反比例函数知识点总结

合集下载

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。

1.y随着x的增加而减小,或随着x的减小而增加。

2.当x=0时,函数y无定义。

3.曲线y=k/x在第一象限中,以坐标轴为渐近线。

二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。

第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。

三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。

2.反比例函数的图像关于y轴对称。

3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。

4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。

六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。

2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。

3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。

4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。

总结:反比例函数是一类常见的函数关系,具有重要的应用价值。

对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。

同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。

在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。

反比例函数知识点集锦

反比例函数知识点集锦

反比例函数知识点集锦一、反比例函数的概念1.反比例函数的概念 一般地,函数k y x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数k y x=(k 是常数,k ≠0)中x ,y 的取值范围 反比例函数k y x =(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴. (2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数k y x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数k y x =的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于。

反比例函数知识点总结

反比例函数知识点总结

反比例函数的定义:
(1)判定一个函数为反比例函数的条件:
①所给等式是形如y=k
x或y=kx-1或xy=k的等式;
②比例系数k是常数,且k≠0.
(2)y是x的反比例函数⇔函数解析式为y=k
x或y=kx-1或xy=k (k为常数,k≠0).
求反比例函数的表达式,就是确定反比例函数表达式
y =k
x(k≠0)中常数k的值,它一般需经历:“设→代→求→还原”这四步.
即:(1)设:设出反比例函数表达式y=k
x(k≠0);
(2)代:将所给的数据代入函数表达式;
(3)求:求出k的值;
(4)还原:写出反比例函数的表达式.
要点分析:由于反比例函数的表达式中只有一个待定系数k,因此求反比例函数的表达式只需一组对应值或一个条件即可
反比例函数图象
图象的画法:
(1)反比例函数的图象是双曲线;
(2)画反比例函数的图象要经过“列表、描点、连线”这三个步骤.
对称性:
双曲线既是一个轴对称图形又是一个中心对称图形.
对称轴有两条,分别是直线y=x与直线y=-x;
对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.
反比例函数的图象性质
反比例函数中k的几何性质:
过双曲线y=k
x(k≠0) 上任一点向两坐标轴作垂线所得的矩形面积等于|k|;
过双曲线y=k
x(k≠0) 上任一点向一坐标轴作垂线且与原点连线所得的三角形面积等于
2
1
|k|.。

反比例函数知识点汇总

反比例函数知识点汇总

反比例函数知识点汇总1.定义与图像特征:反比例函数的定义为y=k/x,在此函数中,x不等于0,k为常数。

反比例函数的图像特点是:经过第一、二象限两点,以y轴和x轴为渐进线,图像在x轴的正半轴和y轴的正半轴上都不会出现,图像呈现出一种双曲线的形状。

2.反比例函数的基本性质:(a)定义域:x≠0,即x不能为0。

(b)值域:排除0,即y不能为0。

当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。

(c)对称中心:该函数关于原点(0,0)对称。

(d)渐进线:图像与x轴和y轴都有渐进线,即当x趋近于无穷大时,y趋近于0;当y趋近于无穷大时,x趋近于0。

(e)单调性:反比例函数在定义域内是单调递减的。

(f)异号性:当x与y异号时,k为负数;当x与y同号时,k为正数。

(g)零点:当x与y相等时,即x=y≠0。

3.确定反比例函数的常数k:y1=k/x1和y2=k/x2通过消去k,可以得到:y1*y2=k因此,可以通过已知点的y值的乘积来确定k的值。

4.反比例函数的应用:(a)正比例与反比例的混合问题:当一个问题与正比例和反比例函数有关时,可以通过组合两种函数来解决问题。

例如,当一个物体的质量与加速度成反比例关系,而力与加速度成正比例关系时,可以通过设置两个函数来解决问题。

(b)流速与管道宽度:根据波的传播速度,流速与管道宽度成反比例关系。

当管道宽度较小时,流速较大;当管道宽度较大时,流速较小。

(c)投资与收益率:投资的利润与投资金额成反比例关系。

当投资金额较小时,相对的利润率较大;当投资金额较大时,相对的利润率较小。

(d)电阻与电流:电阻与电流成反比例关系,即当电阻较大时,电流较小;当电阻较小时,电流较大。

总结起来,反比例函数是一种特殊的函数关系,其图像呈现出一种双曲线的形状。

反比例函数具有一些基本性质,如定义域、值域、对称中心和渐进线等。

确定反比例函数的常数k可以通过已知点进行求解。

反比例函数在实际生活中有很多应用,特别是与强度、速度和功率等相关的问题。

反比例函数知识点归纳

反比例函数知识点归纳

反比例函数知识点归纳定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x 是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

