋅⋅⋅ 个5个【巩固】计算:2007820073888333⋅⋅⋅⨯⋅⋅⋅ 个个【巩固】计算20043333359049⨯ 个【巩固】计算20042008366669333...3⨯⨯ 个6个的乘积是多少?【巩固】快来自己动手算算 20071200792007920077111999999777⋅⋅⋅⨯⋅⋅⋅+⋅⋅⋅⨯⋅⋅⋅÷ 个个个个()3的结果看谁算得准?【巩固】计算200892008820086999888666⋅⋅⋅⨯⋅⋅⋅÷⋅⋅⋅ 个个个【例2】请你计算2008920089200899999991999⨯+ 个个个结果的末尾有多少个连续的零?【例3】计算199821998222222222⨯ 个个的积【例4】计算:123456791234567901234567901234567981⨯ 99个0【巩固】1234567901234567981⨯【例5】求 20073333333...33...3++++个的末三位数字.模块二、多位数求数字之和【例6】求33333336666666⨯乘积的各位数字之和.【巩固】求111111×999999乘积的各位数字之和。
四年级奥数.计算综合.多位数计算(一)(B级).学生版
多位数的运算在奥数计算体系里面一般都扮演难题角色,因为多位数计算不仅能体现普通数字四则运算的一切考法,还有自身的“独门秘籍”,那就是“数字多的数不出来”,只能依靠观察数字结构发现数字规律的方式掌握多位数的整体结构,然后再确定方法进行解题。
多位数的主要考查方式有1. 用带省略号的描述方式进行多位数的具体值四则计算2. 计算多位数的各个位数字之和一、 多位数运算求精确值的常见方法① 利用99999101kk =-个,进行变形② “以退为进”法找规律递推求解二、 多位数运算求数字之和的常见方法M×k 9999...9个的数字和为9×k .(其中M 为自然数,且M≤k 9999...9个).可以利用上面性质较快的获得结果.【例 1】 .计算:1991+199.1+19.91+1.991.【例 2】 光的速度是每秒30万千米,太阳离地球1亿5千万千米.问:光从太阳到地球要用几分钟?(答考试要求知识结构例题精讲多位数运算案保留一位小数.)【巩固】.计算:7142.85÷3.7÷2.7×1.7×0.7.【例 3】 求和式103333333333个+++⋯+⋯计算结果的万位数字.【巩固】 求20073333333...33...3++++个的末三位数字.【例 4】 计算:1999个919+199+1999++1999【例 5】 算式1992919929199299999991999个个个⋯⨯⋯+⋯的计算结果的末位有多少个零?【巩固】 请你计算2008920089200899999991999⨯+个个个结果的末尾有多少个连续的零?【例 6】 计算:103106333666个个⋯⨯⋯【巩固】 计算:200720073555333⋅⋅⋅⨯⋅⋅⋅个5个【例 7】 求算式199491994819946999888666个个个⋯⨯⋯÷⋯的计算结果的各位数字之和.【巩固】 计算200892008820086999888666⋅⋅⋅⨯⋅⋅⋅÷⋅⋅⋅个个个【例 8】 求33333336666666⨯乘积的各位数字之和.【巩固】 求111 111 × 999 999 乘积的各位数字之和。
四年级下册数学试题-奥数 第1讲 多位数计算 全国通用(图片版无答案)
四年级奥数第1讲:多位数计算多位数的运算在奥数体系里面一般扮演难题角色,多位数运算不仅体现普通数字四则运算的一切考法,还要靠观察数字结构发现数字规律的方式掌握多位数的整体结构,确定方法解题。
主要方法:1.利用 999999个n 进行变形,变成10000010-个n ,有进行计算尽量转化成 9993332.经常使用的方法有凑整法、提取公因式法、平方差公式、乘法的性质3.多位数M× 999999个n 的数字和为9n(注意M 要小于999999个n )题型一:求算式结果某数位上的数码常用方法:1.提取公因数;2.利用 999999个n 进行变形,变成10000010-个n 例1在将10000000000中减去1101011后所得的答案中,数码8出现了次?分析:10000000000-1101011=9998898989,数码8共出现了4次。
例2求6+66+666+6666+66666+666666+6666666的和的万位数字是分析:方法一:提取公因数6+66+666+6666+66666+666666+6666666=6×(1+11+111+1111+11111+111111+1111111)=6×1234567=7407402方法二:利用加法的计算方法个位和为:6×7=42,个位数字为2十位和为:6×6+4=40,十位数字为0千位和为:6×5+4=34,千位数字为4万位和为:6×4+3=27,万位数字为7例392005120059999911111个个⨯的乘积中含有个偶数数码。
分析:利用 999999个n 进行变形,变成10000010- 个n .2005120049888880111111111100000111111000001111119999911111820041200412005020051200502005120059200512005个偶数数码因此含有个个个个个个个个个=+=-=⎪⎪⎭⎫ ⎝⎛-⨯=⨯<训练巩固>1.8199288888888,88,8个,,把这1992个数相加,所得和的个位数是十位数字是,百位数字是.2.7100220067777722222个个减去,得数的个位数字是(提示:多个2相乘,多个7相乘,尾数有周期现象)题型二:求算式结果有几位数(或末尾有几个0)常用方法:1.提取公因数;2.因数末尾有0的计算方法例4将10002009= 10002009100010001000个⨯⨯的数值写下,它有位数?分析:利用因数末尾有0计算方法10002009= 10002009100010001000个⨯⨯=6027320090000001个=⨯因此总共有6027+1=6028位数.例5已知5882995555522222个个⨯⨯⨯⨯⨯⨯⨯⨯⨯=N ,问N 为几位数?分析:1.利用2×5=10;2.利用因数末尾有0计算方法8852882115882990000020485252525252222225555522222个个个个个=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯N 因此N 为4+88=92位数.