高效率高频变压器设计方法

合集下载

工程师实例为你讲解电源高频变压器的设计方法

工程师实例为你讲解电源高频变压器的设计方法

工程师实例为你讲解电源高频变压器的设计方法
设计高频变压器是电源设计过程中的难点,下面以反馈式电流不连续电源高频变压器为例,向大家介绍一种电源高频变压器的设计方法。

 设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。

 设计步骤:
 计算高频变压器初级峰值电流Ipp
 由于是电流不连续性电源,当功率管导通时,电流会达到峰值,此值等于功率管的峰值电流。

由电感的电流和电压关系V=L*di/dt可知:
 输入电压:Vin(min)=Lp*Ipp/Tc
 取1/Tc=f/Dmax,则上式为:
 Vin(min)=Lp*Ipp*f/Dmax
 其中:V in:直流输入电压,V
 Lp:高频变压器初级电感值,mH
 Ipp:变压器初级峰值电流,A
 Dmax:最大工作周期系数
 f:电源工作频率,kHz
 在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:
 Pout=1/2*Lp*Ipp2*f
 将其与电感电压相除可得:
 Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f)
 由此可得:。

开关电源 高频 变压器计算设计

开关电源 高频 变压器计算设计

要制造好高频变压器要注意两点:一就是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便就是高频交流电只沿导线的表面走,而导线内部就是不走电流的实习就是越挨近导线中轴电流越弱,越挨近导线表面电流越强。

选用多股细铜线并在一同绕,实习便就是为了增大导线的表面积,然后更有效地运用导线。

二就是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的就是削减高频漏感与降低分布电容。

1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。

这样可减小初级绕组与次级绕组之间分布电容的电容量,也增大了初级与次级之间的绝缘强度,契合绝缘耐压的需求。

减小变压器初级与次级之间的电容有利于减小开关电源输出端的共模打扰。

若就是开关电源的次级有多路输出,而且输出之间就是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。

若就是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍就是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。

其她次级绕组严密的绕在这个次级绕组的上面。

当开关电源多路输出选用共地技能时,处置方法简略一些。

次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。

2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。

通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。

初级绕组放在最里边,使初级绕组得到其她绕组的屏蔽,有助于减小变压器初级绕组与附近器材之间电磁噪声的相互耦合。

初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其她有些电磁打扰的耦合。

3、偏压绕组:偏压绕组绕在初级与次级之间,仍就是绕在最外层,与开关电源的调整就是依据次级电压仍就是初级电压进行有关。

高频变压器设计原理

高频变压器设计原理

摘要:阐述了高频开关电源热设计的一般原则,着重分析了开关电源散热器的热结构设计。

关键词:高频开关电源;热设计;散热器1 引言电子产品对工作温度一般均有严格的要求。

电源设备内部过高的温升将会导致对温度敏感的半导体器件、电解电容等元器件的失效。

当温度超过一定值时,失效率呈指数规律增加。

有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升为25℃时的1/6。

所以电子设备均会遇到控制整个机箱及内部元器件温升的要求,这就是电子设备的热设计。

而高频开关电源这一类拥有大功率发热器件的设备,温度更是影响其可靠性的最重要的因素,为此对整体的热设计有严格要求。

完整的热设计包括两方面:如何控制热源的发热量;如何将热源产生的热量散出去。

最终目的是如何将达到热平衡后的电子设备温度控制在允许范围以内。

2 发热控制设计开关电源中主要的发热元器件为半导体开关管(如MOSFET、IGBT、GTR、SCR等),大功率二极管(如超快恢复二极管、肖特基二极管等),高频变压器、滤波电感等磁性元件以及假负载等。

针对每一种发热元器件均有不同的控制发热量的方法。

2.1 减少功率开关的发热量开关管是高频开关电源中发热量较大的器件之一,减少它的发热量,不仅可以提高开关管自身的可靠性,而且也可以降低整机温度,提高整机效率和平均无故障时间(MTBF)。