函数y=k/x 称为反比例函数,其中k≠0,其中x是自变量,1.当k>0时,图象分别坐落于第一、三象限,同一个象限内,y随x的减小而增大;当k<0时,图象分别坐落于二、四象限,同一个象限内,y随x的减小而减小。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

3.x的值域范围就是:x≠0;y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x无法为0,y也无法为0,所以反比例函数的图象不可能将与x轴平行,也不可能将与y轴平行。

但随着x无穷减小或是无穷增加,函数值无穷收敛于0,故图像无穷吻合于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

(k为常数,k≠0)的形式,那么表示y就是x的反比例函数。

其中,x是自变量,y是函数。

由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补足表明:1.反比例函数的解析式又可以译成: (k就是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的值域就是一切非零实数。

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的值域范围就是不等同于0的一切实数。

反比例函数的图像为双曲线。

由于反比例函数属奇函数,存有f(-x)=-f(x),图像关于原点等距。

反比例函数最全知识点

反比例函数最全知识点

反比例函数最全知识点反比例函数是一种特殊的函数形式,它表示了一种两个变量之间的相互依赖关系。

在反比例函数中,当一个变量增大时,另一个变量会相应地减小,反之亦然。

本文将介绍反比例函数的定义、图像特征、性质、图像变换、实际应用以及解决反比例函数问题的方法等知识点。

一、反比例函数的定义反比例函数可以表示为:y=k/x(k≠0),其中y表示因变量(通常是函数的输出值),x表示自变量(通常是函数的输入值),k表示常数。

该定义中的k称为反比例函数的常数项,它决定了反比例函数的性质,也决定了函数图像的形状。

二、反比例函数的图像特征1.零点:当x=0时,由于分母为0,函数无定义。

因此,反比例函数没有定义在x=0的点,这个点称为函数的零点。

2.渐近线:反比例函数有两条渐近线,分别是x轴和y轴。

当x趋近于无穷大或无穷小时,y趋近于0;当y趋近于无穷大或无穷小时,x趋近于0。

3.反比例函数的图像是一个双曲线,由于分母不能为0,因此函数的图像始终存在。

当x取值较小时,y的取值较大;当x取值较大时,y的取值较小。

图像的形状与常数项k相关,k越大,图像越接近于x轴和y 轴。

三、反比例函数的性质1.定义域:反比例函数的定义域为除去零点以外的实数集合。

2.值域:反比例函数的值域为除去0以外的实数集合。

3.奇偶性:反比例函数是个奇函数,即满足f(-x)=-f(x)。

4.单调性:反比例函数在定义域上是单调递减的。

5.对称轴:反比例函数的对称轴为y=x,即函数图像关于对称轴对称。

四、反比例函数的图像变换对反比例函数进行图像变换可以通过调整常数项k的值来实现。

具体变换如下:1.平移:当k保持不变时,反比例函数的图像向上平移或向下平移。

若向上平移b个单位,则为y=k/(x+b);若向下平移b个单位,则为y=k/(x-b)。

2.拉伸:当k保持不变时,反比例函数的图像可以进行纵向拉伸或纵向压缩。

若纵向拉伸为a倍,则为y=(k/a)/x;若纵向压缩为a倍,则为y=(a*k)/x。

反比例函数常用知识点总结

反比例函数常用知识点总结

反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。

这种函数的图像是一个双曲线,具有对称轴。

二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。

2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。

3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。

4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。

5. 反比例函数的对称性反比例函数的图像关于原点对称。

6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。

当x→0时,y→±∞。

三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。

2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。

3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。

当k为负数时,反比例函数的图像在第二和第四象限。

四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。

2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。

3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。

五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。

2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。

3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。

4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。

六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xky =(0k ≠),②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠);⑸函数xk y =(0k ≠)与y kx =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像与画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置与函数值的增减情况,如下表:反比例函数xky =(0k ≠)k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结一、反比例函数定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。