例6920019200192001999999999999999个个个+⨯的得数末尾有个零.分析:提取公因数20019200192001920019200192001920010000019999919999999999999999999999999个个个个个个个=⎪⎪⎭⎫ ⎝⎛+⨯=+⨯因此得数末尾有2001个0.<训练巩固>1.9200192001920019919999999999999个个个+⨯的得数末尾有几个0?题型三:求算式结果各个数位上数字之和常用方法:1.提取公因数;2.多位数M×999999个n 的数字和为9n(注意M 要小于 999999个n );3.利用 999999个n 进行变形,变成10000010-个n 例7求222222×9999999的得数各个数位上数字之和.分析:方法一:利用凑整法把9999999变成10000000—1222222×9999999=222222×(10000000—1)=2222220000000—222222=2222219777778各个数位上数字之和为2×5+1+9+7×5+8=63方法二:利用结论多位数M× 999999个n 的数字和为9n (注意M 要小于999999个n )各个数位上数字之和为9×7=63.例8520013200155555333339个个⨯⨯的各位数字平方之和为.分析:看见进行计算尽量转化成 999333533336666615444455555355555000005555535555510000013555559999935555533333932001620004200152000520010200152001520010200152001920015200132001个个个个个个个个个个个个个=⨯=⎪⎪⎭⎫⎝⎛-⨯=⨯⎪⎪⎭⎫ ⎝⎛-⨯=⨯⨯=⨯⨯各位数字平方之和为12+62×2000+32×2001+52=90035例8若37212363333312121212个个⨯=x 的各位数字之和是.分析:根据算是式特点看出可以从 123612121212个提出一个3,变成 0435040404044个,使 372333333个⨯可凑成97299999个,所以6595959390404040404040404400000040404044100000104040404499999040404044333333040404044333331212121259354035043507204350720435972043537204353721236个个个个个个个个个个个个个——==⎪⎪⎭⎫⎝⎛⨯=⨯=⨯⨯=⨯所以各位数字之和为4×35+3+9+5×35+9×35+6=648<训练巩固>1.求111111×999999的乘积各个数位上数字之和是多少?2.有一个2005位的整数,其每个数位上的数字都是9,这个数字与它自身相乘,所得乘积各个数位上数字之和是多少?3.若34815243333315151515个个⨯=x 的各位数字之和是.题型四:计算出算式结果常用方法:1.利用 999999个n 进行变形,变成10000010-个n ,有进行计算尽量转化成 999333 2.经常使用的方法有凑整法、提取公因式法、平方差公式3.乘法的性质、因数末尾有0的计算方法例9计算1200028200021111188888个个—.分析:利用平方差公式a 2-b 2=(a+b)(a-b);利用999999个n 进行变形,变成10000010-个n ,则有:322222677777777770000077777100000177777777779999911111888881111188888111118888821999719997200002000720000200072000720009200012000820001200082000120002820002个个个个个个个个个个个个个个个————==⎪⎪⎭⎫⎝⎛⨯=⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=例10计算888888888888888888888888888888888888888888888++++++++.分析:利用提取公因数8来进行求解()98765431212345678981111111111111111111111111111111111111111111118888888888888888888888888888888888888888888888=⨯=++++++++⨯=++++++++例11计算620088200892008666668888899999个个个÷⨯.分析:利用乘法的性质来求解23333314444436666666666444443666664444423333336666688888999993200742008620086200842008620084200832008620088200892008个个个个个个个个个个个=⨯=÷⨯⨯=÷⨯⨯⨯=÷⨯例12计算12345678987654321×9.分析:利用12345678987654321=111111111212345678987654321×9.=1111111112×9=999999999×111111111=111111111×(1000000000-1)=111111111000000000-111111111=111111110888888889<训练巩固>1.计算4200025200024444455555个个—.2.计算99999×22222+33333×33334.3.计算32008520083333355555个个⨯.。
小学奥数—多位数计算
教学目标
多位数的运算在奥数计算体系里面一般都扮演难题角色,因为多位数计算不仅能体现普通数字四则运
算的一切考法,还有自身的“独门秘籍”,那就是“数字多的数不出来”,只能依靠观察数字结构发现数字规
律的方式掌握多位数的整体结构,然后再确定方法进行解题。
多位数的主要考查方式有
1.用带省略号的描述方式进行多位数的具体值四则计算
k个9
k个 9
例题精讲
模块一、多位数求精确值运算
【例 1】 计算: 55 5 33 3
2007个5 2007个3
【巩固】计算: 88 8 33 3
2007个8 2007个3
1-3-2.多位数计算.题库
学生版
page 1 of 5
【巩固】计算 33 33 59049
2004个3
【巩固】计算 6666 9 333...3 的乘积是多少?
