最新导数基础知识点汇总及经典习题解答更多资料关注高中学习资料库

合集下载

新高考导数知识点总结大全

新高考导数知识点总结大全

新高考导数知识点总结大全随着新高考改革的实施,导数已经成为高中数学领域的重要知识点。

导数是微积分的基础,它在物理学、经济学等领域都有着广泛的应用。

在新高考中,导数作为一种数学工具,被广泛应用在各个领域的问题求解中。

本文将对新高考导数知识点进行总结,帮助同学们更好地掌握导数。

一、导数的定义和性质导数的定义是导数是函数在某一点的变化率。

具体来说,对于函数y = f(x),在x点处的导数可以表示为:f'(x) = lim(h→0) (f(x+h)-f(x))/h导数具有许多重要的性质,包括导数的四则运算法则、复合函数的导数、反函数的导数等。

熟练掌握这些性质是解题的基础。

二、基本导数公式在新高考中,一些基本的导数公式需要掌握。

比如:1. 常数函数的导数为0,即对于常数c,有f'(x)=0;2. 一次函数y = kx的导数为k,即f'(x) = k;3. 幂函数y = x^n的导数为nx^(n-1),即f'(x) = nx^(n-1);4. 指数函数y = a^x的导数为a^x * ln(a),即f'(x) = a^x * ln(a);5. 对数函数y = ln(x)的导数为1/x,即f'(x) = 1/x。

这些基本的导数公式是解题的基础,同学们在备考新高考时务必熟练掌握。

三、导数的应用导数在各个领域的应用广泛。

在新高考中,导数常被应用于函数的极值、函数的单调性、函数的凹凸性等问题的求解。

1. 极值问题通过求解函数的导数,我们可以确定函数的极值点。

具体来说,对于函数y = f(x),当f'(x) = 0时,x就是函数的极值点。

再通过二阶导数的符号确定是极大值还是极小值。

2. 单调性问题通过求解函数的导数,我们可以确定函数的单调性。

具体来说,如果在一个区间上,函数的导数始终大于0(或始终小于0),那么函数在这个区间上是递增(或递减)的。

3. 凹凸性问题通过求解函数的导数,我们可以确定函数的凹凸性。

导数知识点总结大全高中

导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。

函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。

当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。

2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。

当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。

3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。

导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。

4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。

二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。

函数在某一点可导的条件是函数在这一点存在切线。

2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。

3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。

三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。

导数基础知识点总结

导数基础知识点总结

导数基础知识点总结一、导数的定义1.1 导数的定义函数f(x)在点x处的导数可以理解为函数在该点处的变化率。

导数表示了函数变化的速度。

导数的定义如下:\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]其中,f'(x)表示函数f(x)在点x处的导数。

1.2 导数的几何意义导数在几何上的意义可以理解为函数图像在某一点处的切线的斜率。

切线的斜率即为函数在该点处的导数。

导数也可以理解为曲线在该点处的瞬时斜率。

1.3 导数的物理意义在物理学中,导数也具有重要的物理意义。

比如,位移函数对时间的导数表示速度;速度对时间的导数表示加速度。

二、导数的计算方法2.1 使用导数的定义进行计算通过导数的定义可以计算函数在某一点处的导数。

需要注意的是,导数的计算中需要考虑极限的计算,因此需要对函数进行分析和运算。

2.2 常见函数的导数常见函数的导数计算可以通过一些基本的导数规则进行计算。

常见函数的导数如下:- 常数函数的导数为0- 幂函数的导数为x^n的导数是nx^(n-1) (n为任意实数)- 指数函数的导数为e^x的导数为e^x- 对数函数的导数为lnx的导数为1/x- 三角函数的导数为sinx的导数为cosx,cosx的导数为-sinx,tanx的导数为sec^2x2.3 复合函数的导数对于复合函数的导数,可以使用链式法则进行计算。

链式法则是导数计算中的一个重要的规则,可以应用于复合函数的导数计算。

2.4 隐函数的导数对于隐函数的导数计算,可以通过求导的方式进行计算。

在求导的过程中,需要利用隐函数的特定性质和求导的基本规则进行计算。

2.5 参数方程的导数对于参数方程描述的函数,可以通过参数消去的方法进行计算。

参数消去是求导的一种特殊方法,可以将参数方程描述的函数转化为一个常规的函数形式,从而通过基本导数规则进行计算。

三、导数的性质3.1 导数存在的条件函数在某一点处的导数存在的条件是函数在该点处可导。

高中数学导数知识点归纳的总结及例题(word文档物超所值)

高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(

函数)(x f 有1个极大值点,1个极小值点
y。

导数知识点总结及例题

导数知识点总结及例题

导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。

这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。

对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。

利用导数的定义,我们可以计算得到函数在某一点处的变化率。

1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。

例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。

这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。

1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。

也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。

二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。

例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。

2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。

我们把这个过程称为求导,求出的导数称为导函数。

导函数的值就是原函数在对应点处的导数值。

2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。

这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。

三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。

导数基本总结知识点汇总

导数基本总结知识点汇总

导数基本总结知识点汇总一、导数的定义导数的定义是微积分中最基本的概念之一。

在几何学中,导数表示函数在某一点上的切线斜率,而在物理学中,导数表示物理量的变化率。

在数学上,导数可以理解为函数在某一点上的变化率。

在数学中,如果一个函数 f(x) 在某一点 x0 处有导数,则导数的定义如下:f'(x0) = lim(Δx->0) (f(x0+Δx) - f(x0))/Δx其中 f'(x0) 表示函数 f(x) 在点 x0 处的导数,Δx 表示自变量 x 的增量。

上述定义可以简单地理解为自变量 x 在点 x0 处的微小增量Δx 对应的函数值增量f(x0+Δx) - f(x0) 与Δx 的比值。

二、求导法则求导法则是在微积分中用来求函数导数的一套方法和规则。

常见求导法则包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则、反三角函数法则、求导法则的运算规则等。