二、图象特征1. 反比例函数的图象是一组双曲线。

2. 当 k > 0 时,双曲线的两支分别位于第一象限和第三象限。

3. 当 k < 0 时,双曲线的两支分别位于第二象限和第四象限。

4. 双曲线的对称轴是 y 轴。

三、性质1. 反比例函数不是定义在全体实数上的函数,其定义域为 (-∞, 0) ∪ (0, +∞)。

2. 反比例函数的值域为全体实数 R。

3. 反比例函数是奇函数,具有对称性,其对称中心为原点 (0, 0)。

4. 当 x 的值增大时,y 的值减小;当 x 的值减小时,y 的值增大。

5. 反比例函数没有渐近线,但当 x 趋向于 0 时,y 趋向于无穷大或负无穷大。

四、运算法则1. 反比例函数的加法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 + y2 = (k1x2 + k2x1) / (x1x2)。

2. 反比例函数的减法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 - y2 = (k1x2 - k2x1) / (x1x2)。

3. 反比例函数的乘法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 * y2 = (k1 * k2) / (x1 * x2)。

4. 反比例函数的除法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 /y2 = (k1 / k2) * (x2 / x1)。

五、实际应用反比例函数在物理学、经济学、生物学等领域有广泛的应用。

例如,在电路分析中,电流与电阻的关系可以由欧姆定律表示为 I = V/R,其中 V 为电压,I 为电流,R 为电阻,这可以看作是反比例函数的一个特例。

六、常见问题及解析1. 问题:如何确定反比例函数的定义域和值域?解析:反比例函数的定义域为除去 0 的所有实数,即 (-∞, 0) ∪ (0, +∞)。

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

其中,x 是自变量,y 是因变量。

因为 x 在分母上,所以自变量 x 的取值范围是x≠0。

例如,y = 3/x,y =-5/x 等都是反比例函数。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0)2、 xy = k(k 为常数,k≠0)3、 y = kx^(-1)(k 为常数,k≠0)这三种形式在本质上是相同的,只是形式上有所不同,我们可以根据具体的题目条件灵活选择使用。

三、反比例函数的图象反比例函数的图象是双曲线。

当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小;当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。

需要注意的是,反比例函数的图象永远不会与坐标轴相交,因为自变量x≠0,函数值y≠0。

四、反比例函数图象的性质1、对称性反比例函数的图象既是轴对称图形,又是中心对称图形。

对称轴有两条,分别是直线 y = x 和直线 y = x。

对称中心是坐标原点(0,0)。

2、增减性在每个象限内,当 k>0 时,y 随 x 的增大而减小;当 k<0 时,y 随 x 的增大而增大。

3、渐近线双曲线无限接近于 x 轴和 y 轴,但永远不会与它们相交。

五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图象上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足为 M、N,则矩形 PMON 的面积 S = PM·PN =|y|·|x| =|xy| =|k|。

2、三角形面积若连接 PO,则三角形 POM 的面积 S = 1/2 |k| 。

六、反比例函数与一次函数的综合应用1、求交点坐标联立反比例函数和一次函数的解析式,组成方程组,解方程组即可得到交点坐标。

反比例函数知识点

反比例函数知识点

反比例函数知识点:1.定义:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。

其中x 是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。

说明:1)y 的取值范围是一切非零的实数。

2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k ;1-=kx y ;xk y 1=(k 为常数,k ≠0) 3)反比例函数y =xk (k 为常数,k ≠0)的左边是函数,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如xy 1=,x y 213=等都是反比例函数,但21+=x y 就不是关于x 的反比例函数。

