马尔可夫链

合集下载

第四章 马尔可夫链

第四章 马尔可夫链

股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities

马尔可夫链

马尔可夫链

马尔可夫链马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。

经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。

马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。

1) 离散时间参数的马尔可夫链 ①基本概念定义 5.7 设{()0,1,2,}X n n ∙∙∙=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数时间120k n n n ∙∙∙≤<<<,以及任意状态12,,,k i i i E ∈,都有条件概率11{()|()}k k k k P X n i X n i --=== (5-17)即过程{()0,1,2,}X n n ∙∙∙=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称{()0,1,2,}X n n ∙∙∙=,是一个离散时间参数的马尔可夫链。

当E 为可列无限集时称其为可列无限状态的马尔可夫链,否则称其为有限状态的马尔可夫链。

定义5.8 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E =上的马尔可夫链,条件概率(,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18)称为马尔可夫链{()0,1,2,}X n n ∙∙∙=,在m 时刻的k 步转移概率。

k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状态j 的条件概率。

特别地,当1k =时,(,1){(1)|()}ij p m P X m j X m i =+== (5-19)称为一步转移概率,简称转移概率。

如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。

定义5.9 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E ∙∙∙=上的马尔可夫链,矩阵000101011101(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。

马尔可夫链

马尔可夫链

马尔可夫链
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)。

适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念。

马尔可夫链的命名来自俄国数学家安德雷·马尔可夫以纪念其首次定义马尔可夫链和对其收敛性质所做的研究。

马尔可夫链

马尔可夫链
2020年5月21日星期四
例7 设马氏链{Xn}的状态空间为 I={1, 2, 3, 4, 5}, 转移概率矩阵为
1 2
1
2
0 0
0
1 2
1 2
0
0
0
P 0 0 1 0 0
3 / 16 . 1/ 4
于是: (1) P{X0 0, X2 1}
P{ X0 0}P{ X2 1 | X0 0} 1 5 5 ;
3 16 48
2020年5月21日星期四
(2)P{X2 1}
P{X0 0}P{X2 1 | X0 0} P{X0 1}P{X2 1 | X0 1}
显然有
p(n) 11
p(n) 21
P(n)
p(n j1
)
L
p(n) 12
p(n) 22
p(n) 1j
L
p(n) 2j
L
p(n) j2
p(n) jj
L
LL
L
(1)
0
p(n) ij
1
(2)
p(n) ij
1,
i
1,
2,L
j
2020年5月21日星期四
切普曼-柯尔莫哥洛夫方程(C-K方程): 对任意的m,n≥0,有
的矩阵
p11 p21
P
L
pj1 L
p12 L p22 L LL pj2 L LL
p1 j L
p2 j L
L
L
p jj L
L L
称为一步转移概率矩阵. 显然有
(1) 0 pij 1
(2)
pij 1, i 1, 2,L
j
2020年5月21日星期四
3、马尔可夫链举例

马尔可夫链

马尔可夫链

(3) P( n) P P( n1) (4) P( n) P n
初始概率和绝对概率
初始概率: 绝对概率:
p j (n) P{X n j}, ( j I )
p j P{X 0 j}, ( j I )
初始分布:
{ p j } { p j , j I}
绝对分布:
(第七章)马尔可夫链
马尔可夫链的概念及转移概率 马尔可夫链的状态分类 状态空间的分解 遍历性与平稳分布
马尔可夫过程的四种类型

马尔可夫链

时间、状态都离散 时间离散、状态连续

马尔可夫序列


纯不连续马尔可夫过程

时间连续、状态离散
时间、状态都连续

连续马尔可夫过程(或扩散过程)

(3)函数表达式
[例3] 设 { Xn , nT } 是一个马尔可夫链,其状态
空间 I = {a, b, c},转移矩阵为
1 / 2 1 / 4 1 / 4 P 2 / 3 0 1 / 3 3 / 5 2 / 5 0
求: (1) P{ X 1 b, X 2 c, X 3 a, X 4 c X 0 c};
一步转移概率矩阵
p11 P p21 p12 p22 p1n p2 n
性质: (1) pij 0 , i, j I
(2)
p
jI
ij
1, i I
(随机矩阵)
n 步转移概率
[定义] 称条件概率
( n) pij P{X mn j X m i}, (i, j I , m 0, n 1)
( n) n 0, 0 l < n 和 i , j I ,n 步转移概率 pij 具有下 列性质:

