模数转换器ADC

合集下载

DeltaSigma模数转换器(ADC_DelSig)

DeltaSigma模数转换器(ADC_DelSig)

DeltaSigma模数转换器(ADC_DelSig)简介DeltaSigma模数转换器,又称为ADC_DelSig(Analog-to-Digital Converter Delta-Sigma),是一种高精度的模数转换器。

它采用了DeltaSigma调制技术,通过高速采样和数字滤波来实现高分辨率和低噪声的模数转换。

工作原理DeltaSigma模数转换器的工作原理基于DeltaSigma调制技术。

其核心思想是将输入信号与一个高频的比较器相比较,并将比较器的输出结果经过滤波器处理后转换成数字信号。

具体来说,DeltaSigma模数转换器包括一个模数转换器和一个数字滤波器。

1.比较器:比较器将输入信号与参考电压进行比较,并输出一个高频PWM(脉宽调制)信号。

比较器的输出频率远高于所需的转换速率,通常在MHz级别。

2.数字滤波器:PWM信号经过数字滤波器,滤波器根据PWM信号的占空比来判断输入信号的大小。

滤波器输出的数字信号经过采样并进行数字编码,就得到了转换后的数字输出。

优点和应用DeltaSigma模数转换器具有很多优点,主要包括以下几个方面:1.高分辨率:DeltaSigma模数转换器具有非常高的分辨率,通常可以达到16位以上,甚至更高。

这使得它在需要高精度数据转换的应用中非常有用,如音频处理、医疗设备和测量仪器等。

2.低噪声:DeltaSigma模数转换器通过在输入端引入噪声抑制电路和高速数字滤波器,可以有效降低系统的噪声水平。

这使得它在对信号质量要求较高的应用中具有优势,如音频信号处理和高速数据采集等。

3.较低的成本:DeltaSigma模数转换器通常采用CMOS工艺制造,因此成本相对较低。

这使得它在大规模集成电路中应用广泛,并且具有较高的性价比。

DeltaSigma模数转换器广泛应用于各个领域,包括但不限于以下几个方面:•音频信号处理:DeltaSigma模数转换器在音频设备中被广泛应用,如音频采样、音频编码和数字音频处理等。