开关管在正常工作时,呈开通、关断两种状态,所产生的损耗可细分成两种临界状态产生的损耗和导通状态产生的损耗。

其中导通状态的损耗由开关管本身的通态电阻决定。

可以通过选择低通态电阻的开关管来减少这种损耗。

MOSFET的通态电阻较IGBT的大,但它的工作频率高,因此仍是开关电源设计的首选器件。

现在IR公司新推出的IRL3713系列HEXFET(六角形场效应晶体管)功率MOSFET已将通态电阻做到3mΩ,从而使这些器件具有更低的传导损失、栅电荷和开关损耗。

美国APT公司也有类似的产品。

高频变压器设计规范

高频变压器设计规范

高频变压器设计规范目录1.目的 (2)2.适用范围 (2)3.引用/参考标准或资料 (2)4.术语及其定义 (2)5.规范要求 (2)6.附录 (12)1.目的为了实现高频变压器设计的标准化,为我司工程师在设计变压器过程中提供参考,特制订此规范。

2.适用范围本规范适用于公司所有正激变压器及反激变压器的设计。

3.引用/参考标准或资料无。

4.术语及其定义正激变压器:因其初级线圈被直流电压激励时,次级线圈正好有功率输出而得名。

反激变压器:又称单端反激式变压器或Buck-Boost转换器。

因其输出端在原边绕组断开电源时获得能量故而得名。

5.规范要求5.1高频变压器磁芯材料与几何机构在大多数开关电源的高频变压器中,常用的软磁材料有铁氧体,铁粉芯,恒导合金,非晶态合金及硅钢片。

主要应用软磁材料四个特性:磁导率高、矫顽力小及磁滞回线狭窄、电阻率高、具有较高饱和磁感应强度。

现我司高频变压器通常采用锰锌铁氧体材料。

磁芯厂家都生产了一系列不同材质的磁芯,各厂家有自己的命名规范。

以常用的PC40(TDK命名规范)材质为例,东磁表示为DMR40,天通则表示为TP4,实际性能差异几乎可忽略不计。

通常我们关注的磁芯参数主要有初始磁导率,饱和磁通密度Bs,剩磁Br,矫顽力Hc,功耗Pv,居里温度Tc,在高频变压器的设计以及日后应用过程中,这些参数往往起到非常重要的作用。

图1所示各种磁芯的几何形状有EE型、ETD型、PQ型等多种。

EE型、ETD型、PQ型也是我司高频变压器设计时通常采用的磁芯结构。

每种规格磁芯对应多种尺寸可供选择。

一般每种类型及尺寸的磁芯,其对应的骨架是一定的,变动一般在于pin数和pin针间距的不同,设计者可根据实际应用需求选择,也可以联系骨架厂商进行开模定制。

图5.1 各种几何结构的变压器磁芯图1 磁芯的几何形状5.2高频变压器常用材料介绍上节主要介绍了高频变压器的磁芯特性及结构,除此以外,要构成一个完整的高频变压器,主要材料还有:导线材料,压敏胶带,骨架材料。

高频变压器设计

高频变压器设计

5高频率的功率变压器THE HIGH-FREQUENCY POWER TRANSFORMER5-0概论(INTRODUCTION)很多科学家认为磁性元件的设计是一种“高深的技术”,其实这乃是一种最重的错误观念。

磁性元件的设计乃为精密的科学,而那些所有正确的基本电磁定律,乃由以前的科学家们所研究发展出来,如Maxwell, Ampere , Oersted ,与Gauss等人。

本章主要目的就是介绍基本的磁学定律,而且为了实际的电磁元件设计,如线圈与变压器,我们将以简单的,合逻辑的,有条理的方式来深入浅出介绍磁性与电性之间存在的关系。

5-1电磁的原理(PRINCIPLES OF ELECTROMAONETISM)考虑如图5-1所示的简单电路,此由电压源V,开关S与负载L,组成一个空气线圈(air coil)的电路,如果在某些情况下,开关S被关闭(closed),则会有电流I产生经由线上流至负载,当电流通过线圈时,就会有磁场被建立起来,如图中所示,连接于线圈之间所产生的磁场,此乃为称之为磁通量(flux),而磁场中的磁力线可称之为磁通链(flux linkages)。

图5-1流经空气线圈的电流I会有磁通量的产生图5-2 铁磁材料棒置于线圈之内会产生较多或较强的磁通量然而,在此线圈中的磁通量并不会很大,如果我们在线圈中加入磁性材料(铁磁材料)棒,则会有额外的磁场被感应产生,因此,也就会有更多的磁通量被产生,如图5-2所示。