固】快来自己动手算算(1 1 1 99 9 99 9 77 7) 3的结果看谁算得准?
2007个1 2007个9
2007个9
2007个7
【巩固】计算 99 9 88 8 66 6
2008个9
2008个8
2008个 6
【例 2】 请你计算 999 999 1999 结果的末尾有多少个连续的零?
1998个1998
199919991999 )×1999
1998个1999
【巩固】计算: 55555 666667 44445 666666 155555
【例 12】 计算: 341 2 3441 3 34441 8 3444444441 9 34444444441
。
275 2775 27775
2.计算多位数的各个位数字之和
小学奥数模块教程多位数计算(四年级提尖秋季)
多位数计算本章知识1、了解多位数巧算技巧2、掌握重复数拆数技巧3、利用凑整、位值原理、归纳递推等方法解决多位数计算问题前铺知识1、等差数列进阶——四年级暑假第5讲(第7级别上)2、定义新运算——四年级秋季第1讲(第7级别下)课前加油站1、计算,找规律:2、计算:3、计算:题型一 由数字9组成的多位数相加1、计算:9+999+99999+9999999+9999……999...910个 + 999...910个【演练】103333333333个+++⋯+⋯【演练】99+99+9999+9999+99999+99999题型二 添加补数凑整或去尾数凑整1、19+199+1999+19999+199999+1999999加法中的多位数计算模块1【演练】29+299+2999+……+929...910个2、8+98+998+9998+……+999...9810个【演练】7+97+997+……+999...9710个3、17+107+1007+……+100...0710个0【演练】25+205+2005+……+200...0510个0题型一:88...810个8 99...910个9模块2乘法中的多位数计算【演练】333333 999999【演练】200720073555333⋅⋅⋅⨯⋅⋅⋅个5个题型二:33...310个9 33...410个9【演练】55555666667⨯题型三:123123123=123 _________________12341234=1234 _____________________________;abcabcabc=abc _________________abcdabcd=abcd ____________________【演练】123 101 1234 1001 12345 1000113571357=1357_________ 123456123456=123456______________ 12341234123412341234=1234___________________________题型四:471471471157157157157【演练】571571571167167167167题型五:20142014 (2014)2014个201438003800 (380038)2013个3800【演练】19901990 (1990)1990个199038003800 (380038)1989个3800【演练】20092009 (2009)2009个200941004100 (410041)2008个4100模块3 四则运算中的多位数题型一:333 332332332-332 333333333题型二:99999 +33333 333341、999...911个 + 999...911个2、+++⋯+⋯102222222222个3、99+99+9999+9999+99999+99994、7+97+997+9997+……+99...9710个9温故而知新5、77 (7)10个799 (9)10个96、3456710001=___________________7、234523452345=2345_____________________8、3713713711471471471479、20142014 (2014)2014个201438003800 (380038)2013个380010、33323232-32 33333333。
(小学奥数)多位数计算
多位數的運算在奧數計算體系裏面一般都扮演難題角色,因為多位數計算不僅能體現普通數字四則運算的一切考法,還有自身的“獨門秘笈”,那就是“數字多的數不出來”,只能依靠觀察數字結構發現數字規律的方式掌握多位數的整體結構,然後再確定方法進行解題。
多位數的主要考查方式有1.用帶省略號的描述方式進行多位數的具體值四則計算2.計算多位數的各個位數字之和一、 多位數運算求精確值的常見方法1. 利用99999101k k =-个,進行變形2. “以退為進”法找規律遞推求解二、 多位數運算求數字之和的常見方法M ×k 9999...9个的數字和為9×k .(其中M 為自然數,且M ≤k 9999...9个).可以利用上面性質較快的獲得結果.模組一、多位數求精確值運算【例 1】 計算:200720073555333⋅⋅⋅⨯⋅⋅⋅个5个知識點撥 教學目標 例題精講多位數計算【巩固】 計算:2007820073888333⋅⋅⋅⨯⋅⋅⋅个个【巩固】 計算20043333359049⨯个【巩固】 計算20042008366669333...3⨯⨯个6个的乘積是多少?【巩固】 快來自己動手算算20071200792007920077111999999777⋅⋅⋅⨯⋅⋅⋅+⋅⋅⋅⨯⋅⋅⋅÷个个个个()3的結果看誰算得准?【巩固】 計算200892008820086999888666⋅⋅⋅⨯⋅⋅⋅÷⋅⋅⋅个个个【例 2】 請你計算2008920089200899999991999⨯+个个个結果的末尾有多少個連續的零?【例 3】 計算199821998222222222⨯个个的積【例 4】 計算:123456791234567901234567901234567981⨯99个0【巩固】 1234567901234567981⨯【例 5】 求20073333333...33...3++++个的末三位數字.模組二、多位數求數字之和【例 6】 求33333336666666⨯乘積的各位數字之和.【巩固】 求111 111 × 999 999 乘積的各位數字之和。