1. 常数法则:如果有常数 k,那么 f(x) = k 的导数等于 0。

即 f'(x) = 0。

2. 幂函数法则:如果有函数 f(x) = x^n,那么 f'(x) = nx^(n-1)。

3. 指数函数法则:如果有指数函数 f(x) = a^x,那么 f'(x) = a^x*ln(a)。

4. 对数函数法则:如果有对数函数 f(x) = log_a(x),那么 f'(x) = 1/(x*ln(a))。

5. 三角函数法则:常见三角函数的导数包括 sin(x) 的导数 f'(x) = cos(x),cos(x) 的导数 f'(x) = -sin(x),tan(x) 的导数 f'(x) = sec^2(x)。

6. 反三角函数法则:常见反三角函数的导数包括 arcsin(x) 的导数f'(x) = 1/(√(1-x^2)),arccos(x) 的导数 f'(x) = -1/(√(1-x^2)),arctan(x) 的导数 f'(x) = 1/(1+x^2)。

(完整版)导数知识点汇总

(完整版)导数知识点汇总

导数1.导数的几何意义:函数()y f x =在0x x =处的导数0'()f x ,就是曲线()y f x =过点0x 的切线斜率.∴过点00(,)x y 的切线方程为000'()()y y f x x x -=-0'()0f x =时,切线与x 轴 .0'()0f x >时,切线的倾斜角为 .0'()0f x <时,切线的倾斜角为 .0'()f x 不存在时,切线 .2.基本初等函数的导数公式:3.导数运算法则:[()()]''()'()f x g x f x g x ±=±[()()]''()()()'()f x g x f x g x f x g x ⋅=+2()'()()()g'()'()()f x f x g x f x x g x g x ⎡⎤-=⎢⎥⎣⎦4.复合函数求导:{[()]}''[()]'()f g x f g x g x =⋅:(sin 2)'2cos 2eg x x = 252424[(1)]'5(1)210(1)x x x x x +=+⋅=+5.导数与函数单调性、极值的关系. ① '()0()'()0()f x f x f x f x ⎧>⇒↑⎪⎨<⇒↓⎪⎩()'()0()'()0f x f x f x f x ⎧↑⇒≥⎪⎨↓⇒≤⎪⎩② 若0'()0,f x =且在0x 左边'()0f x >,右边'()0f x <,则0x 是()f x 的极大值点在0x 左边'()0f x <,右边'()0f x >,则0x 是()f x 的极小值点★ 0x 为极值点 0'()0f x =题型一:导数的几何意义【基础题】1.曲线y =在点(4,2)P 处的切线方程是2.已知3y x =在点P 处的切线斜率为3,则P 的坐标为3.已知直线10x y --=与抛物线2y ax =相切,则a =4.已知曲线ln y x x =+在点(1,1)处的切线与曲线2(2)1y ax a x =+++相切,则a =5.若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标为6.若函数()f x 的导数为'()sin f x x =-,则函数图象在点(4,(4))f 处的切线倾斜角为( ).A 90︒ .0B ︒ .C 锐角 .D 钝角【提高题】1.设点P 是曲线211ln 42y x x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是2.曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为( )1.3A 1.2B2.3C .1D3.点P 是曲线2ln y x x =-上任意一点,则P 到直线2y x =-的距离的最小值是变式:函数2()x f x e =的图象上的点到直线240x y --=的距离的最小值是题型二:导数与函数单调性、极值、最值【基础题】1.函数()ln (0)f x x x x =>的单调递增区间是2.函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =3.设2()ln f x a x bx x =++,在121,2x x ==处有极值,则a = ,b = .4.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是5.若函数x y e ax =+有大于0的极值点,则a 的取值范围是6.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,,M m 则【提高题】1.直线y a =与函数33y x x =-的图象有三个相异的交点,则a 的取值范围是2.若函数3()26f x x x k =-+在R 上只有一个零点,求常数k 的取值范围.3.已知函数()(1)ln 1,f x x x x =+-+若'2()1xf x x ax ≤++恒成立,求a 的取值范围.4.已知函数21()2,f x ax x =-若()f x 在(0,1]上是增函数,求a 的取值范围.变式:函数3y ax x =-在R 上是减函数,则a 的取值范围是5.已知函数2()ln (0),f x x ax x a =-->若函数()f x 是单调函数,求a 的取值范围.题型三:与函数性质有关1.若函数42()f x ax bx c =++满足'(1)2,f =则'(1)f -=2.已知函数3()f x x x =+对任意的[2,2],(2)()0m f mx f x ∈--+<恒成立,则x 的取值范围是3.已知对任意实数x ,有()(),()(),f x f x g x g x -=--=且0x >时,''()0,()0,f x g x >>则0x <时( )''.()0,()0A f x g x >> ''.()0,()0B f x g x ><''.()0,()0C f x g x <> ''.()0,()0D f x g x <<4.若函数()f x 对定义域R 内的任意x 都有()(2)f x f x =-,且当1x ≠时其导函数'()f x 满足(1)'()0,x f x ->若12,a <<则( )2.(log )(2)(2)a A f a f f << 2.(2)(log )(2)a B f f a f <<2.(2)(2)(log )a C f f f a << 2.(log )(2)(2)a D f a f f <<5.设(),()f x g x 分别是定义在R 上的奇函数和偶函数,当0x <时,'()()()'()0,f x g x f x g x +>且(3)0,g -=则不等式()()0f x g x <的解集为( ).(3,0)(3,)A -+∞ .(3,0)(0,3)B -.(,3)(3,)C -∞-+∞ .(,3)(0,3)D -∞-6.已知函数()y f x =是定义在R 上的奇函数,且当(,0)x ∈-∞时,不等式()'()0f x xf x +>恒成立,0.10.122112(2),(log 2)(log 2),(log )(log )44a fb fc f ππ===,则,,a b c 的大小关系是( ).Aa b c >> .B c b a >> .C b a c >> .D a c b >>题型四:图象题 1.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有 个极小值点.2.设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个个直角坐标系中,不可能正确的是( )3.设曲线21y x =+在其上任一点(,)x y 处的切线的斜率为()g x ,则()cos y g x x =的部分图象可以为( )4.已知函数'()y xf x =的图象如右图所示,则()y f x =的图象大致是( )5.已知()y f x =在(0,1)内的一段图象是图象所示的一段圆弧,若1201,x x <<<则( )1212()().f x f x A x x < 1212()().f x f x B x x > 1212()().f x f x C x x = .D 不能确定 6.若函数2()f x x bx c =++的图象顶点在第四象限,则函数'()f x 的图象是( )链接高考:1.(2015,12)设函数'()f x 是奇函数()f x 的导函数,(1)0,f -=当0x >时,'()()0,xf x f x -<则使得()0f x >成立的x 的取值范围是( ).(,1)(0,1)A -∞- .(1,0)(1,)B -+∞.(,1)(1,0)C -∞-- .(0,1)(1,)D +∞2.(2015,21)设函数2().mx f x e x mx =+-(1)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(2)若对于任意12,[1,1],x x ∈-都有12|()()|1,f x f x e -≤-求m 的取值范围.3.(2015,21)已知函数31(),()ln .4f x x axg x x =++=- (1)当a 为何值时,x 轴为曲线()y f x =的切线;(2)用min{,}m n 表示,m n 中的最小值,设函数()min{(),()}(0),h x f x g x x =>讨论()h x 零点的个数.4.(2014,7)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2,y x =则a =() .0A .1B .2C .3D5.(2014,12)设函数(),xf x m π=若存在()f x 的极值点0x 满足22200[()],x f x m +<则m 的取值范围是 ( ).(,6)(6,)A -∞-+∞ .(,4)(4,)B -∞-+∞.(,2)(2,)C -∞-+∞ .(,1)(1,)D -∞-+∞6.(2014,21)已知函数()2.x x f x e ex -=-- (1)讨论()f x 的单调性.(2)设()(2)4()g x f x bf x =-,当0x >时,()0,g x >求b 的最大值,(3)已知1.4142 1.4143,<<估计ln 2的近似值(精确到0.001)7.(2014,11)已知函数32()31f x ax x =-+,若()f x 存在唯一零点0,x 且00x >,则a 的取值范围是8.(2014,21)设函数1()ln ,x xbe f x ae x x -=+曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(1)求,.a b(2)证明:() 1.f x >9.(2013,21)设函数2(),()().xf x x ax bg x e cx d =++=+若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线4 2.y x =+(1)求,,,a b c d 的值.(2)若2x ≥-时,()(),f x kg x ≤求k 的取值范围.。