而磁通链将沿着磁棒前进,并经由空气传导路径形成一回路,如果铁磁铁心(ferromagnetic core )以此种方式构成并取代了磁棒,则磁通就会呈现一连续的路径,且磁场将形成于铁心之内,因此所感应的磁场就会较强大,如图5-3所示。

图5-3 连续的铁磁性铁心会限制所有的磁通量于铁心内并有很强的磁场产生在磁场上某一点所测量的磁通聚集程度,我们称之为磁通量密度(magnetic flux density )或是磁感应(magnetic induction),以符号B 来表示。

高频变压器的设计方法和分布参数模型介绍

高频变压器的设计方法和分布参数模型介绍

Dianqi Gongcheng yu Zidonghua ♦电气工程与自动化高频变压器的设计方法和分布参数模型介绍陈尊杰1夏书生1钱峰1田煜2金平2(1.国网新源水电有限公司新安江水力发电厂,浙江杭州311608;2•河海大学,江苏南京210000)摘要:随着用户对用电质量和安全可靠性的要求越来越高,加上当前对变压器小型化、轻便化的要求,传统电力变压器已不能满足社会发展的需求。

研究表明,通过电力电子技术和变压器的 ,可 传统 压器质量 大 陷’高频变压器作为电力电子变压器(PET )的核心器件, 传 的作用,在未来有着很大的发展空间’现主要介绍高频变压器的设计方法和型,对高频 压器损耗和有重要作用°关键词:电力 子变压器(PET );高频变压器 型0引C来,可能有高 和可电能质量等优点的电力电子变压器(Power Electronic Trans ­former , PET ),为能 网的的研究 叭高频压器PET 的核 , 的高频 压器性能的 , 的 高频压器 和效率’因此,高频压器的和型 ,研Z °1电力电子变压器介绍1997年,来自美国德州农工大学的Moonshik Kang 博士设AC /AC的PET , 压器 的能 1示’ 其样机启发,研究人员大都认可这既能降低变压器 的 和重量,还备更高的传能力和 的"2#°中高压交流DCAC低压交流AC/DC ACZAC高频交流高频变压器高频交流直流端口图1基于AC /AC 变换的PET 结构图2高频变压器的设计压器时,既要考虑 能 的难易,也要考虑建造、运行与维修成本,工作性能素’成本素包括压器 的 和量、材料 艺的经济性,工作性能素 压器的输出、最高工作、特温环境应用时可允许的最大温升’常用的 软件自动 、面 AP 、几何系KG 都能满足 压器的要求’软件,只需要 .压器参,便可通过内置算 动进行 ,简单便’但 本文的研究对象不是传统压器,使用材料不软件库中,难使用软件 高频压器’ 相对,AP 有成型的计算过程和 论依据,不 材料限制,也更常用, 本文 选择AP高频压器’2.1磁芯材料选择及其尺寸计算根据额压!N 、流"n 和磁通密度#m ,结合Ansys 仿真来选择磁芯材料。