【冀教版】四年级奥数上册讲义-第一讲 多位数巧算
第一讲多位数巧算◆温故知新:1. 加减法巧算:823+92-23=,823-92+177=;528-(196+328)=,1308-(308-49)=。
2.乘法巧算:43×25×4=,125×(19×8)=;9×37+9×63=,65×99+65=。
3.除法巧算:160×500÷250=,33000÷125=;13÷9+14÷9=,21÷5-6÷5=。
4.所谓多位数,顾名思义,就是位数较多的数。
例如9999999999,我们可以把它读作“10个9”,记作99…9.这里“10个9”不要误认为是10×9,而是由10个9组成的十位数。
10个94.叠字型多位数的分解。
5.加法型凑整与乘法型凑整。
①加法型凑整:例如计算9998+20004时,可以把9998看成10000-2,把20004看成20000+4,再把他们相加。
②乘法型凑整:尽量把与整十、整百、整千等相近的乘数凑成整十、整百、整千等,可以使计算更简便。
◆练一练1.计算:(1)8896-(2234+4896)(2)6400-275-400-252.计算:(1)79+199 (2)862-198 (3)101×28 (4)99×153.计算(1)125×802+25×398 (2)1600×27+16×8300-16000◆例题展示例题1叠字型多位数拆分:333333,121212,345345345,268926892689 练习1叠字型多位数拆分:99999,37373737,987987987,112611261126 例题2计算1981×198319831983-1982×198119811981练习2计算:(1)3636363636×35-34×3535353535(2)123412341234×1235-123512351235×1233例题3计算:(1)999999+99999+9999+999+99+9(2)200001+20001+2001+201+21 练习3 (1)899999+89999+8999+899+89(2)400009+40009+4009+409+49例题4 计算:(1)28+208+2008+...+200 (08)100个0(2)98+998+9998+...+99 (98)1009练习4(1)105+1005+10005+...+100 (05)10个0(2)89+899+8999+...+899 (9)109◆拓展提高拓展1(1)999999×222222 (2)333333×666666 练习1(1)888888×999999 (2)333333×333333拓展2 计算:999999×222222+333333×333334练习2 111112×1234+444444×2468◆思维挑战挑战1计算:99......9×88......8÷66 (6)2000个92000个92000个9挑战2请求出算式33……3×22……2的计算结果的各位数字之和。
四年级高思奥数之多位数与小数含答案
四年级高思奥数之多位数与小数含答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第9讲 多位数与小数内容概述求解含有小数的四则运算问题,除了运用已学的各种整数计算方法外,还可以移动小数点来简化计算,求解带有省略号的多位数的四则运算问题,一般采用从简单情况出发找规律,通过算式的变形进行凑整、直接列竖式等方法。
典型问题兴趣篇1. 李老师在黑板上写了四个算式:①7469÷0.7; ②7.469÷0.007 ③0.7469÷0.07 ④746.9÷7. 请把它们按照商从小到大的顺序排列起来.2. 计算:5795.5795÷5.795×579.53. 计算:13.64×0.25÷1.1.4. 计算:24×(0.123+0.127) ×0.125×(2.52+1.48)5. 计算:(3.74+3.76+3.78+3.8+3.82) ×0.04÷24×60.6. 计算:1.25×3.14+125×0.0257+1250×0.00229.7. 计算:3.51×49+35.1×5.1+99×51.8. 计算:19+199+1999+……+199…9.9. 求和式3+33+333+……33…3 计算结果的万位数字.10. 计算:333……33×333……34. 10个910个310个39个3拓展篇1. 计算:(1) ()⨯-÷+÷÷4.2510.259.10.70.004⎡⎤⎣⎦(2)4.5×4.8÷0.25÷15÷0.24.2.在下面算式的两个方框中填入相同的数,使得等式成立. 所填的数应该是多少?22.5-(□×3.2-2.4×□) ÷3.2=10.3. 计算:(1)299.9×19.98-199.8×29.97;(2) 3.14+64.8×0.537×25+5.37×6.48×75-8×64.8×0.125×53.7.4. 计算:27.8×28.7-27.7×28.8.5. 计算:24.25×7.19+0.23×281+1.25×0.81.6. 