导数的相关知识点总结

导数的相关知识点总结

导数的相关知识点总结一、导数的定义导数的定义是微积分中最基本的概念之一。

设函数y=f(x),如果x在某一点a处有微小的增量Δx,对应的函数值的增量为Δy=f(a+Δx)-f(a),那么当Δx趋于0时,所得到的极限值称为函数f(x)在点a处的导数,记作f'(a),即:f'(a) = lim(Δx→0) (f(a+Δx)-f(a))/Δx导数的定义直观地表示了函数在某一点的斜率,也就是函数在该点处的变化率。

导数是描述函数变化的重要工具,它能够告诉我们函数在某一点的增长速度或减少速度。

二、导数的性质导数具有一些重要的性质,这些性质对于理解导数的概念和计算导数都非常重要。

以下是导数的一些基本性质:1. 和的导数等于导数的和:(f(x)+g(x))' = f'(x) + g'(x)2. 差的导数等于导数的差:(f(x)-g(x))' = f'(x) - g'(x)3. 常数的导数等于0:(kf(x))' = kf'(x) (k为常数)4. 常数函数的导数等于0:(c)' = 0 (c为常数)5. 乘积的导数公式:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)6. 商的导数公式:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2 (g(x)≠0)这些性质是求导过程中的重要规律,对于求解具体的导数问题非常有帮助。

三、求导规则求导是微积分中的一个重要内容,求导规则是在特定的函数类型下,用来求导的一些通用的方法和技巧。

下面列举一些常用的求导规则:1. 基本函数的导数:- 常数函数的导数为0:(c)' = 0 (c为常数)- 幂函数的导数:(x^n)' = nx^(n-1) (n为常数)- 指数函数的导数:(a^x)' = a^xlna (a为常数且a>0)- 对数函数的导数:(loga x)' = 1/(xlna) (a为常数且a>0)- 三角函数的导数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x2. 复合函数的导数:- 复合函数的求导需要使用链式法则:(f(g(x)))' = f'(g(x))g'(x)3. 反函数的导数:- 反函数的导数与原函数的导数互为倒数:(f^(-1)(x))' = 1/(f'(f^(-1)(x)))4. 参数方程的导数:- 对于参数方程x=x(t),y=y(t),则dy/dx = (dy/dt)/(dx/dt)这些求导规则是在实际计算中经常使用的,熟练掌握这些规则对于解决导数相关的问题非常有帮助。

导数知识点笔记总结高中

导数知识点笔记总结高中

导数知识点笔记总结高中一、导数的定义导数是函数的一种特殊的变化率,描述了函数在某一点附近的局部变化情况。

导数可以通过极限的概念来定义,如果函数f(x)在点x0处可导,则其导数f'(x0)表示函数在该点处的斜率,即切线的斜率。

导数可以用来描述函数在某一点的变化趋势,其绝对值表示了函数曲线在该点的斜率大小,正负号表示了函数曲线的增减性。

二、导数的计算1. 用极限定义导数:对于函数f(x),其在点x0处的导数可以通过以下极限计算得到:\[ f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h)-f(x_0)}{h} \]如果该极限存在,则函数在点x0处可导,其导数即为该极限的值。

2. 使用导数的性质:导数具有一些常用的性质,如常数的导数为0,幂函数的导数为其指数乘以原函数的导数等,可以利用这些性质来简化导数的计算。

3. 使用导数的基本公式:常见函数的导数有一些基本的求导公式,例如:- f(x) = k,导数为0;- f(x) = x^n,导数为n*x^(n-1);- f(x) = e^x,导数仍为e^x;- f(x) = sin(x),导数为cos(x);- f(x) = cos(x),导数为-sin(x);- f(x) = tan(x),导数为sec^2(x)。