马尔可夫链

马尔可夫链

三.有限维概率分布 马尔可夫链{ X ( t ), t t
0
, t 1 , t 2 , }在初始时刻t 0 的概率
分布:
p j ( t 0 ) P { X ( t 0 ) j },
j 0 ,1, 2 ,
称为初始分布. 初始分布与转移概率完全地确定了马尔可夫链的 任何有限维分布.下面的定理二正是论述这一点. 不妨设齐次马尔可夫链的参数集和状态空间都是 非负整数集,那么有如下定理。
P { X ( k 1 ) j1 , X ( k 2 ) j 2 , , X ( k n ) j n }



p i ( 0 ) p ij1 1 p j1 j22
(k )
( k k1 )
p j n n1 j n n 1
(k k
)
i0
(13.9)
例6 在本节例5中,设初始时输入0和1的概率分别为 1/3和2/3,求第2、3、6步都传输出1的概率.
t 2 t n t n 1
和 S 内任意 n 1 个状态
j1 , j 2 , , j n , j n 1 , 如果条件概率
P { X ( t n 1 ) j n 1 | X ( t 1 ) j1 , X ( t 2 ) j 2 , , X ( t n ) j n }
二:马尔可夫链的分类 状态空间 S 是离散的(有限集或可列集),参数集 T 可为离散或连续的两类. 三:离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链{ X ( t ), t 中,条件概率 P { X ( t
m 1
t 0 , t 1 , t 2 , , t n , }
1

马尔可夫链的定义及例子

马尔可夫链的定义及例子

3、转移概率
定义 i, j S, 称 P Xn1 j Xn i
的一步转移概率。
pij n 为n时刻
若i, j S, pij n pij ,即pij与n无关,称转移概率
具有平稳性.此时称{Xn,n≥0}为齐次(或时齐的)马尔 可夫链。记P=(pij),称P为{Xn,n≥0}的一步转移概率矩阵.
0
j!
j 0,1, i
pi0公式略有不同,它是服务台由有i个顾客转为空闲的
概率,即第n个顾客来到时刻到第n+1个顾客来到时刻之
间系统服务完的顾客数≥i+1。

pi0 P X n1 0 X n i P(Yn i 1) P(Yn k) k i1
et (t)k dG t ,

0 P{Yn
j Tn1 x}dG x
( x) j exdG x, j 0,1, 2,
0 j!
因此, {Xn,n≥1}是马尔可夫链。其转移概率为
P0 j P( X n1 j X n 0) P(Yn j X n 0)
P(Yn
P( X n1 in1 X n in )
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n1 j X n i) P( f i,Yn1 j) P( f i,Y1 j)
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
一步转移概率矩阵

0.5009
0.0458 0.2559 0.1388 0.2134
0.0466 0.0988 0.36584 0.14264

第2章-马尔可夫链

第2章-马尔可夫链

0.4834
0.5009

甲、乙两人进行比赛,设每局比赛中甲胜的概率是p,
乙胜的概率是q,和局的概率是r ,(p q r 1)。
设每局比赛后,胜者记“+1”分,负者记“-1”分,
和局不记分。当两人中有一人获得2分结束比赛。X以n
表示比赛至第n局时甲获得的分数。
(1)写出状态空间;(2)求P(2);
pij a0j,i ,
ji ji
显然{Yn,n≥1}也是一马尔可夫链。
例2 M/G/1排队系统
若以X(t)记在t时刻系统中的顾客数,{X(t),t≥0}则不具马 尔可夫性。
Xn-----第n个顾客走后剩下的顾客数, Yn -----第n+1个顾客接受服务期间来到的顾客数,则
X
n1
Xn 1 Yn ,
CHAPTER 2 马尔可夫链
第一节 基本概念
一、马尔可夫链的定义及例子
1、定义
随机过程Xn, n 0,1, 2, 称为马尔可夫链,若它只
取有限或可列个值(称为过程的状态,记为0,1,2,…),
并且,对任意
及状态
,有
n0
i, j, i0 , i1, , in1
P( X n1 j X 0 i0 , X1 i1, , X n1 in1, X n i)
(3)问在甲获得1分的情况下,再赛二局可以结束比 赛的概率是多少?