ADC芯片介绍

ADC芯片介绍

ADC芯片介绍ADC,即模数转换器(Analog-to-Digital Converter),是一种将模拟信号转换成数字信号的电子设备。

它是数字系统中的重要组成部分,广泛应用于通信系统、仪器仪表、工业自动化、医疗设备等领域。

本文将介绍ADC芯片的基本原理、分类、特点以及应用领域等相关内容。

一、ADC芯片的基本原理1.采样:采样是指将模拟信号在一定时间间隔内取样,即在一段时间内获取一系列的模拟信号值。

采样过程中需要考虑采样频率和抗混叠滤波等问题。

2.量化:量化是指将采样到的模拟信号值转换为具有离散数值的数字信号。

量化过程中需要确定量化位数和量化级数等参数,并利用ADC芯片内部的比较器和计数器等电路实现。

通过采样和量化两个过程,ADC芯片可以将模拟信号转换为数字信号,进而被数字系统所处理。

二、ADC芯片的分类根据其工作原理和结构,ADC芯片可以分为几种不同的类型。

1.逐次逼近型ADC:逐次逼近型ADC芯片是一种常见的ADC芯片类型,它通过逐次逼近的方式进行模拟信号到数字信号的转换。

逐次逼近型ADC芯片具有较高的分辨率和较低的功耗,适用于对精度要求较高的应用领域。

2.并行型ADC:并行型ADC芯片是一种将模拟信号同时转换为多个比特的数字信号的ADC芯片类型。

它具有高速和高精度的特点,但功耗较大。

并行型ADC芯片适用于对采样速度要求较高的应用场景,如通信系统中的信号处理和无线电频谱分析等。

3. Sigma-Delta型ADC:Sigma-Delta型ADC芯片主要应用于对信噪比要求较高的应用场景。

它通过过采样和累积量化的方式实现高精度的模数转换。

Sigma-Delta型ADC芯片适用于音频处理、音频编解码等领域。

三、ADC芯片的特点1.分辨率高:ADC芯片的分辨率是指其能够表示的电压值的最小差值。

分辨率越高,ADC芯片对模拟信号的转换精度越高。

2.采样速度快:ADC芯片的采样速度是指其每秒钟能够进行的采样次数。

adc模数转换器原理

adc模数转换器原理

adc模数转换器原理
ADC模数转换器是一种将模拟信号转换为数字信号的电路。

它将连续的模拟信号转换为离散的数字信号,通过采样和量化的过程来实现。

首先,采样是指在连续的模拟信号上,以一定的时间间隔取样,得到一系列离散的采样值。

这样做的目的是将连续的模拟信号转换为离散的信号。

然后,量化是指对采样得到的离散信号进行编码,将其转换为数字形式。

在量化的过程中,将信号分为若干个区间,每个区间都用一个数字表示。

这个数字通常是二进制形式,所以转换器输出的是一系列二进制代码。

采样和量化过程之后,转换器会产生一系列二进制代码。

这些二进制代码通常被存储在数字寄存器或者RAM中,以便处理
和传输。

在ADC的实现中有多种不同的技术,例如逐次逼近型ADC、闪存型ADC和积分型ADC等。

每种技术都有其优势和适用
场景,选择合适的ADC技术取决于应用需求和性能要求。

总结来说,ADC模数转换器通过采样和量化的过程,将连续
的模拟信号转换为离散的数字信号,使得模拟信号能够被数字系统处理和传输。

ADC的原理与应用

ADC的原理与应用

ADC的原理与应用什么是ADC?ADC全称是Analog to Digital Converter,即模数转换器,它的作用是将连续的模拟信号转换为离散的数字信号。

ADC的工作原理ADC的工作原理主要包括采样、量化和编码三个步骤。

采样(Sampling)采样是指将连续的模拟信号在一定时间间隔内进行一系列离散点的采集。

采样频率的高低会影响到信号的精度和还原度。

量化(Quantization)量化是指将采样得到的离散信号进行幅度的近似值化,即将信号从连续的模拟值转换为离散的数字代码。

量化的精度取决于ADC的比特数,比特数越高,量化精度越高,数据表示范围越大。

编码(Encoding)编码是指将量化后的离散信号转换为二进制代码,以便于数字系统进行处理和存储。

常用的编码方式有二进制码、格雷码等。

ADC的应用领域ADC广泛应用于各个领域,包括通信、嵌入式系统、音频设备等。

通信领域在通信领域,ADC的主要作用是将模拟的语音信号转换为数字信号进行传输和处理。

例如,在手机通话中,声音被采集、量化和编码后,通过数字信号进行传输,接收方再将数字信号转换为模拟信号进行播放。

嵌入式系统在嵌入式系统中,ADC通常用于采集各种外部传感器的模拟信号。

比如,温度传感器、光照传感器、加速度传感器等,这些传感器输出的信号一般是模拟信号,需要经过ADC转换为数字信号,然后由嵌入式系统进行处理。

音频设备在音频设备中,ADC主要用于音频信号的采集和转换。

例如,麦克风输出的模拟信号经过ADC转换为数字信号后,可以通过数字信号处理器进行音频效果处理、录制、回放等操作。

ADC的选型注意事项在选择ADC时,需要考虑以下几个因素:•采样率:根据采集信号的频率要求选择合适的采样率,防止信号失真。

•分辨率:选用足够的比特数来满足应用的精度要求。

•引脚和接口:考虑ADC的引脚数量和接口类型,确保和系统的兼容性。

•功耗:根据使用环境和要求,选择合适的功耗范围。

模数转换器(ADC)原理及分类

模数转换器(ADC)原理及分类

模数转换器(ADC)原理及分类解析在仪器仪表系统中,常常需要将检测到的连续变化的模拟量如:温度、压力、流量、速度、光强等转变成离散的数字量,才能输入到计算机中进行处理。

这些模拟量经过传感器转变成电信号(一般为电压信号),经过放大器放大后,就需要经过一定的处理变成数字量。

实现模拟量到数字量转变的设备通常称为模数转换器(ADC),简称A/D。

通常情况下,A/D转换一般要经过取样、保持、量化及编码4个过程。

取样是将随时间连续变化的模拟量转换为时间离散的模拟量。

取样过程示意图如图11.8.1所示。

图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号vO(t)为输入信号v1,而在(Ts-τ)期间,传输门关闭,输出信号vO(t)=0。