计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+……+0.99.7. 计算:(1)28+208+2008+…+200…08;(2) 98+998+9998+…+99…98.8. 计算:3+33+333+3333+…+33…3. 9. 计算:999999×222222+333333×333334.10. 计算:1981×198319831983-1982×198119811981.11. 计算:(1)99…9×999+199…9;(2)33…3×66…6. 100个010个950个3 100个9 100个9 100个920个3 20个612. 求算式99…9×88…÷66…6的计算结果的各位数字之和.2000个9 2000个8 2000个6超越篇1. 计算:(1+1.2+1.23+1.234)×(1.2+1.23+1.234+1.2345)-(1+1.2+1.23+1.234+1.2345)×(1.2+1.23+1.234).2. 一个数去掉小数部分后得到一个整数,这个整数加上原数的4倍,等于27.6,原来这个数是多少?3. 计算:44…4-66…6…+88…800…0.40个4 20个6 20个8 10个04. 计算:888…882-111…112.2000个8 2000个15. 求算式888…8×333…3的计算结果的各位数字之和.300个8 300个36. 计算:3+3.3+3.33+3.333+…+3.33…3.99个37.已知数444…46.222…24是某一个小数的平方,请问:这个数是多少的平方?8. 计算以下各数的数字和:(1) 1111...1×1111...1;(2) 1111...1×1111 (1)99个1 99个1 100个1 100个1第9讲多位数与小数内容概述求解含有小数的四则运算问题,除了运用已学的各种整数计算方法外,还可以移动小数点来简化计算,求解带有省略号的多位数的四则运算问题,一般采用从简单情况出发找规律,通过算式的变形进行凑整、直接列竖式等方法。
2020年冀教版暑假新四年级奥数讲义 第一讲 多位数巧算
第一讲多位数巧算◆温故知新:1.加减法巧算:823+92-23=,823-92+177=;528-(196+328)=,1308-(308-49)=。
2.乘法巧算:43×25×4=,125×(19×8)=;9×37+9×63=,65×99+65=。
3.除法巧算:160×500÷250=,33000÷125=;13÷9+14÷9=,21÷5-6÷5=。
4.所谓多位数,顾名思义,就是位数较多的数。
例如9999999999,我们可以把它读作“10个9”,记作99…9.这里“10个9”不要误认为是10×9,而是由10个9组成的十位数。
10个94.叠字型多位数的分解。
5.加法型凑整与乘法型凑整。
①加法型凑整:例如计算9998+20004时,可以把9998看成10000-2,把20004看成20000+4,再把他们相加。
②乘法型凑整:尽量把与整十、整百、整千等相近的乘数凑成整十、整百、整千等,可以使计算更简便。
◆练一练1.计算:(1)8896-(2234+4896)(2)6400-275-400-252.计算:(1)79+199 (2)862-198 (3)101×28 (4)99×153.计算(1)125×802+25×398 (2)1600×27+16×8300-16000◆例题展示例题1叠字型多位数拆分:333333,121212,345345345,268926892689 练习1叠字型多位数拆分:99999,37373737,987987987,112611261126 例题2计算1981×198319831983-1982×198119811981练习2计算:(1)3636363636×35-34×3535353535(2)123412341234×1235-123512351235×1233例题3计算:(1)999999+99999+9999+999+99+9(2)200001+20001+2001+201+21 练习3 (1)899999+89999+8999+899+89(2)400009+40009+4009+409+49例题4 计算:(1)28+208+2008+...+200 (08)100个0(2)98+998+9998+...+99 (98)100个9练习4(1)105+1005+10005+...+100 (05)10个0(2)89+899+8999+...+899 (9)10个9◆拓展提高拓展1(1)999999×222222 (2)333333×666666 练习1(1)888888×999999 (2)333333×333333拓展2 计算:999999×222222+333333×333334练习2 111112×1234+444444×2468◆思维挑战挑战1计算:99......9×88......8÷66 (6)2000个92000个92000个9挑战2请求出算式33……3×22……2的计算结果的各位数字之和。
【精品】四年级奥数思维训练精编讲义(共23讲) 通用版 第1讲 多位数计算 (教师版)
第一讲多位数计算1、 在将10000000000减去101011后所得的答案中,数码9共出现(7)次。
解:10000000000-101011=99998989892、 将10002011=1000×1000×……×1000⏟ 2011个1000的数值写下,它有(c )位数。