(1)
记甲获得“负2分”为状态1,获得 “负1分”为状态2,获得“0分”为状态3, 获得“正1分”为状态4,获得“正2分”为 状态5,则状态空间为
I {1,2,3,4,5}
一步转移概率矩阵
1 0 0 0 0
q
r
p

《马尔可夫链讲》课件

《马尔可夫链讲》课件
平稳分布的概率分布函数与时间无关,只与系统的状态空间和转移概率矩阵有关。
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。

马尔可夫链

马尔可夫链

马尔可夫链马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类: (1) 时间,状态都是离散的马尔可夫过程,称为马尔可夫链.(2) 时间连续,状态离散的马尔可夫过程,称为连续时间的马尔可夫 (3) 时间,状态都连续的马尔可夫过程. 4.1马尔可夫链的概念及转移概率 一,定义假设马尔可夫过程},{T n X n ∈的参数集T 是离散的时间集合,即 T={0,1,2,…},其相应n X 可能取值的全体组成的状态空间是离散的状态集,...}.,{21i i I =定义4.1 设有随机过程},{T n X n ∈,若对于任意的整数T n ∈和任意的I i i i i n ∈+.,...,,,1210,条件概率满足n n n n i X i X i X i X P ====++,...,,{110011}=},{11n n n n i X i X P ==++ (4.1) 则称},{T n X n ∈为马尔可夫链,简称.马氏链.(4.1)式是马尔可夫链的马氏性(或无后效性)的数学表达式.由定义知 ],...,,{1100n n i X i X i X P =====}.,...,,{111100--====n n n n i X i X i X i X P },...,,{111100--===n n i X i X i X P =}{11--==n n n n i X i X P .},...,,{111100--===n n i X i X i X P =… =}{11--==n n n n i X i X P }{2211----==n n n n i X i X P …}{0011i X i X P ==}.{00i X P =可见,马尔可夫链的统计特性完全由条件概率}{11n n n n i X i X P ==++所决定. 二,转移概率条件概率}{1i X j X P n n ==+的直观含义为系统在时刻n 处于状态i 的条件下,在时刻n+1系统处于状态j 的概率.它相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到状态j 的概率.记此条件概率为).(n p ij 定义4.2 称条件概率).(n p ij = }{11n n n n i X i X P ==++为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率,其中i,j I ∈,简称为转移概率. 定义4.3 若对任意i,j I ∈,马尔可夫链},{T n X n ∈的转移概率).(n p ij 与n 无关,则称马尔可夫链是齐次的,并记).(n p ij 为.ij p下面我们只讨论齐次马尔可夫链,通常将齐次两字省略.设p 表示一步转移概率.ij p 所组成的矩阵,且状态空间I={1,2,…},则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=...........................2222111211nnp p p p p p p 称为系统的一步转移概率矩阵,它有性质: (1) .,1)2(;,,0∑∈∈=∈≥Ij ij ijI i p I j i p通常称满足上述(1),(2)性质的矩阵为随机矩阵. 定义4.4称条件概率ij n p )(= )1,0,,(},{≥≥∈==+n m I j i i X j X P m n m 为马尔可夫链},{T n X n ∈的n 步转移概率,.并称)()()(n ij n p p =为马尔可夫链的n 步转移矩阵,其中(1) .,1)2(;,,0)(∑∈∈=∈≥Ij ij n ij n I i p I j i p 即也是随机矩阵.当n=1 时, .)1(ij p =.ij p ,此时一步转移矩阵.)1(p p =此外我们规定 ⎩⎨⎧=≠=.,1,,0)0(j i j i pij定理4.1设},{T n X n ∈为马尔可夫链,则对任意整数n l n <≤≥0,0和,,I j i ∈n 步转移概率.)(ij n p 具有下列性质:(1)))()()(l n kj Ik l ik n ij p p p -∈∑=; (4.2)(2) ;......112111)(j k Ik k k ik Ik n ij n n p p p p --∑∑∈∈= (4.3)(3);)1()(-=n n PP P (4.4) (4).)(n n P P =(4.5)证明(1) 利用全概率公式及马尔可夫性,有}{)(i X j X P p m n m n ij ===+=}{},{i X P j X i X P m n m m ===+}{},{.},{},,{i X P k X i X P k X i X P j X k X i X P m l m m Ik l m m n m l m m =========+∈+++∑}{}{i X k X P k X j X P m l m l m Ik n m =====++∈+∑=)()()()(m p l m p l ik Ik l n ij +∑∈-=)()(.l n kjIk l ik p p -∈∑. (2)在(1)中令1,1k k l ==得))1()(111-∈∑=n jkIk ik n ij p p p 这是一个递推公式,可递推下下去即得(4.3). (3)在(1).