通过这些基本公式,可以快速求得常见函数的导数。

三、导数的应用导数在数学中有着广泛的应用,常见的应用包括:1. 描述曲线的斜率:导数可以描述函数曲线在某一点的斜率,通过导数可以了解函数在各个点的斜率,进而描绘出整个曲线的形状。

2. 确定函数的增减性:当导数大于0时,函数增加;当导数小于0时,函数减小;当导数等于0时,函数可能达到极值。

通过导数可以判断函数在某一区间上的增减性。

3. 寻找极值点:通过导数可以确定函数的极值点,即在导数等于0或不存在的点处,函数可能取得极大值或极小值。

4. 切线方程与切线问题:导数可以用来求解函数曲线在某一点的切线方程,从而描述曲线在该点的局部性质。

导数知识点总结大全

导数知识点总结大全

导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。

导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。

导数也可以表示为函数的微分形式,即dy = f'(x)dx。

1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。

对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。

这意味着导数可以描述函数在某一点的变化速率和方向。

1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。

对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。

类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。

因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。

1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。

它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。

二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。

如果函数在某一点上导数存在,那么称该函数在该点上可导。

对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。

但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。

2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。

导数的概念及运算知识点讲解(含解析)

导数的概念及运算知识点讲解(含解析)

导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。

(完整版)导数知识点与基础习题(含答案),推荐文档

(完整版)导数知识点与基础习题(含答案),推荐文档

A.6 B.18 C.54 D.81
4、曲线 y 1 在点 (1 , 2) 处的切线斜率为_________,切线方程为 x2
__________________.
5、已知函数 f (x) ax2 2 ,若 f (1) 1 ,则 a __________.
6、计算:
(1) f (x) 5x 7 ,求 f (3) ;(2) f (x) 2 x2 2 ,求 f ( 1) ;
x) x
f
(x0 )
2. 导数的几何意义: 当点 Pn 趋近于 P 时,函数 y f (x) 在 x x0 处的导数就是切线 PT
的斜率 k,即
k
lim
x0
f
(xn ) f (x0 ) xn x0
f
(x0 )
3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导
9、已知 y 1 sin 2x sin x ,那么 y 是( ) 2
A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数
1
10、曲线 y e2 x 在点 (4, e2 ) 处的切线与坐标轴所围三角形的面积为( )
A. 9 e2 B. 4e2 2
4、(2009 全国卷Ⅱ理)曲线 y x 在点 (1,1) 处的切线方程为____________________. 2x 1
5、曲线 y x3 在点 (1,1) 处的切线与 x 轴、直线 x 2 所围成的三角形面积为__________.
6、求下列函数的导数:
(1)
y
(1)x 3
log3
x
;(2)
1
x3
B.

高中数学导数知识点归纳总结计划材料及例题

高中数学导数知识点归纳总结计划材料及例题

实用文档导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:〔1〕了解导数概念的某些实际背景.〔2〕理解导数的几何意义.〔3〕掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.〔4〕理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.〔5〕会利用导数求某些简单实际问题的最大值和最小值.§14.导数知识要点导数的概念导数的几何意义、物理意义常见函数的导数导数导数的运算导数的运算法那么函数的单调性导数的应用函数的极值函数的最值1 .导数〔导函数的简称〕的定义:设x0是函数yf(x)定义域的一点,如果自变量x在x0处有增量x,那么函数值y也引起相应的增量y f(x0x)f(x0);比值y f(x0x)f(x0)称为函数y f(x)在点x0到x0x之间的平均变化率;如果极限x xlim y limf(x0x)f(x0)存在,那么称函数yf(x)在点x0处可导,并把这个极限叫做x xx0x0y f(x)在x0处的导数,记作f'''(x)=limy f(x0x)f(x0)(x0)或y|xx,即fxlimx.0x0x0注:①x是增量,我们也称为“改变量〞,因为x可正,可负,但不为零.