2. 用待定系数法求反比例函数的解析式由于反比例函数y =xk 只有一个待定系数,因此只需要知道一组对应值,就可以求出k 的值,从而确定其解析式。

3. 反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴4. 图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y= -x ;对称中心是:原点5. 性质:说明:1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。

2)反比例函数图像的两个分只可以无限地接近x 轴、y 轴,但与x 轴、y 轴没有交点。

3)越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.4)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,) 在双曲线的另一支上.6. 反比例函数y =xk (k ≠0)中的比例系数k 的几何意义表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结反比例函数知识点归纳知识点1 反比例函数的定义反比例函数是指形如 y = k/x(k为常数,k≠0)的函数。

其中,自变量x的取值范围为x≠的一切实数,而函数值y的取值范围为y≠0.知识点2 用待定系数法求反比例函数的解析式由于反比例函数只有一个待定系数k,因此只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。

知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限,与原点对称。

由于自变量x≠,函数值y≠,所以它的图像与x轴、y轴都没有交点。

画反比例函数的图像应该先列表,再描点,最后用光滑的曲线连接。

知识点4 反比例函数的性质反比例函数的图像位置与函数值的增减情况与k的符号有关。

当k>0时,函数图像的两个分支分别在一、三象限,在每个象限内,y随着x的增大而减小;当k<0时,函数图像的两个分支分别在二、四象限,在每个象限内,y随着x的增大而增大。

反比例函数的图像位置和函数的增减性由反比例函数系数k的符号决定。

在每个象限内,当k>0时,y随x的增大而减小;当k0.反比例函数y=k/x中,k的几何意义可以通过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,得到矩形OEPF的面积S=k=xy=x*y=PF*PE。

在反比例函数y=k/x中,k越大,双曲线y=k/x越小,离坐标原点越远;k越小,双曲线y=k/x越大,离坐标原点越近。

双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。

练题:1、反比例函数是y=k/x,其中k≠0.2、函数y1=kx和y2=1/2x的图象如下所示,自变量x的取值范围相同的是第四象限。

3、函数y=m/x和y=mx-m(m≠0)在同一平面直角坐标系中的图像可能是第一象限和第三象限。

4、反比例函数y=k/x的图象的两个分支分别位于第一象限和第三象限。

反比例函数基本知识

反比例函数基本知识

反比例函数基本知识反比例函数基本知识知识点一:反比例函数的概念一般地,如果两个变量x、y之间的关系可以表示成或y=kx-1(k为常数,)的形式,那么称y是x的反比例函数。

反比例函数的概念需注意以下几点:(1)k是常数,且k不为零;(2)中分母x的指数为1,如不是反比例函数。

(3)自变量x的取值范围是一切实数.(4)自变量y的取值范围是一切实数。

知识点二:反比例函数的图象及性质反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。

它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是,因此不能把两个分支连接起来。

(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。

反比例函数的性质:的变形形式为(常数)所以:(1)其图象的位置是:当时,x、y同号,图象在第一、三象限;当时,x、y异号,图象在第二、四象限。

(2)若点(m,n)在反比例函数的图象上,则点(-m,-n)也在此图象上,故反比例函数的图象关于原点对称。

(3)当时,在每个象限内,y随x的增大而减小;当时,在每个象限内,y随x的增大而增大;知识点三:反比例函数解析式的确定(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x、y的对应值或图象上点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。

(2)用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:(); ②根据已知条件,列出含k 的方程;③解出待定系数k的值; ④把k值代入函数关系式中。

初三反比例知识点总结数学

初三反比例知识点总结数学

初三反比例知识点总结数学一、反比例的性质和规律1. 反比例函数的定义反比例函数是指一个变量的变化导致另一个变量的变化与之成反比的函数。

通常表示为y=k/x,其中k是常数。

2. 反比例函数的图像特点反比例函数的图像呈现出一种特殊的曲线,即双曲线。

当x无限增大时,y趋于0;当x无限接近于0时,y趋于无穷大。

3. 反比例函数的性质(1)当x增大时,y减小;当x减小时,y增大。

(2)当x1>x2时,y1<y2;当x1<x2时,y1>y2。

4. 反比例函数与直线的关系反比例函数的图像在第一象限内有一条反比例函数的零点在原点的直线。

其斜率为常数k,而且直线关于原点对称。

二、反比例函数的应用1. 反比例函数在实际中的应用反比例函数在实际生活中有很多应用,比如说人均时间和工作效率、工程材料的数量和造价、飞机的飞行时间和速度、光合作用的速率和光照强度等。