A2012 B6033 C6034 D8044 E2014解:共有2011×3+1=60343、 已知N=2×2×2……×2⏟ 99个2×5×5×5×5……×5⏟ 88个5,问:N 为几位数?解:N=2×2×2……×2⏟ 11个2×=204800…0⏟ 88个0因此N 为4+88=924、 求7+77+777+7777+77777+777777的和的万位数字是(6)解:原式=7×(1+11+111+1111+11111+111111)=7×123456=864192,容易判断和的万位数字是6.5、 a ÷7化成小数以后,小数点后(446)个数字之和是2008,这时a=(2)解:a ÷7得到的是纯循环小数,循环节是由1、4、2、8、5、7这6个数字组成的,数字之和是1+4+2+8+5+7=27。
2008÷27=74……10,相邻数字和为10的只有2+8=10,所以循环节只能是285714,小数点后6×74+2=446个数字之和是2008,此时a=2。
6、 999…999⏟ 2005个9×999…999⏟ 2005个9+999…999⏟ 2005个9的得数的末尾有(2005)个零。
解:999…999⏟ 2005个9×1000…⏟ 002005个0=因此末尾有2005个0 7、 111…111⏟ 2010个1×999…999⏟ 2010个9的乘积中含有(2010)个偶数数码。
小学奥数之第3讲-多位数的运算
第3讲 多位数的运算多位数的运算,涉及利用99999k 个=10k -1,提出公因数,递推等方法求解问题.一、99999k 个=10k -1的运用在多位数运算中,我们往往运用99999k 个=10k -1来转化问题;如:200433333个×59049 我们把200433333个转化为20049999个9÷3,于是原式为200433333个×59049=(20049999个9÷3)×59049=20049999个9×59049=(200410000个0-1)×19683=19683×200410000个0-19683而对于多位数的减法,我们可以列个竖式来求解;200491968299999999个+1如:2004919999199991968299999999119683196829998031611968299980317+-+个个个,于是为199991968299980317个.简便计算多位数的减法,我们改写这个多位数. 原式=200433333个×2×3×3×20083333个3=200433333个×2×3×20089999个9=2003199998个9×(200810000个0-1)=2003199998个9×200810000个0-2003199998个9=2003920089200392003920030200392003019999799999999911999981999979998000011199997999800002+-+个个个个个个个,于是为2003920030199997999800002个个.2.计算11112004个1-22221002个2=A ×A ,求A .【分析与解】 此题的显著特征是式子都含有1111n 个1,从而找出突破口.11112004个1-22221002个2=11111002个100001002个0-11111002个1=11111002个1×(100001002个0-1) =11111002个1×(99991002个9)=11111002个1×(11111002个1×3×3)=A 2所以,A =33331002个3.3.计算66662004个6×66662003个6×25的乘积数字和是多少?【分析与解】我们还是利用9999k 个9=100001-k 个0来简便计算,但是不同于上式的是不易得出凑成9999k 个9,于是我们就创造条件使用: 66662004个6×666672003个6×25=[23×(20049999个9)]×[23×(20049999个9)+1]×25=[23×(100001-2004个0)]×[23×(100002004个0)+1]×25 =13×13×[2×100002004个0-2]×[2×(100002004个0)+1]×25=259×[4×100004008个0-2×100002004个0-2] =1009×99994008个9-509×20049999个9=100×40081111个1-50×20041111个1=400812004511110055550-个个(求差过程详见评注)=12004511110555502004个个所以原式的乘积为12004511110555502004个个那么原式乘积的数字和为1×2004+5×2004=12024. 评注:对于400812004511110055550-个个的计算,我们再详细的说一说.400812004511110055550-个个=200512003120050200451111000011110055550+-个个个个=20041200312005920045111109999111110055550++-个个个个=2004120031200441111044449111101+个个个=2004120045111105555个个4.计算199821998222222222⨯个个的积?【分析与解】 我们先还是同上例来凑成k 99999个;199821998222222222⨯个个=19982199892999922229⎛⎫⨯⨯ ⎪ ⎪⎝⎭个个=1998219980210000122229⎛⎫⨯-⨯ ⎪ ⎪⎝⎭个个=1998419980110000144449⎛⎫⨯-⨯ ⎪⎪⎝⎭个个=19984199841998014444000044449⎛⎫⨯- ⎪ ⎪⎝⎭个个个 =1997419975144443555569⨯个个(求差过程详见评注)我们知道944444个能被9整除,商为:049382716.