②以知函数y f(x)定义域为A,yf'(x)的定义域为B,那么A与B关系为A B.2.函数y f(x)在点x0处连续与点x0处可导的关系:⑴函数y f(x)在点x0处连续是y f(x)在点x0处可导的必要不充分条件.可以证明,如果y f(x)在点x0处可导,那么yf(x)点x0处连续.事实上,令x x0x,那么xx0相当于x0.文案大全于是limf (x)limf(x 0x)lim[f(xx 0) f(x 0)f(x 0)]x x 0x 0x0lim[ f(x 0x) f(x 0) x f(x 0)]lim f(x 0x)f(x 0)limlim f(x 0)f '(x 0)0f(x 0)f(x 0).x 0xx 0xx0 x0⑵如果y f(x)点x 0处连续,那么y f(x)在点x 0处可导,是不成立的.例:f(x)|x|在点x 00处连续,但在点 x 00处不可导,因为y| x|,当 x >0 时,xxy 1;当 x <0 时, y 1,故lim y不存在. x x x 0 x注:①可导的奇函数函数其导函数为偶函数 .②可导的偶函数函数其导函数为奇函数 .导数的几何意义:函数yf(x)在点x 0 处的导数的几何意义就是曲线yf(x)在点(x 0,f(x))处的切线的斜率,也就是说,曲线yf(x)在点P(x 0,f(x))处的切线的斜率是f '(x 0),切线方程为yy 0 f '(x)(xx 0).4.求导数的四那么运算法那么:(uv)' u 'v 'yf 1(x)f 2(x)... f n (x)y 'f 1 '(x)f 2'(x)...f n '(x)(uv)'vu 'v 'u(cv)'c 'vcv ' cv '〔c 为常数〕'vu'v 'uu0)vv2(v注:①u,v 必须是可导函数 .②假设两个函数可导,那么它们和、差、积、商必可导; 5.复合函数的求导法那么: f x '( (x)) f '(u) '(x)或y 'x y 'u u 'x 复合函数的求导法那么可推广到多个中间变量的情形 . 函数单调性:⑴函数单调性的判定方法:设函数yf(x)在某个区间内可导,如果f '(x)>0,那么y f(x)为增函数;如果f '(x)<0,那么yf(x)为减函数.⑵常数的判定方法;如果函数y f(x)在区间I 内恒有f '(x)=0,那么yf(x)为常数.注:①f(x) 0是f 〔x 〕递增的充分条件,但不是必要条件,如 y 2x 3在(,)上并不是都有f(x)0 ,有一个点例外即x=0时f 〔x 〕=0,同样f(x)0 是f 〔x 〕递减的充分非必要条件.②一般地,如果f 〔x 〕在某区间内有限个点处为零,在其余各点均为正〔或负〕,那么f 〔x 〕在该区间上仍旧是单调增加〔或单调减少〕的.7.极值的判别方法:〔极值是在 x 0附近所有的点,都有f(x)<f(x 0),那么f(x 0)是函数f(x)文案大全的极大值,极小值同理〕当函数f(x)在点x0处连续时,①如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是极小值.也就是说x0是极值点的充分条件是x0点两侧导数异号,而不是f'(x)=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小〔函数在某一点附近的点不同〕.注①:假设点x0是可导函数f(x)的极值点,那么f'(x)=0.但反过来不一定成立.对于可导函数,其一点x0是极值点的必要条件是假设函数在该点可导,那么导数值为零.例如:函数y f(x)x3,x0使f'(x)=0,但x0不是极值点.②例如:函数y f(x)|x|,在点x0处不可导,但点x0是函数的极小值点.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.几种常见的函数导数:I.C'0〔C为常数〕(sinx)'cosx(arcsinx)'1x21(x n)'nx n1〔n R〕(cosx)'sinx(arccosx)'1x21II.(lnx)'1(log a x)'1log a e'1 (arctanx)21x x x(e x)'e x(a x)'a x lna(arccotx)'11x2 III.求导的常见方法:①常用结论:(ln|x|)'1.②形如y(x a1)(x a2)...(x(x a1)(x a2)...(xa n)xa n)或yb1)(x两(x b2)...(xb n)边同取自然对数,可转化求代数和形式.③无理函数或形如y x x这类函数,如y x x取自然对数之后可变形为lny xlnx,对两边求导可得y'lnx x1y'ylnx y y'x x lnxx x.y x导数中的切线问题例题1:切点,求曲线的切线方程文案大全曲线y x33x21在点(1,1)处的切线方程为〔〕例题2:斜率,求曲线的切线方程与直线2x y40的平行的抛物线y2的切线方程是〔〕x注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y 2x b,代入y x2,得x22x b 0,又因为0,得b1,应选D.例题3:过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.求过曲线y x32x上的点(1,1)的切线方程.例题4:过曲线外一点,求切线方程求过点(2,0)且与曲线y1相切的直线方程.x练习题:函数y x33x,过点A(016),作曲线y f(x)的切线,求此切线方程.看看几个高考题文案大全1.〔2021全国卷Ⅱ〕曲线yx在点1,1处的切线方程为2x12.〔2021江西卷〕设函数f(x)g(x)x2,曲线y g(x)在点(1,g(1))处的切线方程为y2x1,那么曲线y f(x)在点(1,f(1))处切线的斜率为3.〔2021宁夏海南卷〕曲线yxe x2x1在点〔0,1〕处的切线方程为。