电路中各信号波形如图(b)所示。

图11.8.1 取样电路结构(a)图11.8.1 取样电路中的信号波形(b)通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。

但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。

取样定理:设取样信号S(t)的频率为fs,输入模拟信号v1(t)的最高频率分量的频率为fimax,则fs与fimax必须满足下面的关系fs ≥2fimax,工程上一般取fs>(3~5)fimax。

将取样电路每次取得的模拟信号转换为数字信号都需要一定时间,为了给后续的量化编码过程提供一个稳定值,每次取得的模拟信号必须通过保持电路保持一段时间。

取样与保持过程往往是通过取样-保持电路同时完成的。

取样-保持电路的原理图及输出波形如图11.8.2所示。

图11.8.2 取样-保持电路原理图图11.8.2 取样-保持电路波形图电路由输入放大器A1、输出放大器A2、保持电容CH和开关驱动电路组成。

电路中要求A1具有很高的输入阻抗,以减少对输入信号源的影响。

为使保持阶段CH上所存电荷不易泄放,A2也应具有较高输入阻抗,A2还应具有低的输出阻抗,这样可以提高电路的带负载能力。

adc模数转换器原理

adc模数转换器原理

adc模数转换器原理模数转换器(ADC)是一种非常重要的电子电路,它可以将模拟信号转换为数字信号,以便电路中的微处理器可以对其进行处理。

随着科技的发展,ADC的性能也在不断提高,可以提供更多功能和性能,以满足不断变化的需求。

本文将重点介绍ADC的工作原理,以及其在现有技术中的应用。

ADC的基本原理是将模拟信号(如模拟电压或电流)转换成数字信号,然后通过串行数据总线将其传送到微处理器其他部分。

ADC的类型主要分为抽样-持续转换(SAR)和按位逐次抽样(S&S)两种,其中SAR类型ADC更加常用。

SAR类型ADC的工作原理主要是将电路中的输入信号反复地采样,并使用内部电压参考或外部电压参考进行比较,以确定最终输出值。

采样率和参考电压是控制转换精度的关键因素,采样率越高,参考电压越精准,最终转换的精度就越高。

此外,随着科技的发展,ADC的性能也在不断提高。

近年来,ADC 技术可以实现多种性能,如低功耗、高动态范围、高采样率和高精度等功能。

通过不断的技术进步,ADC已经可以用于传感器、医疗影像、音频应用、声纳应用、无线通信和军事应用等多个领域。

最后,ADC技术也取得了很大的发展,能够为上述应用提供更优质的服务。

例如,最新的ADC技术可以实现低功耗、高转换速率和极高的精度,以满足当今快速变化的应用需求。

综上所述,ADC模数转换器是一种关键电路,它可以将模拟信号转换为数字信号,以便电路中的微处理器可以对其进行处理。

它的原理是采样-持续转换,依靠内部或外部参考电压进行比较,以确定最终输出值,并可用于多种应用场合,比如传感器、音频应用等。

由于技术的不断进步,ADC可以实现低功耗、高转换速率和极高的精度,以满足现有应用的需求。

ADC模数转换器是什么

ADC模数转换器是什么

ADC 模数转换器是什么
ADC 模数转换器是什幺
ADC,Analog-to-DigitalConverter 的缩写,指模/数转换器或者模数转换器。

是指将连续变化的模拟信号转换为离散的数字信号的器件。

真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。

模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。

与之相对应的DAC,Digital-to-AnalogConverter,它是ADC 模数转换的逆向过程。