这些都可以用反比例函数来表示并解决实际问题。

2. 反比例函数的解决问题在解决实际问题中,可以使用反比例函数来理解和分析问题,比如说通过反比例函数计算出两个变量之间的关系,由此得出一个变量的值;或者通过反比例函数的特性分析出两个变量之间的变化规律。

三、反比例函数的解析式与图像的绘制1. 反比例函数的解析式反比例函数的一般形式为y=k/x,其中k是比例系数。

在实际问题中,可以根据已知条件求出k,然后写出反比例函数的解析式。

2. 反比例函数的图像绘制绘制反比例函数的图像时,可以取三个以上的点,并将这些点连成光滑的曲线。

反比例函数的图像总是呈现出一种双曲线的形状,且与x轴和y轴都有渐近线。

四、反比例函数的解决问题1. 反比例函数的基本解法(1)一元一次反比例函数问题的解法:可以通过列方程,代入已知条件,解出未知量的值。

(2)一元二次反比例函数问题的解法:可以通过列方程,利用二次函数的解法来求得未知量的值。

2. 反比例函数问题的实例分析通过反比例函数的性质、规律,可以应用到各种实际问题中,比如有关时间、速度、数量、工作效率等各种问题。

反比例函数知识点梳理

反比例函数知识点梳理

反比例函数知识点梳理
y=k/x
其中,y表示一个变量的值,x表示另一个变量的值,k是比例常数。

反比例函数的特点是,一个变量的值增大,另一个变量的值就会减小;一
个变量的值减小,另一个变量的值就会增大。

1.定义域和值域:
2.变化趋势:
当x增大时,y就会减小;当x减小时,y就会增大。

两者是成反比
的关系。

3.特殊情况:
当y和x有一个为零时,反比例函数无定义。

这是因为在反比例函数中,不能除以零。

4.x和y的初始值:
当x=1时,y=k/1=k。

这意味着当x取1时,y的值就等于比例常数k。

5.比例常数k的取值:
比例常数k可以是任意非零实数,但取值不同会导致反比例函数的图
像形状不同。

比例常数k的正负性决定了反比例函数的图像是在y轴的上
方还是下方,而比例常数k的绝对值大小决定了函数图像的陡峭程度。

6.图像:
反比例函数的图像一般是一个平面上的曲线,碰触坐标轴上的点是
x=0和y=0,称为渐近线。

当比例常数k为正时,曲线在第一象限和第三象限之间开口;当比例常数k为负时,曲线在第二象限和第四象限之间开口。

曲线越靠近坐标轴,其图像就越陡峭。

7.标准方程:
8.反比例函数的应用:
总结起来,反比例函数是数学中一种特殊的函数形式,表示两个变量之间的关系满足y=k/x。

它具有一些特点和性质,包括定义域和值域、变化趋势、特殊情况、x和y的初始值、比例常数k的取值、图像特征等。

反比例函数在实际生活中有广泛的应用。

反比例函数知识点

反比例函数知识点

反比例函数知识点知识点l.反比例函数的概念一般地,如果两个变量x、y之间的关系可以表示成y=k/x或y=kx-1(k为常数,k≠0)的形式,那么称y是x的反比例函数。

反比例函数的概念需注意以下几点:(1)k是常数,且k不为零;(2)k/x中分母x的指数为1,如y=kx-2不是反比例函数。

(3)自变量x的取值范围是x≠0一切实数.(4)自变量y的取值范围是y≠0一切实数。

知识点2.反比例函数的图象及性质反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。

它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。

(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。

反比例函数的性质:y=k/x(k≠0)的变形形式为xy=k(常数)所以:(1)其图象的位置是:当k﹥0时,x、y同号,图象在第一、三象限;当k﹤0时,x、y异号,图象在第二、四象限。