又知1997个4,9个数一组,共221组,还剩下8个4,则这样数字和为8×4=32,加上后面的3,则数字和为35,于是再加上2个5,数字和为45,可以被9整除. 84444355个4能被9整除,商为04938271595;我们知道55559个5能被9整除,商为:061728395;这样9个数一组,共221组,剩下的1995个5还剩下6个5,而6个5和1个、6,数字和36,可以被9整除. 555566个5能被9整除,商为0617284.于是,最终的商为: 22004938271622106172839549382716049382716049382716049382715950617283950617283950617284个个评注:对于199841998044440000个个-199844444个计算,我们再详细的说一说.199841998044440000个个-199844444个 =199741998444439999个个9+1-199844444个=199741998444435555个个5+1 =1997419974444355556个个5.二、提出公因式有时涉及乘除的多位数运算时,我们往往需提出公因式再进行运算,并且往往公因式也是和式或者差式等. (19981998)个199819981998)÷(1999+19991 (19981999)个199919991999)×1999【分析与解】19981998个199819981998=1998×19981001个100110011001原式=1998(1+10001+100010001+ (19981001)个100110011001)÷[1999×(1+10001+100010001+…19981001个100110011001)]×1999=1998÷1999×1999=1998.6.试求1993×123×999999乘积的数字和为多少?【分析与解】 我们可以先求出1993×123的乘积,再计算与(1000000—1)的乘积,但是1993×123还是有点繁琐.设1993×123=M,则(1000×123=)123000<M<(2000×123=)246000,所以M 为6位数,并且末位不是0;令M =abcdef则M ×999999=M ×(1000000-1)=1000000M-M =000000abcdef -abcdef =()1999999abcdef f -+1-abcdef=()()()()()()()1999999abcdef f a b c d e f -------+1 =()()()()()()()19999991abcdeff a b c d e f -------+那么这个数的数字和为:a+b+c+d+e+(f -1)+(9-a)+(9-b)+(9-c)+(9-d)+(9-e)+(9-f +1)=9×6=54.所以原式的计算结果的数字和为54.评注:M ×k 99999个的数字和为9×k .(其中M 的位数为x ,且x ≤k).7.试求9×99×9999×99999999×…×99999256个×99999512个×999991024个乘积的数字和为多少?【分析与解】 通过上题的计算,由上题评注:设9×99×9999×99999999×…×99999256个×99999512个×999991024个=M ,于是M×999991024个类似的情况,于是,确定好M 的位数即可;注意到9×99×9999×99999999×…×99999256个×99999512个=M ,则M<10×100×100013×100000000×…×256010000个×010000512个=010000k 个其中k=1+2+4+8+16+…+512=1024-l=1023; 即M<0100001023个,即M 最多为1023位数,所以满足的使用条件,那么M 与999991024个乘积的数字和为1024×9=10240—1024=9216.原式的乘积数字和为9216.三、递推法的运用有时候,对于多位数运算,我们甚至可以使用递推的方法来求解,也就是通常的找规律的方法.8.我们定义完全平方数A 2=A×A,即一个数乘以自身得到的数为完全平方数;已知:【分析与解】 我们不易直接求解,但是其数字有明显的规律,于是我们采用递推(找规律)的方法来求解:121=112;12321=1112;1234321=11112……于是,我们归纳为1234…n…4321=(1111n 个1)222×72=77777772.所以,题中原式乘积为7777777的平方.评注:以上归纳的公式1234…n…4321=(1111n 个1)2,只有在n<10时成立.9.①2004420038444488889个个=A 2,求A 为多少?②求是否存在一个完全平方数,它的数字和为2005? 【分析与解】 方法一:问题①直接求解有点难度,但是其数字有明显的规律,于是我们采用递推(找规律)的方法来求解: ①注意到有2004420038444488889个个可以看成48444488889n 个n-1个,其中n =2004;寻找规律:当n=1时,有49=72;当n=2时,有4489=672;当n=3时,有444889=6672; …… …… 于是,类推有2004420038444488889个个=22003666667个方法二:下面给出严格计算: 2004420038444488889个个=4444400002004个2004个0+20048888个8+1;则4444400002004个2004个0+20048888个8+1=11112004个1×(4×0100002004个+8)+1=11112004个1×[4×(999992004个+1)+8]+1 =11112004个1×[4×(999992004个)+12]+1=(11112004个1)2×36+12×11112004个1+1=(11112004个1)2×62+2×(6×11112004个1)+1=(666672003个6)2②由①知4444488889 n 个n-1个8=266667n-1个6,于是数字和为(4n+8n 一8+9)=12n+1=2005;于是,n=167,所以4444488889 167个166个8=266667166个6,所以存在,并且为4444488889 167个166个8.10.