ADC 最早用于对无线信号向数字信号转换。

如电视信号,长短播电台发接收等。

ADC 模数转换器构成及特点。

adc模数转换器原理

adc模数转换器原理

adc模数转换器原理模数转换器(ADC)是一种电子设备,它可以将模拟信号转换成数字信号。

它是一种把模拟信号转换成数字系数的技术,它主要应用在测量、仪器仪表和计算机等领域。

ADC可以将模拟信号(电压或电流)转换成数字信号。

ADC由一组电路组成,它可以将一个模拟量转换成一组数字。

ADC的研究历史可以追溯到机器数字技术的早期,直到有可能的研究者开始提出不同的模拟/数字转换器(ADC)设计概念。

现代ADC 可以追溯到1907年,当时广为人知的英国物理学家Sir Oliver Lodge 提出了一种模拟/数字转换器,它可以将模拟信号转换成数字信号。

常见的ADC通常包括模拟前端、采样持续系统和数字控制环节。

模拟前端过滤有效信号,以帮助维持模拟输入的频率,而采样持续系统使用所谓的“咆哮器”(Ramp Generator)来测量模拟输入的平均电平,而数字控制环节则使用电路来得出最终的数字序列。

此外,一些采用复杂技术的ADC还可能包括多种数字前端,以便在低速率下获得更高精度的测量结果。

ADC技术的发展也使ADC能够以较高的速度工作,这种技术就是多维ADC。

多维ADC的好处是:它可以在一个时钟周期内进行多路信号采样,并且在测量中可以获得更高的精度.多维ADC对应用非常有用,因为它可以提供更高的精度和更快的采样延迟。

除了多维ADC之外,还有另一种类型的ADC,即“混合信号ADC”。

该技术可以将模拟部分转换成数字信号,从而实现特定类型的信号处理,混合信号ADC通常由两个独立的子系统组成:数字信号处理子系统和ADC子系统。

数字信号处理子系统可以实现信号的初始处理,而ADC子系统则可以将模拟信号转换成数字信号,以便进行更精确的处理。

总的来说,ADC模数转换器可以满足各种应用场合的需求,它在测量、仪器仪表和计算机等领域均有广泛的应用。

此外,ADC技术的不断进步也使得它具有更高的精度和速度,能够满足多种不同的应用需求。

模数转换器ADC

模数转换器ADC

第9页
2021/12/8
通道选择寄存器 P_ADC_MUX_Ctrl
ADC多通道控制是通过对P_ADC_MUX_Ctrl (读/写) (702BH)单元编程实现的,具体功能如表6.18所示。
b15 Ready_MUX(读)[1]
0 1 - - - - - - - -
表6.18 通道选择寄存器各位的功能
[P_IOB_DATA]=r1
R1=0x0001;
//选择通道LINE_IN1
[P_ADC_MUX_Ctrl]=R1
R1 = 0x0001;
//设置P_ADC_Ctrl单元允许A/D转换
[P_ADC_Ctrl] = R1
NOP
//等待
NOP
NOP
r2=0x0000
//r2的初值为0x0000
第20页
D9
D8 D7 D6 D5 D4 D3 D2 D1 D0
第12页
2021/12/8
ADC直流电气特性
ADC直流电气特性如表6.19所示。 表6.19 ADC直流电气特性表
直流电气参数 分辨率 有效位数 信噪比 积分非线性 差分非线性 转换率 电源电流@Vdd=3 V 功耗@Vdd=3 V
符号 RESO ENOB SNR INL DNL FCONV IADC PADC
第17页
2021/12/8
[P_IOB_DATA]=r1
R1=0x0001
//选择通道LINE_IN1
[P_ADC_MUX_Ctrl]=R1
R1 =0x0001
//设置P_ADC_Ctrl单元允许A/D转换
[P_ADC_Ctrl]=R1
NOP
//等待
NOP
NOP