(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(-m,-n)也在此图象上,故反比例函数的图象关于原点对称。

(3)当k﹥0时,在每个象限内,y随x的增大而减小;当k﹤0时,在每个象限内,y随x的增大而增大;知识点3.反比例函数解析式的确定。

(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式y=k/x(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。

因此只需给出一组x、y的对应值或图象上点的坐标,代入y=k/x(k≠0)中即可求出k的值,从而确定反比例函数的关系式。

(2)用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:y=k/x(k≠0);②根据已知条件,列出含k的方程;③解出待定系数k的值;④把k值代入函数关系式y=k/x(k≠0)中。

反比例函数知识点归纳重点

反比例函数知识点归纳重点

反比例函数知识点归纳重点1.定义和性质:反比例函数是由自变量与其函数值的乘积为常数所表示的函数。

它的图像是一个双曲线。

当自变量x趋近于0时,函数值趋近于正无穷大;当自变量x趋近于正无穷大或负无穷大时,函数值趋近于0。

反比例函数的反比例因子k可以用来确定函数的特征。

2.图像与参数的关系:反比例函数的图像是一个双曲线,其具体形状与参数k有关。

当k为正数时,双曲线位于第一象限和第三象限;当k为负数时,双曲线位于第二象限和第四象限。

参数k的绝对值越大,双曲线的曲率越大。

3.变形形式:反比例函数除了常见的y=k/x形式外,还可以有其他的变形形式。

例如,y=k/(x-a)+b表示平移后的反比例函数,参数a和b分别表示水平和垂直方向上的位移。

4.变量关系:反比例函数中的自变量和因变量之间是一个反比例关系,即一个数的大小与另一个数的大小呈反比例关系。

如果自变量增大,那么函数值会减小,反之亦然。

这种关系在实际问题中经常出现,例如牛顿第二定律中的力和加速度的关系。

5.应用问题:反比例函数在许多实际问题中都有应用。

例如,速度与时间的关系、电阻与电流的关系、密度与体积的关系等都可以用反比例函数来描述。

因为反比例函数在自变量过小或者过大时函数值会变得非常大或者非常小,所以它在处理极限问题时也经常被使用。

总之,反比例函数是一种常见的函数形式,在数学的各个领域中都有广泛的应用。

理解反比例函数的定义、图像与参数的关系、变形形式、变量关系以及应用问题,可以帮助我们更好地理解数学和解决实际问题。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

中考复习反比例函数基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴(2)图象的位置和性质:与坐标轴没有交点,当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数知识点总结知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值围是0x ≠的一切实数,函数值的取值围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠);⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

反比例函数图像的位置和函数的增减性,是有反比例函数系数k 的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k 的符号。

如xky =在第一、第三象限,则可知0k >。

☆反比例函数xky =(0k ≠)中比例系数k 的绝对值k 的几何意义。

如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足, 则OEPF S PE PF y x xy 矩形=⋅=⋅==k☆ 反比例函数x ky =(0k ≠)中,k 越大,双曲线x k y =越远离坐标原点;k 越小,双曲线xk y =越靠近坐标原点。

☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=-x 。

二、例题【例1】如果函数222-+=k kkx y 的图像是双曲线,且在第二,四象限,那么k 的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数xky =,(0≠k )即kx y =1-(0≠k )又在第二,四象限,则0<k 可以求出的值 【答案】由反比例函数的定义,得:⎩⎨⎧<-=-+01222k k k 解得⎪⎩⎪⎨⎧<=-=0211k k k 或1-=∴k1-=∴k 时函数222-+=k k kx y 为xy 1-=【例2】在反比例函数x y 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。

若3210x x x >>>则下列各式正确的是( )A .213y y y >>B .123y y y >>C .321y y y >>D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。