令l=1利用矩阵乘法可得. (4) 由(3),利用归纳法可证.定理4.1中的(1)式称为切普曼---柯尔哥洛夫方程,简称C-K 方程 .定义4.5设},{T n X n ∈为马尔可夫链,称 },{0j X P p j ==)(},{)(I j j X P n p n j ∈==为},{T n X n ∈的初始概率和绝对概率,并分别称}),({},,{I j n p I j p j j ∈∈为},{T n X n ∈的初始分布和绝对分布.简记为}.),({},,{n p p j j 称概率向量 )0(),...),(),(()(21>=n n p n p n P T 为n 时刻的绝对概率向量,而称)0(,...),,(21>=n p p P T为初始向量.定理4.2设},{T n X n ∈为马尔可夫链,则对任意整数I j n ∈≥,1,绝对概率).(n p j 具有下列性质:(1)))()(n ij Ii i j p p n p ∑∈=; (4.6)(2) ij Ii i j p n p p )1(-=∑∈ (4.7)(3);)0()()(n T T P P n P = (4.8) (4)P n P n P T T )1()(-= (4.9)证明(1) ===}{)(j X P n p n j},{0j X i XP n Ii ==∑∈= }{}{00i X P i X j XP nIi ===∑∈ =)(n ijIi i p p ∑∈ (2)===}{)(j X P n p n j },{1j X i X P n Ii n ==∑∈-=}{}{11i X P i X j X P n n n Ii ===--∈∑==ij Ii i p n p ∑∈-)1((3)与(4)是(1)与(2)的矩阵形式.定理4.3 设},{T n X n ∈为马尔可夫链,则对任意,1,,...,1≥∈n I i i n 有 },...{11n n i X i X P ===....11n n i i ii i p p p -∑ (4.10) 证明 由全概率公式及马氏性有},...{11n n i X i X P ===},...,,{110n n Ii i X i X i X P ===∈=},...,,{110n n Ii i X i X i X P ===∑∈=}.,{}{0110i X i X P i X P Ii ===∑∈...},...,{110--===n n n n i X i X i X P=}.,{}{0110i X i X P i X P Ii ===∑∈..}{11--==n n n n i X i X P=n n i i ii Ii i p p p 11...-∑∈.三,马尔可夫链的例子例4.1 无限制随机游动设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为 q=1-p,这种运动称为无限制随机游动.以n X 表示时刻n 质点所处的位置,则},{T n X n ∈是一个齐次马尔可夫链,试写出它的一步和k 步转移概率. 解 },{T n X n ∈的状态空间,...},2,1,0{±±=I 其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=.....................00.........0.....................p q p q P 设在第k 步转移中向右移了x 步向左移动了y 步,且经过k 步转移状态从j 进入j,则⎩⎨⎧-=-=+i j y x k y x ,.2)(,2)(i j k y i j k x --=-+=由于x,y 都只取整数,所以)(i j k -±必须是偶数.又在k 步中哪x 步向右,哪y 步向左是任意的,选取的方法有x k C 种.于是⎩⎨⎧-+-+=是奇数是偶数)(,0)(,i j k i j k q p C p y x x k k ij.例4.2赌徒输光问题.两赌徒甲,乙进行一系列赌博.赌徒甲有a 元,赌注乙有b 元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止.设在每一局中,甲赢的概率为p,输的概率为q=1-p,求甲输光的概率.这个问题实质上是带有两个吸收壁的随机游动,其状态空间为I={0,1,2,…,c} c=a+b.故现在的问题是求质点从a 出发到达0状态先于到达c=a+b 状态的概率.解 设i u 表示甲从状态i 出发转移到状态0的概率,要计算的是a u ..由于0和c 是吸收状态,故,10=u .0=c u i u 由全概公式).1,...,2,1(,11-=+=-+c i qu pu u i i i (4.11) 上式的含义是,甲从状态i 出发开始赌到输光的概率等于’他接下去赢了一局(概率为p)处于状态i+1后再输光”;和他接下去输一局(概率为q),处于状态i-1后再输光”这两个事件的概率.由于p+q=1,(4.11)实质上是一个差分方程.1,...,2,1),(11-=-=--+c i u u r u u i i i i (4.12)其中pqr =,其边界条件为.0,10==c u u (4.13) 先讨论r=1,即p=q=1/2的情况,(4.12)成为 .1,...,2,1),(11-=-=--+c i u u r u u i i i i 令,01α+=u u 得,2012αα+=+=u u u …,01ααi u u u i i +=+=- …,01ααc u u u c c +=+=-将,1,00==u u c 代于最后一式,得参数,1c-=α所以.1,...,2,1,1-=-=ci ciu i 令i=a, 求得甲输光的概率为.1ba bc a u a +=-= 由于甲,乙的地位是对称的,故乙输光的概率为.ba a u a +=再讨论1≠r ,即q p ≠的情况.