模数转换器

模数转换器

A/D转换器模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。

通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。

由于数字信号本身不具有实际意义,仅仅表示一个相对大小。

故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。

而输出的数字量则表示输入信号相对于参考信号的大小。

模数转换器最重要的参数是转换的精度,通常用输出的数字信号的位数的多少表示。

转换器能够准确输出的数字信号的位数越多,表示转换器能够分辨输入信号的能力越强,转换器的性能也就越好。

A/D转换一般要经过采样、保持、量化及编码4个过程。

在实际电路中,有些过程是合并进行的,如采样和保持,量化和编码在转换过程中是同时实现的。

一般来说,AD比DA贵,尤其是高速的AD,因为在某些特殊场合,如导弹的摄像头部分要求有高速的转换能力。

一般那样AD要上千美元。

还有通过AD的并联可以提高AD的转换效率,多个AD同时处理数据,能满足处理器的数字信号需求了。

模数转换过程包括量化和编码。

量化是将模拟信号量程分成许多离散量级,并确定输入信号所属的量级。

编码是对每一量级分配唯一的数字码,并确定与输入信号相对应的代码。

最普通的码制是二进制,它有2n个量级(n为位数),可依次逐个编号。

模数转换的方法很多,从转换原理来分可分为直接法和间接法两大类。

直接法是直接将电压转换成数字量。

它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡(见图)。

控制逻辑能实现对分搜索的控制,其比较方法如同天平称重。

先使二进位制数的最高位Dn-1=1,经数模转换后得到一个整个量程一半的模拟电压VS,与输入电压Vin 相比较,若V in>VS,则保留这一位;若V in<V in,则Dn-1=0。

然后使下一位Dn-2=1,与上一次的结果一起经数模转换后与V in相比较,重复这一过程,直到使D0=1,再与V in相比较,由V in>VS还是V in<V来决定是否保留这一位。

ADC参数解释和关键指标

ADC参数解释和关键指标

ADC参数解释和关键指标ADC是模数转换器(Analog-to-Digital Converter)的简称,它将模拟信号转换为数字信号。

在数字化时代,模数转换是非常重要的过程之一,因为数字信号在计算机和电子设备中更易于处理和传输。

本文将解释ADC参数的含义和关键指标。

首先,我们需要了解几个基本概念。

1. 分辨率(Resolution):分辨率指的是ADC可以提供的离散量化信号的级别数。

分辨率越高,ADC可以提供更精确的数字表示。

常用的分辨率单位是位(bit),表示ADC的输出值是二进制的。

例如,一个12位ADC可以提供2^12=4096个不同的量化级别。

2. 采样率(Sampling Rate):采样率是指每秒钟采样的次数,通常用赫兹(Hz)表示。

采样率决定了ADC能够捕捉到的模拟信号的频率范围。

根据奈奎斯特定理,采样率应至少是信号最高频率的两倍。

接下来,我们将讨论一些关键的ADC参数和指标。

1. 量程(Full Scale Range):量程是指ADC能够测量的输入信号的最大范围。

它通常使用伏特(V)单位表示。

例如,一个0-5V的ADC将在0V到5V的范围内进行测量。

2. 精度(Accuracy):精度是指ADC输出值与实际输入值之间的误差。

它通常使用百分比或最大输出误差(Maximum Output Error)表示。

例如,一个12位精度的ADC可能有1%的误差,即最大输出误差为0.01*量程。

3. 信噪比(Signal-to-Noise Ratio,SNR):信噪比是指有效信号与噪声信号之间的比值。

它通常以分贝(dB)表示,dB = 20 * log10(信号/噪声)。

信噪比越高,ADC可以提供更精确的数字表示。

4. 使能时间(Conversion Time):使能时间是指ADC完成一次转换所需的时间。

它通常以微秒(μs)为单位表示。

较短的转换时间意味着ADC可以更快地采集信号。

5. 非线性误差(Non-linearity Error):非线性误差表示ADC输出与输入之间的非线性关系。

数模转换器基本原理及常见结构

数模转换器基本原理及常见结构
§8.3 模数转换器(ADC)
ADC作用:将模拟量转换为数字量。 主要应用:(低速)数字万用表,电子秤等; (中速)工业控制,实验设备等;(高速)数字通 信、导弹测远等;(超高速)数字音频、视频信 号变换、气象数据分析处理。
ADC输入是模拟量,输出是数字量; ADC输出的数字量可视为输入电压(电 流)与基准电压(电流)相比所占的比例。
110
6V
7V≤V优in<点8V :转换0快000(000 仅一个时1钟11 周期)。7V
不足:n较大时,比较器、分压电阻数量 太大,难以保证其准确性及一致性。
二、逐次逼近式ADC
Vf Vi
Next
DAC
D0
比较器
Dn-1
_ Vp
比较
逐次逼近 寄存器
SAR
时钟
输出 寄存器
VR D0
Dn-1
开始前清零!
有了ma、b及实测输出x,用y=max+b即可 得到消除了增益和失调误差标准输出。
三、高分辨率ADC与微处理器的接口
当ADC位数大于CPU数据宽度的接口方 法(通常ADC提供两次读出数据控制)。
数据线 为三态
数据线 非三态
§8.4.4 ADC的应用电路
温度
V0
压力
V1
位移
V2
速度
V3
液位
V4
功率
最小数量单位称量化单位(1△=1LSB)。
编码:将量化结果用数字代码表示出来。 常见有自然二进制编码、二进制补码编码。
因取样值为输入信号某些时刻的瞬时值, 它们不可能都正好是量化单位的整数倍,即在
量化时不可避免地会引入量化误差(ε)。
量化误差:有限位ADC产生的输出数据的 等效模拟值与实际输入模拟量之间的差值。