解法一:由题意得111x y -=,221x y -=,331x y -= 3210x x x >>> ,213y y y >>∴所以选A解法二:用图像法,在直角坐标系中作出xy 1-=的图像描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法213321321321,1,1,211,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点(221,),那么该直线与双曲线的另一个交点为( ) 【解析】⎩⎨⎧==⎪⎩⎪⎨⎧=-=+∴⎪⎭⎫ ⎝⎛-=+=12132212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线 ⎪⎩⎪⎨⎧==⎩⎨⎧-=-=⎪⎩⎪⎨⎧=+==+=∴221111121,122211y x y x x y x y x y x y 得解方程组双曲线为直线为 ()11--∴,另一个点为【例4】 如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线xmy =在第一象限的交点,且2=∆AOB S ,则m 的值是_____.oy xy xoy xoy xoA B C D图解:因为直线m x y +=与双曲线xmy =过点A ,设A 点的坐标为()A A y x ,. 则有AA A A x my m x y =+=,.所以A A y x m =. 又点A 在第一象限,所以A A A A y y AB x x OB ====,.所以m y x AB OB S A A AOB 212121==•=∆.而已知2=∆AOB S . 所以4=m .三、练习题1.反比例函数xy 2-=的图像位于( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限2.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( )A 、正比例函数B 、反比例函数C 、一次函数D 、不能确定3.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数图象大致为( )4.某气球充满了一定质量的气体,当温度不变时, 气球气体的气压P ( kPa ) 是气体体积V ( m 3 )的反比例函数,其图象如图所示.当气球气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A 、不小于54m 3B 、小于54m 3C 、不小于45m 3D 、小于45m 35.如图 ,A 、C 是函数xy 1=的图象上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1,Rt ΔCOD 的面积为S 2则 ( ) A . S 1 >S 2 B . S 1 <S 2C. S1=S2D. S1与S2的大小关系不能确定6.关于x的一次函数y=-2x+m和反比例函数y=1nx的图象都经过点A(-2,1).求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B的坐标;(3)△AOB的面积.7. 如图所示,一次函数y=ax+b的图象与反比例函数y=kx的图象交于A、B两点,与x轴交于点C.已知点A的坐标为(-2,1),点B的坐标为(12,m).(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值围.8.某蓄水池的排水管每小时排水8m3,6小时可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q的关系式.(4)如果准备在5小时将满池水排空,那么每小时的排水量至少为多少?(5)已知排水管的最大排水量为每小时12m3,那么最少需多长时间可将满池水全部排空?9.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y (件)是日销售价x元的反比例函数,且当售价定为100元/件时,每日可售出30件. (1)请写出y关于x的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?10.如图,在直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数my x=的图象交于A(-2,1)、B(1,n)两点。

(1)求上述反比例函数和一次函数的表达式;(2)观察图象,写出一次函数值小于反比例函数值的x 的取值围? (3)求△AOB 的面积。

四、课后作业1.对与反比例函数xy 2=,下列说法不正确的是( ) A .点(1,2--)在它的图像上 B .它的图像在第一、三象限 C .当0>x 时,的增大而增大随x y D .当0<x 时,的增大而减小随x y 2.已知反比例函数()0ky k x=≠的图象经过点(1,-2),则这个函数的图象一定经过( )A 、(2,1)B 、(2,-1)C 、(2,4)D 、(-1,-2)3.在同一直角坐标平面,如果直线x k y 1=与双曲线x ky 2=没有交点,那么1k 和2k 的关系一定是( ) A. 1k +2k =0B. 1k ·2k <0C. 1k ·2k >0D.1k =2k4. 反比例函数y =k x的图象过点P (-1.5,2),则k =________. 5. 点P (2m -3,1)在反比例函数y =1x的图象上,则m =__________.6. 已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为__________.7. 已知反比例函数xmy 21-=的图象上两点()()2211,,,y x B y x A ,当210x x <<时,有21y y <,则m 的取值围是?8.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值; (3)y =-2时,x 的值。

9. 已知3=b ,且反比例函数xby +=1的图象在每个象限,y 随x 的增大而增大,如果点()3,a 在双曲线上xb y +=1,求a 是多少?。

相关文档
最新文档