(完整版)高中导数经典知识点及例题讲解

(完整版)高中导数经典知识点及例题讲解

§ 1.1 变化率与导数 1.1.1 变化率问题自学引导1.通过实例分析,了解平均变化率的实际意义.2.会求给定函数在某个区间上的平均变化率. 课前热身1.函数f (x )在区间[x 1,x 2]上的平均变化率为ΔyΔx=________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则ΔyΔx=________,表示函数y =f (x )从x 0到x 的平均变化率.1.f (x 2)-f (x 1)x 2-x 1答 案2.f (x 0+Δx )-f (x 0)Δx名师讲解1.如何理解Δx ,Δy 的含义Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1).2.求平均变化率的步骤求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1.(3)得平均变化率Δy Δx =f x 2-f x 1x 2-x 1.对平均变化率的认识函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在[0,π2]上的平均变化率为sin π2-sin0π2-0=2π.在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.典例剖析题型一求函数的平均变化率例1 一物体做直线运动,其路程与时间t的关系是S=3t-t2.(1)求此物体的初速度;(2)求t=0到t=1的平均速度.分析t=0时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1)-S(0),再求时间改变量Δt=1-0=1.求商ΔSΔt就可以得到平均速度.解(1)由于v=St=3t-t2t=3-t.∴当t=0时,v0=3,即为初速度.(2)ΔS=S(1)-S(0)=3×1-12-0=2 Δt=1-0=1∴v=ΔSΔt=21=2.∴从t=0到t=1的平均速度为2.误区警示本题1不要认为t=0时,S=0.所以初速度是零.变式训练1 已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点(-1+Δx,-2+Δy),则ΔyΔx=( )A.3 B.3Δx-(Δx)2 C.3-(Δx)2D.3-Δx 解析Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-(-2)=-(Δx)2+3Δx.∴ΔyΔx=-Δx2+3ΔxΔx=-Δx+3答案D题型二平均变化率的快慢比较例2 求正弦函数y=sin x在0到π6之间及π3到π2之间的平均变化率.并比较大小.分析用平均变化率的定义求出两个区间上的平均变化率,再比较大小.解设y=sin x在0到π6之间的变化率为k1,则k 1=sinπ6-sin0π6-0=3π.y =sin x 在π3到π2之间的平均变化率为k 2,则k 2=sin π2-sin π3π2-π3=1-32π6=32-3π.∵k 1-k 2=3π-32-3π=33-1π>0,∴k 1>k 2.答:函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为32-3π,且3π>32-3π.变式训练2 试比较余弦函数y =cos x 在0到π3之间和π3到π2之间的平均变化率的大小.解 设函数y =cos x 在0到π3之间的平均变化率是k 1,则k 1=cos π3-cos0π3-0=-32π.函数y =cos x 在π3到π2之间的平均变化率是k 2,则k 2=cosπ2-cos π3π2-π3=-3π.∵k 1-k 2=-32π-(-3π)=32π>0,∴k 1>k 2.∴函数y =cos x 在0到π3之间的平均变化率大于在π3到π2之间的平均变化率.题型三 平均变化率的应用例3 已知一物体的运动方程为s (t )=t 2+2t +3,求物体在t =1到t =1+Δt 这段时间内的平均速度.分析 由物体运动方程―→写出位移变化量Δs ―→ΔsΔt解 物体在t =1到t =1+Δt 这段时间内的位移增量 Δs =s (1+Δt )-s (1)=[(1+Δt )2+2(1+Δt )+3]-(12+2×1+3) =(Δt )2+4Δt .物体在t =1到t =1+Δt 这段时间内的平均速度为Δs Δt =(Δt )2+4ΔtΔt=4+Δt .变式训练3 一质点作匀速直线运动,其位移s 与时间t 的关系为s (t )=t 2+1,该质点在[2,2+Δt ](Δt >0)上的平均速度不大于5,求Δt 的取值范围.解 质点在[2,2+Δt ]上的平均速度为v -=s 2+Δt -s 2Δt=[2+Δt 2+1]-22+1Δt=4Δt +Δt2Δt=4+Δt .又v -≤5,∴4+Δt ≤5. ∴Δt ≤1,又Δt >0,∴Δt 的取值范围为(0,1]. § 1.1 函数的单调性与极值 1.1.2 导数的概念自学引导1.经历由平均变化率过渡到瞬时变化率的过程,了解导数概念建立的一些实际背景.2.了解瞬时变化率的含义,知道瞬时变化率就是导数.3.掌握函数f (x )在某一点x 0处的导数定义,并且会用导数的定义求一些简单函数在某一点x 0处的导数.课前热身1.瞬时速度.设物体的运动方程为S =S (t ),如果一个物体在时刻t 0时位于S (t 0),在时刻t 0+Δt 这段时间内,物体的位置增量是ΔS =S (t 0+Δt )-S (t 0).那么位置增量ΔS 与时间增量Δt 的比,就是这段时间内物体的________,即v =S t 0+Δt -S t 0Δt.当这段时间很短,即Δt 很小时,这个平均速度就接近时刻t 0的速度.Δt 越小,v 就越接近于时刻t 0的速度,当Δt →0时,这个平均速度的极限v =lim Δt →0ΔS Δt =lim Δt →0S t 0+Δt -S t 0Δt就是物体在时刻t 0的速度即为________. 2.导数的概念.设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近0时,比值Δy Δx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,这个常数A 就是函数f (x )在点x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0.用符号语言表达为f ′(x 0)=lim Δx →0Δy Δx=________1.平均速度 瞬时速度 答 案2.lim Δx →0f (x 0+Δx )-f (x 0)Δx名师讲解1.求瞬时速度的步骤(1)求位移增量ΔS =S (t +Δt )-S (t );(2)求平均速度v =ΔS Δt;(3)求极限limΔt→0ΔSΔt=limΔt→0S t +Δt-S tΔt;(4)若极限存在,则瞬时速度v=limΔt→0ΔS Δt.2.导数还可以如下定义一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0f x+Δx-f x0Δx=limΔx→0ΔyΔx.我们称它为函数y=f(x)在x=x0处的导数.记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f x0Δx.3.对导数概念的理解(1)“导数”是从现实生活中大量类似问题里,撇开一些量的具体意义,单纯地抓住它们数量上的共性而提取出来的一个概念,所以我们应很自然的理解这个概念的提出与其实际意义.(2)某点导数即为函数在这点的变化率.某点导数概念包含着两层含义:①limΔx→0ΔyΔx存在,则称f(x)在x=x0处可导并且导数即为极限值;②limΔx→0ΔyΔx不存在,则称f(x)在x=x0处不可导.(3)Δx称为自变量x的增量,Δx可取正值也可取负值,但不可以为0.(4)令x=x0+Δx,得Δx=x-x0,于是f′(x)=limx→x0f x-f xx-x与定义中的f′(x0)=limΔx→0f x+Δx-f x0Δx意义相同.4.求函数y=f(x)在点x0处的导数的步骤(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)求平均变化率:ΔyΔx=f x+Δx-f x0Δx;(3)取极限,得导数:f′(x0)=limΔx→0Δy Δx.典例剖析题型一物体运动的瞬时速度例1 以初速度v0(v0>0)竖直上抛的物体,t秒时高度为s(t)=v0t-12gt2,求物体在时刻t0处的瞬时速度.分析先求出Δs,再用定义求ΔsΔt,当Δt→0时的极限值.解∵Δs=v0(t0+Δt)-12g(t+Δt)2-(v0t0-12gt2)=(v0-gt0)Δt-12g(Δt)2,∴ΔsΔt=v0-gt0-12g·Δt.∴当Δt→0时,ΔsΔt→v0-gt0.故物体在时刻t0处的瞬时速度为v0-gt0.规律技巧瞬时速度v是平均速度v在Δt→0时的极限.因此,v=limΔt→0v=limΔt→0ΔsΔt.变式训练1 一作直线运动的物体,其位移s与时间t的关系是s=5t-t2,求此物体在t=2时的瞬时速度。