ADC和DAC有什么区别?

ADC和DAC有什么区别?

ADC(模数转换器)和DAC(数模转换器)是数字信号处理中常见的两种转换器,它们的主要区别如下:
1. 功能:ADC将连续的模拟信号转换为对应的数字表示,将模拟信号的电压、电流等连续变化转换为离散的数字编码。

而DAC则将数字信号转换为相应的模拟信号,将离散的数字编码转换为相应的模拟电压或电流。

2. 方向:ADC是模拟到数字的转换器,将模拟信号转换为数字数据;而DAC是数字到模拟的转换器,将数字数据转换为模拟信号。

3. 输入/输出:ADC的输入是模拟信号,通常是电压或电流等连续变化的信号;而输出是对应的数字编码。

DAC的输入是数字数据,通常是离散的二进制编码;而输出是相应的模拟信号,如电压或电流。

4. 应用领域:ADC广泛应用于从模拟传感器(如温度传感器、光传感器等)获取数据、音频信号处理、数字通信等领域。

DAC主要用于音频信号合成、数字音频处理、图像生成等领域。

5. 分辨率:ADC和DAC的性能指标包括分辨率,即数值表示的精确度。

ADC的分辨率表示数字输出的位数,通常以比特(bit)表示;而DAC的分辨率表示数字输入的位数,也通常以比特表示。

总的来说,ADC和DAC是互为逆过程的转换器,一个将模拟信号转换为数字信号,另一个将数字信号转换为模拟信号。

它们在信号处理和通信领域中发挥着重要的作用,并且经常一起应用于将模拟信号转换为数字形式、经过数字处理后再转换回模拟信号的过程中。

adc模数转换过程

adc模数转换过程

adc模数转换过程
ADC(Analog-to-Digital Converter,模数转换器)是一种将模拟信号转换为数字信号的电子元件。

其工作原理是通过采样、保持、量化和编码等步骤,将连续的模拟信号转换为离散的数字信号。

具体来说,ADC的转换过程可以分为以下四个步骤:
1.抗混叠滤波:为了防止高频信号在采样过程中产生混叠,需要在模拟信
号输入到ADC之前进行抗混叠滤波,以确保输入信号的频率在采样频
率的两倍以下。