4功率_高压_高频变压器的串联优化设计

4功率_高压_高频变压器的串联优化设计

4功率_高压_高频变压器的串联优化设计高压高频变压器是一种常见的电力转换设备,用于将输入电压转换为输出电压,通常用于工业生产、医疗设备、通信设备等领域。

串联优化设计可以提高变压器的性能和效率,本文将从四方面介绍高压高频变压器的串联优化设计。

一、磁路设计高压高频变压器的磁路设计是提高变压器性能的关键。

磁路设计应考虑到磁路的导磁性能、铁损耗和漏磁损耗等因素。

导磁性能可以通过选择高导磁材料和合理设计磁路截面积来提高,铁损耗可以通过合理设计磁路长度和材料厚度来降低,漏磁损耗可以通过绕组的合理布局和磁路屏蔽来减小。

二、绕组设计绕组设计是高压高频变压器的另一个重要方面。

绕组的合理布局可以减小绕组的电阻和电感,提高变压器的效率。

绕组采用多层绕组,可以减小绕组的尺寸,提高变压器的功率密度。

绕组的选择应考虑到高频信号的传输特性,采用较短的导线和合理的绕线方式,减小电阻、电感和串扰等因素的影响。

三、冷却设计高压高频变压器在工作过程中会产生大量的热量,因此冷却设计是必不可少的。

合理的冷却设计可以提高变压器的散热效果,保证变压器的稳定工作。

常见的冷却方式包括自然冷却、强迫冷却和液冷却等。

自然冷却适用于功率较小的变压器,强迫冷却适用于功率较大的变压器,液冷却适用于要求散热效果更好的变压器。

冷却设计时应注意选择适当的散热介质、合理布置散热器和风扇等。

四、绝缘设计高压高频变压器工作时会产生高电压和高频电场,因此绝缘设计是非常重要的。

绝缘设计应考虑到变压器的工作电压和频率,选择合适的绝缘材料和绝缘结构。

绝缘材料可以采用绝缘纸、绝缘漆等,绝缘结构可以采用缠绕、层间隔离等方式。

绝缘设计时还应注意绝缘层的厚度和抗击穿能力,以确保变压器的安全运行。

总结:高压高频变压器的串联优化设计是提高变压器性能和效率的重要手段。

通过磁路设计、绕组设计、冷却设计和绝缘设计的优化,可以提高变压器的导磁性能、减小损耗、提高功率密度、提高散热效果和确保安全运行。

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全在设计变压器时,需要考虑多个因素,包括输入和输出电压、电流、功率、频率、磁通密度、磁路结构等。

下面是一些常用的变压器设计计算公式:1.需求计算公式:(1)计算输入和输出功率:P=V*I其中,P是功率,V是电压,I是电流。

(2)计算变压器变比:N=V1/V2其中,N是变比,V1是输入电压,V2是输出电压。

(3)计算输入和输出电流:I1=P/V1,I2=P/V2其中,I1是输入电流,I2是输出电流。

2.磁路计算公式:(1)计算磁路截面积:A=B/(f*μ*H)其中,A是磁路截面积,B是磁感应强度,f是频率,μ是磁导率,H 是磁场强度。

(2)计算磁通量:Φ=B*A其中,Φ是磁通量。

(3)计算铁心横截面积:S=Φ/B其中,S是铁心横截面积。

3.匝数计算公式:(1)计算初级匝数:N1=(V1*10^8)/(B*f*A)其中,N1是初级匝数。

(2)计算次级匝数:N2=(V2*10^8)/(B*f*A)其中,N2是次级匝数。

4.器件尺寸计算公式:(1)计算铁芯尺寸:U=1.8*(Lc/μ)*B*H/Bm其中,U是铁芯尺寸,Lc是直径或长度,B是磁感应强度,H是磁场强度,Bm是饱和磁感应强度。

(2)计算绕线长度:Lw=π*D*(N1+N2)其中,Lw是绕线长度,D是变压器内径。

(3)计算线径:d=(I*K)/(0.4*J*D)其中,d是线径,I是电流,K是充填系数,J是电流密度,D是变压器内径。

这些公式提供了一些变压器设计的基本计算方法。

在实际设计中,还需要考虑到其它因素,如损耗、效率、温升等,以确保设计的变压器满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Po
R Pi
(a)
Po
Po R
(b)
(c)
视在功率与线路结构关系
线路(a) 线路(b) 线路(b)
PT=Po(1+
1 η

PT=Po(
1 η
+√2

PT=Po(
1 η
+1)
AP值是磁芯窗口面积Aw与磁芯有效截面积Ae的乘积,即
AP=Aw ·Ae
各种磁芯的AP示意图如下:
Ae Aw
G
G D Ae
Ae Aw
算磁芯功耗。
Pf e′= W × Wt
KG
(W)
15、验算: 若Pf e′<Pf e,设计通过; 若Pf e′>Pf e,应重新选择磁芯进行计算。
16.趋肤 效应 电流密度 下降到表 面电流密 度的 0.368, 即1/e的 厚度为趋 肤深度或 穿透深度 Δ
= 2k
μ——导 线材料的 磁导率 γ=1/ρ ——材料 的电导率 k——材 料电导率 (电阻 率)温度 系数
a2 + b2 为骨架外径尺寸的1/2。
b2 b1
a1
a2
3、计算原边绕组匝数Np:
Vp×104
Np= KfFsBwAe
(匝)
4、计算原边电流I p: Ip= Po Vpη
5、计算电流密度J:
J=Kj(Aw ·Ae)X
(A)
(A/cm2 )
6、计算原边绕组裸线直径dP和截面积Axp:
dP=1.13
I p×(0.707)※
高频变压器的设计方法之一
一、设计条件: 1、工作电路; 2、原边电压Vp; 3、输出电压Vo; 4、输出电流Io; 5、开关工作频率fs; 6、工作磁通密度Bw; 7、选用磁芯型式; 8、效率η; 9、温升∝。
二、计算步骤: 1、计算视在功率PT;
N1=N2
视在功率PT因工作电路不同而别,如下图:
Pi
Vo = Vo+VDF
(W)