由(4.12)式得到)(11--=-=-∑i c k i i k c u u r u u =)(011u u r c ki i-=∑-=.1)1(1r r r u ck ---= (4.14) 令k=0,由于,0=c u 有rr u c---=11)1(11即,11)1(1crru --=- 代入(4.14)式,得.1,...,2,1,1-=--=c k rr r u cck k 令k=a,得到输光的概率,1cca a rr r u --= 由对称性,乙输光的概率为.,11111q p r r r r u c cb b =--= 由于,1=+b a u u 因此在1≠r 时,即q p ≠时两个人中也总有一个人要输光的. 例4.3 天气预报问题设昨日,今日都下雨,明日有雨的概率为0.7;昨日无雨今日有雨,明日有雨的概率为0.5;昨日有雨,今日无雨明日有雨的概率为0.4;昨日,今日均无雨,明日有雨的概率为0.2.若星期一星期二均下雨,求星期四下雨的概率.解 设昨日,今日连续两天有雨称为状态0(RR),昨日无雨今日有雨称为状态1(NR),昨日有雨今日无雨称为状态2(RN),昨日今日无雨称为状态3(NN),于是天气预报模型可看作一个四状态的马尔可夫链,其中转移概率为 7.0}{}{}{00====今昨明今昨明今连续三天有雨R R R P P R R R R P p , )(0}{01不可能事件今昨明今==R R R N P p ,,3.07.01}{}{02=-===今昨明今昨明今R R N P R R N R P p)(0}{03不可能事件今昨明今==R R N N P p ,其中R 代表有雨,N 代表无雨.类似地可得到所有状态的一步转移概率,于是它的一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100p p p p p p p p p p p p p p p p P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0其中两步转移矩阵为==P P P .)2(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡.64.010.016.010.048..020.012.020.030.015.020.035.018.021.012.049.0 由于星期四下雨意味着过程所处的状态为0或1,因此星期一星期二连续下雨,星期四下雨的概率为.61.012.049.0)2(01)2(00=+=+=p p p例 4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻T n ∈发生移动,且只能停留在1,2,3,4点上.当质点转移到2,3点时,它以1/3的概率向左或向右移动一格或停留在原处.当质点称动到点1时,它以概率1停留在原处.当质点移动到点4时,它以概率1移动到点3.若以n X 表示质点在时刻n 所处的位置,则},{T n X n ∈ 是一个齐次马尔可夫链,其转移概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=0100313131003131310001P 例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去.例4.5生灭链.观察某种生物群体,以n X 表示在时刻n 群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个单位的概率为i b ,减灭到i 个数量单位的概率为i a ,保持不变的概率为)(1i i i b a r +-=,则}0,{≥n X n 为齐次马尔可夫链,I={0,1,2,…,}.其转移概率为⎪⎩⎪⎨⎧+==+==.1,,,1,i j a j i r i j b p ii i ij称此马尔可夫链为生灭链. 4.2 遍历性设齐次马氏链的状态空间为I,若对于所有,,I a a j i ∈转移概率)(n P ij 存在极限 j ij n n P π=∞→)(lim (不依赖于i)或 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→=................................................)(212121j j jn P n P πππππππππ则称此链具有遍历性.又若∑=jj 1π,则同时称,...),(21πππ=为链的极限分布.齐次马氏链在什么条件下才具有遍历性?如何求出它的极限分布?这问题在理论上已经解决,但是要较多的篇幅.下面对有限链的遍历性给出一个充分条件. 定理4.4设齐次马氏链},{T n X n ∈的状态空间为P a a a I n },,...,,{21=是它的一步转移概率矩阵,如果存在正整数m,使对任意的j i a a ,都有 ,,...,2,1,,0)(N j i m p ij =>则此链具有遍历性,且有极限分布, ),,...,,(21N ππππ=它是方程组 P ππ=或即ij Ni i j p ∑==1ππ的满足条件∑==>Nj j j 11,0ππ的唯一解.在定理条件下马氏链的极限分布又是平稳分布.即若用π作为链的初始分布,即π=)0(p ,则链在任一时刻T n ∈的分布)(n p 永远与π一致,事实上ππππ======-P P P n P p n p n n ...)()0()(1 例4..6 设马尔可夫链的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9.005.005.01.08.01.02.01.07.0P 解 容易证明满足定理4.4条件.可得方程组⎪⎪⎩⎪⎪⎨⎧=++++=++=++=1,9.01.02.0,05.08.01.0,05.01.07.0321321332123211πππππππππππππππ解上述方程组得平稳分布为.5882.0,2353.0,1765.0321===πππ。