2.采样保持:采样是将连续的模拟信号转换为离散的过程。

采样后,模拟
信号的幅度和相位可能会发生变化,因此需要在采样后使用采样保持电
路来保持模拟信号的幅度和相位不变。

3.量化:量化是将连续的模拟信号转换为离散的数字信号的过程。

量化的
基本原理是将模拟信号的幅度范围划分为若干个离散的等距区间,然后
将模拟信号映射到这些区间中的某一个。

4.编码:编码是将量化后的数字信号转换为适合存储和传输的格式的过
程。

常见的编码方式有二进制编码、BCD编码和Gray编码等。

以上就是ADC模数转换的基本过程。

在实际应用中,不同类型的ADC可能会采用不同的技术和方法来实现这些步骤。

模数转换器(ADC)的基本原理【转】

模数转换器(ADC)的基本原理【转】

模数转换器(ADC)的基本原理【转】模数转换器(ADC)的基本原理模拟信号转换为数字信号,⼀般分为四个步骤进⾏,即取样、保持、量化和编码。

前两个步骤在取样-保持电路中完成,后两步骤则在ADC中完成。

常⽤的ADC有积分型、逐次逼近型、并⾏⽐较型/串并⾏型、Σ -Δ调制型、电容阵列逐次⽐较型及压频变换型。

下⾯简要介绍常⽤的⼏种类型的基本原理及特点:1 积分型(如TLC7135) 。

积分型ADC⼯作原理是将输⼊电压转换成时间或频率,然后由定时器/计数器获得数字值。

其优点是⽤简单电路就能获得⾼分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。

初期的单⽚ADC⼤多采⽤积分型,现在逐次⽐较型已逐步成为主流。

双积分是⼀种常⽤的AD 转换技术,具有精度⾼,抗⼲扰能⼒强等优点。

但⾼精度的双积分AD芯⽚,价格较贵,增加了单⽚机系统的成本。

2 逐次逼近型(如TLC0831) 。

逐次逼近型AD由⼀个⽐较器和DA转换器通过逐次⽐较逻辑构成,从MSB开始,顺序地对每⼀位将输⼊电压与内置DA转换器输出进⾏⽐较,经n次⽐较⽽输出数字值。

其电路规模属于中等。

其优点是速度较⾼、功耗低,在低分辨率( < 12位)时价格便宜,但⾼精度( > 12位)时价格很⾼。

3 并⾏⽐较型/串并⾏⽐较型(如TLC5510) 。

并⾏⽐较型AD采⽤多个⽐较器,仅作⼀次⽐较⽽实⾏转换,⼜称FLash型。

由于转换速率极⾼, n位的转换需要2n - 1个⽐较器,因此电路规模也极⼤,价格也⾼,只适⽤于视频AD 转换器等速度特别⾼的领域。

串并⾏⽐较型AD结构上介于并⾏型和逐次⽐较型之间,最典型的是由2个n /2位的并⾏型AD转换器配合DA转换器组成,⽤两次⽐较实⾏转换,所以称为Halfflash型。

4 Σ-Δ调制型(如AD7701) 。

Σ- Δ型ADC以很低的采样分辨率( 1位)和很⾼的采样速率将模拟信号数字化,通过使⽤过采样、噪声整形和数字滤波等⽅法增加有效分辨率,然后对ADC输出进⾏采样抽取处理以降低有效采样速率。

数模转换器与模数转换器基本原理

数模转换器与模数转换器基本原理

数模转换器与模数转换器基本原理数模转换器(DAC)和模数转换器(ADC)是现代电子设备中常见的模拟信号处理电路,它们用于将数字信号转换为模拟信号或将模拟信号转换为数字信号。

本文将详细介绍数模转换器和模数转换器的基本原理。

一、数模转换器(DAC)基本原理数模转换器将数字信号转换为模拟信号,通常用于将数字数据转换为模拟信号输出,如音频、视频等。

数模转换器的基本原理如下:1. 数字信号表示:数字信号由一系列离散的数值表示,通常用二进制表示。

比如,一个八位的二进制数可以表示0-255之间的数字。

2. 数字量化:数字量化是将连续的模拟信号离散化,将其转换为一系列离散的数值。

这可以通过将模拟信号分成若干个均匀的间隔来实现。

例如,将模拟信号分为256个等间隔的量化等级。

3. 数字到模拟转换:数字到模拟转换的过程是将离散的数字信号转换为连续的模拟信号。

这可以通过使用数字信号的离散值对应的模拟信号的电压值来实现。

比如,将一个八位的二进制数转换为0-5V之间的电压。

4. 输出滤波:为了减少转换过程中的噪声和失真,通常需要对转换器的输出信号进行滤波。

滤波器可以通过消除高频噪声、平滑信号等方式来实现,以获得更好的模拟输出信号。

二、模数转换器(ADC)基本原理模数转换器将模拟信号转换为数字信号,通常用于模拟信号的数字化处理,如传感器信号采集、音频信号编码等。

模数转换器的基本原理如下:1. 模拟信号采样:模拟信号是连续变化的信号,模数转换器需要将其离散化。

采样是指周期性地测量模拟信号的幅度。

采样频率越高,采样精度越高,对原始模拟信号的还原能力越强。

2. 量化和编码:量化是将采样后的模拟信号转换为离散的数字量,包括离散幅度和离散时间。

编码是将量化后的信号用二进制表示。

常用的编码方式有二进制编码、格雷码等。

3. 数字信号处理:模数转换器的输出是数字信号,可以通过数字信号处理进行后续的处理和分析。

例如,可以对采集到的传感器数据进行滤波、数学运算等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模数转换器ADC
摘要
模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。