导数知识梳理

导数知识梳理

导数知识梳理(一) 基本知识1、 导数定义2、 导数的几何意义已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .3、 导数运算及运算法则求y=xx sin 2的导数; 4、 单调区间、极值、最值的步骤与方法(1)函数x e x x f )3()(-=的单调递增区间是 ( )A. )2,(-∞B.(0,3)C.(1,4)D. ),2(+∞(2)已知某质点的运动方程为32(),s t t bt ct d =+++下图是其运动轨迹的一部分,若1,42t ⎡⎤∈⎢⎥⎣⎦时,2()3s t d <恒成立,求d 的取值范围. 5、定积分 函数1,(10)()cos ,(0)2x x f x x x π+-≤<⎧⎪=⎨≤≤⎪⎩的图象与x 轴所围成的封闭图形的面积为 A.32 B. 1 C. 2 D.12(二) 典型例题导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例1.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.例2. 已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ;(Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点. 例3.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-.(I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.(三) 习题训练1、设()323()1312f x x a x ax =-+++. ⑴若函数()f x 在区间()1,4内单调递减,求a 的取值范围; ⑵若函数()f x x a =在处取得极小值是1,求a 的值,并说明在区间()1,4内函数()f x 的单调性2、已知函数()ln a f x x x=+. ⑴当0a <时,求函数()f x 的单调区间;⑵若函数()f x 在[]1,e 上的最小值是3,2求a 的值. 3、已知函数2()1f x x =-与函数()ln (0)g x a x a =≠. ⑴若()f x ,()g x 的图象在点()1,0处有公共的切线,求实数a 的值;⑵设()()2()F x f x g x =-,求函数()F x 的极值.4、已知函数()ln f x x a x =+,其中a 为常数,且1a -≤.⑴当1a =-时,求()f x 在2[e ,e ](e 2.71828=)上的值域;⑵若()e 1f x -≤对任意2[e ,e ]x ∈恒成立,求实数a 的取值范围5、已知函数1()ln f x a x x=-,a ∈R . ⑴若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值;⑵求函数()f x 的单调区间;⑶当1a =,且2x ≥时,证明:(1)25f x x --≤.6、已知函数()1e x a f x x ⎛⎫=+ ⎪⎝⎭,其中0a >. ⑴求函数()f x 的零点;⑵讨论()y f x =在区间(,0)-∞上的单调性;⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上,()f x 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.(四) 函数选择训练1、设a=0.32,b=20.3,c=log 20.3则它们的大小关系为( )A.c<a<bB.a<c<bC.a<b<cD.b<c<a2、如果一个点是一个指数函数和一个对数函数的图像的交点,那么称这个点为"好点".下列四个点)2,2(),21,21(),2,1(),1,1(4321P P P P 中,"好点"有( )个A. 1B.2C.3D.43、已知函数[]2,1,log 2)(2∈+=x x x f ,则函数)()(2x f x f y +=的值域为( ) A.[]5,4 B.⎥⎦⎤⎢⎣⎡211,4 C.⎥⎦⎤⎢⎣⎡213,4 D.[]7,4 4、下面的说法正确的是( )A.若)(0'x f 不存在,则曲线)(x f y =在点()()00,x f x 处没有切线.B.若曲线)(x f y =在点()()00,x f x 处有切线,则)(0'x f 必存在.C.若)(0'x f 不存在,则曲线)(x f y =在点()()00,x f x 处的切线斜率不存在.D.若曲线)(x f y =在点()()00,x f x 处没有切线,则)(0'x f 有可能存在.5、在函数x x y 4613-=的图像上,其切线的倾斜角小于4π的点中,横坐标为整数的点有( )A.7B.5C.4D.26、若函数f(x)的反函数为f )(1x -,则函数f(x-1)与f )1(1--x 的图象可能是 ( )7、方程322670(0,2)x x -+=在内根的个数为( )A 、0B 、-1C 、1D 、38、定义在R 上的函数的图像关于点(-34,0)成中心对称且对任意的实数x 都有f (x )=-f (x+32)且f (-1)=1,f (0)=-2,则f (1)+f (2)+……+f (2010)=( ) A .0 B .-2 C .-1 D .-49、(理)设f (x )=|2-x 2|,若0<a <b 且f (a )=f (b ),则a +b 的取值范围是( )A .(0,2)B .(0,2)C .(0,4)D .(0,22)10、(理)如果函数f (x )= 13x 3+12ax 2+284a -x 在x=1处的切线恰好在此处穿过函数图像则a=( )A .3B .-1C .-2D .0【答案与解析】1、A 本题考查中介法和单调性法比较大小,log 20.3<0,而其他两个都大于零,至于a 和b ,构造中介0.30.3或22,然后分别利用指数函数和幂函数的单调性比较,例如20.3>0.30.3>0.322、B 设指数函数和对数函数分别为)1,0(log ),1,0(≠>=≠>=b b x y a a a y b x .若为"好点",则)1,1(1P 在x a y =上,得1=a 与1,0≠>a a 矛盾;)2,1(2P 显然不在x y b log =;)21,21(3P 在x y a y b x log ,==上时41,41==b a ,易得)2,2(4P 也为"好点" 3、B 由x x x x f x f y 22222log 34log 2log 2)()(+=+++=+=,注意到为使得)()(2x f x f y +=有意义必有212≤≤x 得21≤≤x ,从而2114≤≤y . 4、C (理)曲线在()()00,x f x 处有导数,则切线一定存在,但有切线,切线的斜率可能不存在,即导数不存在.5、D 由x x y 4613-=得4212'-=x y ,切线的倾斜角小于4π,则142102<-≤x ,所以3,1082±=<≤x x ,即点⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-215,3,215,3两点的切线倾斜角小于4π. 6、C 函数 f(x-1)是由f (x )向右平移一个单位得到,f )1(1--x 由f 1()x - 向右平移一个单位得到,而f (x )和f 1()x -关于y=x 对称,从而f(x-1)与f )1(1--x 的对称轴也是由原对称轴向右平移一个单位得到即y=x-1 7、C (理)令32/2()267 ()612f x x x f x x x =-+=-,则=)2(6-x x由//()020 ()002f x x x f x x 得或由得,又(0)70 (2)10f f ==-,8、A 由f (x )=-f (x+32)得f (x )=f (x +3)即周期为3,由图像关于点(-34,0)成中心对称得f (x )+f (-x-32)=0,从而-f (x+32)=- f (-x-32),所以f (x )= f (-x )。

高中数学导数知识点总结(最新)

高中数学导数知识点总结(最新)

高中数学导数知识点总结一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3。

函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

★高中数学导数知识点一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。

在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。

二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。

牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。

牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

导数全部知识点总结

导数全部知识点总结

导数全部知识点总结一、导数的定义导数的定义是函数在某一点的变化率,通常用极限来表示。

设函数y=f(x),在点x处的导数定义为:f'(x) = lim(Δx→0) (f(x + Δx) - f(x))/Δx其中Δx表示自变量x的增量,f(x + Δx) - f(x)表示函数在x处自变量增量Δx以内的函数值的增量,Δx→0表示Δx趋向于0。