NpVo′ Ns =
式中:Vo′V—p —副边总电压; VDF——输出二极管压降。
9、 计算副边绕组裸线直径dS和截面积Axs:
dS = 1.13
I o×(0.707)
J
(cm)
I o×(0.707)
Axs = J
(cm2)
选取副边绕组导线直径,查出带漆皮导线的线径、截面积和每cm电阻(Ω/cm)。
Wt ——磁芯重量(KG);
Ml ——绕组平均匝长(cm)。
Ae
罐形铁芯
Ks
Kw
Kv
33.8 32.5 39.2 44.5 41.3 50.9
48 58.8 66.6 76.6 68.2 82.3
14.5 13.1 17.9 25.6 19.7 25
As=KsAP0.5
平均匝长计算如下图:
Ml = a1 + b1 + 0.95 ( a2 + b2 ) 其中:a1 + b1 为骨架内径尺寸的1/2 ;
433
632
403
590
323
468
395
569
366
534
250
365
X
-0.17 -0.12 -0.14 -0.14 -0.12 -0.13
J= KjAPX
V01=KvAP0.75
Wt=KwAP0.75
根据选取的磁芯,查出(计算)出如下参数:
Ae
Aw
Le
Wt
Ml
其中:
Le ——磁芯有效磁路长度(cm);
10、计算副边绕组电阻值和副边铜损;
Rs = Ml×Ns×Ω/cm
(Ω)
Pscu = I o2Rs
(W)
11、计算变压器总铜损 Pcu:
Pcu = Ppcu +
(W)
12、计算在效率η下允许的总损耗P∑:
P∑ = Po
Po
η
(W)
13、计算允许之铁损Pf e: Pf e = P∑ Pcu
(W)
14、计算变压器铁损Pf e′: 根据磁芯的损耗曲线,查出在f s和Bw条件下,单位重量的功耗W/KG值,由下式计
在导线温 度100度 时
7.6 f
表观功率 定义:端 口的电压 有效值与 电流有效 值之乘积
Aw G
C型铁芯
E G
D Ae Aw
EI叠片铁芯
Aw
环形铁芯
Ae
Aw
Aw
G
带绕铁芯
1
PT×104
AP=(
) 1+X
KoKf FsBwKj
式中: AP ——为Aw和Ae两面积乘积(cm4);
PT ——变压器视在功率(w);
Bw ——工作磁通密度(T);
Fs ——开关工作频率(Hz);
Ko ——窗口使用系数,一般取0.4; Kf ——波形系数,方波Kf =4.0,正弦波Kf =4.44;
J
(cm)
I p×(0.707)※
Axp= J
(cm2)
※式中,在有中心抽头电路时,Ip需乘0.707的修正因素,根据计算的dP值选取初级导 并查出带漆皮的线径、截面积和每cm电阻(Ω/cm)值。
7、计算原边绕组电阻值Rp和原边铜损Ppcu:
Rp=Ml×Np×Ω/cm
(Ω)
Ppcu = I p2Rp 8、计算副边′ 绕组匝数:
Kj ——电流密度比例系数; X ——与磁芯有关常数。
各种磁芯结构常数如下表:
铁芯种类
耗损
一般罐形(配线)磁

Pcu = Pfe
铁粉磁芯
Pcu>Pfe
C型铁芯
Pcu = Pfe
单线圈
Pcu>Pfe
金属叠片磁芯 Pcu = Pfe
带绕铁芯
Pcu = Pfe
Kj
Kj
(允许 (允许
升25 升50
℃) ℃)
相关文档
最新文档