通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。

由于数字信号本身不具有实际意义,仅仅表示一个相对大小。

故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。

而输出的数字量则表示输入信号相对于参考信号的大小。

那么我们应该如何选择模数转换器的类型则是最为重要的,以达到功能性和经济性的良好结合,以下便是我针对数模转换器选择的介绍。

模数转换器的选择
积分型
积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。

逐次比较型
逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。

其电路规模属于中等。

并行比较型/串并行比较型
并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。

由于转换速率极高,n位的转换需要2n-1个比较器。

串并行比较型
Half flash(半快速)型:是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换。

三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。

Σ-Δ调制型
Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。

原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。

压频变换型
压频变换型是通过间接转换方式实现模数转换的。

将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。

优点缺点分析:
我们选型的时候一般需要考虑以下一些参数:
确定A/D转换器的精度:精度是反映转换器的实际输出接近理想输出的精确程度的物理量。

分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。

分辩率又称精度,通常以数字信号的位数来表示。

量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

在转化过程中,由于存在量化误差和系统误差,精度会有所损失。

其中量化误差对于精度的影响是可计算的,它主要决定于A/D转换器件的位数。

一般把8位以下的A/D转换器称为低分辨率ADC,9~12位称为中分辨率ADC,13位以上为高分辨率。

A/D器件的位数越高,分辨率越高,量化误差越小,能达到的精度越高。

选择A/D转换器的转换速率
转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

常用单位是ksps 和Msps,表示每秒采样千/百万次。

选择合适的量程
模拟信号的动态范围较大,有时还有可能出现负电压。

在选择时,待测信号的动态范围最好在A/D器件的量程范围内。

选择A/D器件的输出接口
A/D器件接口的种类很多,有并行总线接口的,有SPI、I2C、1-Wire等串行总线接口的。

它们在原理和精度上相同,但是控制方法和接口电路会有很大差异。

选择A/D器件的通道数和封装
这与系统有关,通道数要满足整个采集系统的需要。

封装则决定PCB布板的时候的大小,而且在高速应用的时候也影响连线的分布参数。

选择A/D器件温度范围
这仅仅与一些苛刻的环境有关,注意每个AD有固定的应用的温度范围。

常用的选型表:
进行数位选择时的注意事项
常用的数模转换器的精度多由其需求的精度来进行确定,这就要求我们在运用一定的算法的前提下,要总和对魔术转换器内的传感器、转换器、控制机构、信号预处理电路和输出电路的精度进行分析与控制。

一般情况下,我们在考虑两个主要因素,即静态精度和动态平滑性。

其中,静态精度是模拟信号在进行数字化转化时所产生的的误差主体。

因此,我们在考虑其静态精度时,要尤其注意输入信号的量化误差随着信号转化而在输出信号时产生的误差。

现在使用的大多数测量装置的精度一般不小于0.1%,一般取0.05%-0.1%之间,与其相对应的二进制数(包含号位)为11-12位,一次来提高静态精度。

如果其量程很大时,我们可以采用双精度的转换方案以满足量程的需求。

当在进行动态平滑性考虑时,可以用软件程度来模拟其数学模型的动态曲线,然后通过不断的改变模拟的位数来对动态曲线进行调整,然后选取所需平滑程度的动态曲线,并确定出模拟该动态曲线所使用的位数。

一般来说分辨率越高,平滑性越好。

数位在13位以上的具有较高的分辨率,其平滑性较好;在9-12位间的位中等分辨率,其平滑性一般;在8位一下的位低分辨率,其平滑性较差,要适当选择其位数,避免选取的过低以影响精度,也不要选取的过高以增加成本。

通过以上对选择模数转换器的技术指标和注意事项的介绍,使得我对其基础知识有了初步的了解,可以帮助我在更深的学习中打下坚实的基础。

相关文档
最新文档