如果这个极限存在,则称函数在点x处可导,导数f'(x)的值即为该点的斜率或变化率。

二、导数的性质1. 可导与连续:如果一个函数在某一点可导,那么该点一定是连续的,但连续的函数不一定可导。

2. 导数的几何意义:导数可以表示函数图像在某一点的切线斜率,切线斜率为正表示函数在该点上升,切线斜率为负表示函数在该点下降,切线斜率为零表示函数在该点取得极值。

3. 导数的代数意义:导数可以表示函数的增减性,当导数大于0时,函数递增;当导数小于0时,函数递减。

4. 导数与导函数:函数的导数也被称为导函数,记为f'(x),导函数描述了原函数的变化规律。

三、求导法则1. 常数函数的导数:常数函数的导数为0,即f'(x) = 0。

2. 幂函数的导数:(1)对于函数f(x) = x^n,n为常数,其导数为f'(x) = nx^(n-1)。

(2)对于函数f(x) = a^x,a为常数且a>0,其导数为f'(x) = a^x * ln(a)。

3. 指数函数的导数:指数函数的导数为其自身的函数值乘以导数的常数。

4. 对数函数的导数:对数函数的导数为1/x * ln(a),其中ln(a)为常数。

5. 三角函数的导数:三角函数的导数为其导数的常数乘以三角函数的导数。

6. 反三角函数的导数:反三角函数的导数与三角函数的导数有对应关系。

四、高阶导数如果一个函数的导数存在,那么我们可以继续对导数求导,这样可以得到导数的导数,依此类推,得到的导数称为高阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数基础知识点汇总及经典习题解答更多资料关注高中学习资
料库
概率知识回顾:
(1)什么是对立事件? (2) 什么是互斥事件? (3)互斥事件和对立事件有什么关系?如何区分它们?
(4)什么是相互独立事件?相互独立事件之间的关系如何用数学语言去描述?
例1.(2010四川文)(17)(本小题满分12分)
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一
瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为1
6
.甲、乙、丙三位
同学每人购买了一瓶该饮料。

(Ⅰ)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率.
导数基础: 导数基础:
1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;
比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;
如果极限x x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000存在,则称函数)(x f y =在点0x 处可导,并
把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即
)(0'
x f =x x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000.
②以知函数)(x f y =定义域为A ,)('
x f y =的定义域为B ,则A 与B 关系为
B A ⊇.
2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:
函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件.
常用性质:
①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数.
3. 导数的几何意义:
函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的
切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,
切线方程为
).
)((0'0x x x f y y -=-
4. 求导数的四则运算法则:
''')(v u v u ±=±)
(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒
'
'''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数)
)0(2'''
≠-=
⎪⎭⎫
⎝⎛v v u v vu v u
②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
I.0'=C (C 为常数)
x
x cos )(sin
'=
2'11)(arcsin x x -=
1
')(-=n n nx x (R n ∈) x
x sin )(cos '
-=
2'11)(arccos x x --
=
II. x x 1)(ln '
= e
x x a a log 1)(log '=
11)(arctan 2'+=x x x
x
e
e ='
)(
a
a a x
x ln )('=
11)cot (2'+-
=x x arc
5. 复合函数的求导法则:)()())(('
''x u f x f x ϕϕ=或x u x u y y '''⋅=
6. 函数单调性:
⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >
0,则)(x f y =为增函数;如果)('
x f <0,则)(x f y =为减函数
注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x=0时f (x ) = 0,同样0
)( x f 是f (x )
7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则
)(0x f 是函数)(x f 的极大值,极小值同理)
当函数)(x f 在点0x 处连续时, ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. ①如果在0
x 附近的左侧
)
('x f >0,右侧
)
('x f <0,那么)(0x f 是极大值;
例1. 8.函数3
13y x x =+- 有 ( )
A.极小值-1,极大值1
B. 极小值-2,极大值3
C.极小值-1,极大值3
D. 极小值-2,极大值2
6.函数
344
+-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0
6.函数
x x
y ln =
的最大值为( )
A .1
-e
B .e
C .2
e D .310
2.函数x
e x x
f -⋅=)(的一个单调递增区间是( )
(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0
3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,
()0()0f x g x ''>>,,则0x <时( )
A .()0()0f x g x ''>>,
B .()0()0f x g x ''><,
C .()0()0f x g x ''<>,
D .()0()0f x g x ''<<,
4.若函数
b bx x x f 33)(3
+-=在()1,0内有极小值,则( ) (A ) 10<<b (B ) 1<b (C ) 0>b (D )
21
<
b
5.若曲线4
y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )
A .430x y --=
B .450x y +-=
C .430x y -+=
D .430x y ++=
6.曲线x y e =在点
2(2)e ,处的切线与坐标轴所围三角形的面积为( )
A.294e
B.22e
C.2
e
D.2
2e
2.若'
0()3
f x =-,则000
()(3)
lim
h f x h f x h h →+--=
( )
A .3-
B .6-
C .9-
D .12-
1.(2005全国卷Ⅰ文)函数
93)(2
3-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) (A )2 (B )3 (C )4 (D )5
2.(2008海南、宁夏文)设()ln f x x x =,若0'()2
f x =,则0x =( )
A. 2
e B. e C. ln 2
2
D. ln 2
3.(2005广东)函数
13)(2
3+-=x x x f 是减函数的区间为( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2)
4.(2008安徽文)设函数1
()21(0),f x x x x =+
-< 则()f x ( )
A .有最大值
B .有最小值
C .是增函数
D .是减
函数
5.(2007福建文、理)已知对任意实数x 有f(-x)=-f(x),g(-x)=g(x),且x>0时,f’(x)>0,g’(x)>0,
则x<0时( )
A f’(x)>0,g’(x)>0
B f’(x)>0,g’(x)<0
C f’(x)<0,g’(x)>0
D f’(x)<0,g’(x)<0
6.(2008全国Ⅱ卷文)设曲线2
ax y =在点(1,a )处的切线与直线0
62=--y x 平行,则=a ( )
A .1
B .1
2
C .12-
D .1-。

相关文档
最新文档