计算66662008个6×9×33332008个3的乘积是多少?【分析与解】采用递推的方法6×9×3=162; 66×9×33=19602; 666×9×333=1996002; …… …… 于是,猜想6666n 个6×9×3333n 个3=1996n 个19990000n-1个02 66662008个6×9×33332008个3=9962007个199900002007个02评注:我们与题l 对比,发现题1为66662008个6×9×3×33332004个3使用递推的方法就有障碍,9999k 个9=10k —l 这种方法适用面要广泛一点.练习1.设N=66662000个6×9×77772007个7,则N 的各位数字之和为多少?练习2.乘积99991999个9×99991999个9的积是多少?各位数字之和又是多少?练习3.试求11112008个1×11112008个1的各位数字之和是多少?。
小学计算重点---多位数计算
多位数的运算在奥数计算体系里面一般都扮演难题角色,因为多位数计算不仅能体现普通数字四则运算的一切考法,还有自身的“独门秘籍”,那就是“数字多的数不出来”,只能依靠观察数字结构发现数字规律的方式掌握多位数的整体结构,然后再确定方法进行解题。
多位数的主要考查方式有1.用带省略号的描述方式进行多位数的具体值四则计算2.计算多位数的各个位数字之和一、 多位数运算求精确值的常见方法1. 利用99999101k k =-个,进行变形2. “以退为进”法找规律递推求解二、 多位数运算求数字之和的常见方法M ×k 9999...9个的数字和为9×k .(其中M 为自然数,且M ≤k 9999...9个).可以利用上面性质较快的获得结果.模块一、多位数求精确值运算【例 1】 计算:200720073555333⋅⋅⋅⨯⋅⋅⋅个5个【考点】多位数计算之求精确值 【难度】3星 【题型】计算 【解析】 这道题目,你会发现无规律可循.这时我们就要从找规律这个思想里走出来,将 20073333⋅⋅⋅个乘以3凑出一个20073999⋅⋅⋅个,然后在原式乘以3的基础上除以3,所以原式20075200795559993=⋅⋅⋅⨯⋅⋅⋅÷个个20075200705550003=⋅⋅⋅⨯⋅⋅⋅÷个个(1-1)2007520070200755550005553=⋅⋅⋅⋅⋅⋅⋅⋅⋅÷个个个(-) 200742006555544453=⋅⋅⋅⋅⋅⋅÷个个668185668148185185184814814815=⋅⋅⋅⋅⋅⋅个个【答案】668185668148185185184814814815⋅⋅⋅⋅⋅⋅个个【巩固】 计算:2007820073888333⋅⋅⋅⨯⋅⋅⋅个个【考点】多位数计算之求精确值 【难度】3星 【题型】计算 【解析】 这道题目,你会发现无规律可循.这时我们就要从找规律这个思想里走出来,将 20073333⋅⋅⋅个乘以3凑知识点拨教学目标例题精讲多位数计算出一个20079999⋅⋅⋅个,然后在原式乘以3的基础上除以3,所以原式20078200798889993=⋅⋅⋅⨯⋅⋅⋅÷个个20078200708880003=⋅⋅⋅⨯⋅⋅⋅÷个个(1-1)2007820070200788880008883=⋅⋅⋅⋅⋅⋅⋅⋅⋅÷个个个(-)2006120068888711123=⋅⋅⋅⋅⋅⋅÷个个668296668037296296295703703704=⋅⋅⋅⋅⋅⋅个个【答案】668296668037296296295703703704⋅⋅⋅⋅⋅⋅个个【巩固】 计算20043333359049⨯个【考点】多位数计算之求精确值 【难度】3星 【题型】计算【解析】 我们可以把200433333个转化为200499993÷个9,进而可以进行下一步变形,具体为:原式20043333359049=⨯=个200420049999359049999919683÷⨯=⨯个9个9200402004019999(100001)196831968300...0196831968299...9980317=-⨯=-=个个个【答案】199991968299...9980317个【巩固】 计算20042008366669333...3⨯⨯个6个的乘积是多少?【考点】多位数计算之求精确值 【难度】3星 【题型】计算 【解析】 我们可以将原题的多位数进行99999101k k =-个的变形:原式=200433333个20082333333⨯⨯⨯⨯个3=200433333个2008239999⨯⨯⨯个9=2003199998⨯个9(2008100001-个0)=2003199998个9×200810000个0-2003199998个9=2003920030199997999800002个个.【答案】2003920030199997999800002个个【巩固】 快来自己动手算算20071200792007920077111999999777⋅⋅⋅⨯⋅⋅⋅+⋅⋅⋅⨯⋅⋅⋅÷个个个个()3的结果看谁算得准? 【考点】多位数计算之求精确值 【难度】3星 【题型】计算 【解析】 本题是提取公因数和凑整的综合。