马尔科夫链

马尔科夫链

4.隐含状态转移概率矩阵A。 描述了HMM模型中各个状态之间的转移概率。 其中Aij=P(Sj|Si),1≤i,,j≤N. 表示在t时刻、状态为Si的条件下,在t+1时刻状态是 Sj的概率。 5.观测状态转移概率矩阵B(ConfusionMatrix) 令N代表隐含状态数目,M代表可观测状态数目,则: Bij=P(Oi|Sj),1≤i≤M,1≤j≤N.表示在t时刻、隐含状态是 Sj条件下,观察状态为Oi的概率。

隐马尔可夫模型(Hidden Markov Model, HMM)是统计模型,它用来描述一个含有隐含 未知参数的马尔可夫过程。其难点是从可观察的 参数中确定该过程的隐含参数。然后利用这些参 数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说 是直接可见的。这样状态的转换概率便是全部的 参数。而在隐马尔可夫模型中,状态并不是直接可 见的,但受状态影响的某些变量则是可见的。每 一个状态在可能输出的符号上都有一概率分布。 因此输出符号的序列能够透露出状态序列的一些 信息。

隐马尔可夫模型状态变迁图 x — 隐含状态 y — 可观察的输出 a — 转换概率(transition probabilities) b — 输出概率(output probabilities)
1.隐含状态S 这些状态之间满足马尔可夫性质,是马尔可夫模型中实际所 隐含的状态。这些状态通常无法通过直接观测而得到。(例 如S1、S2、S3等等) 2.可观测状态O 在模型中与隐含状态相关联,可通过直接观测而得到。(例 如O1、O2、O3等等,可观测状态的数目不一定要和隐含 状态的数目一致。) 3.初始状态概率矩阵π 表示隐含状态在初始时刻t=1的概率矩阵,(例如t=1时, P(S1)=p1、P(S2)=P2、P(S3)=p3,则初始状态概率矩阵 π=[p1p2p3].

马尔可夫链

马尔可夫链

马尔可夫过程一类随机过程。

它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。

该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。

例如森林中动物头数的变化构成——马尔可夫过程。

在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。

关于该过程的研究,1931年 A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。

目录马尔可夫过程离散时间马尔可夫链连续时间马尔可夫链生灭过程一般马尔可夫过程强马尔可夫过程扩散过程编辑本段马尔可夫过程Markov process1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。

1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。

流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。

类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。

人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。

这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。

荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。

青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。

如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。

液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。

马尔科夫链

马尔科夫链

马尔可夫分析法(markov analysis)又称为马尔可夫转移矩阵法,是指在马尔可夫过程的假设前提下,通过分析随机变量的现时变化情况来预测这些变量未来变化情况的一种预测方法。

马尔可夫分析起源于俄国数学家安德烈·马尔可夫对成链的试验序列的研究。

1907年马尔可夫发现某些随机事件的第N次试验结果常决定于它的前一次(N-1次)试验结果,马尔可夫假定各次转移过程中的转移概率无后效性,用以对物理学中的布朗运动作出数学描述;1923年由美国数学家诺伯特·维纳提出连续轨道的马尔可夫过程的严格数学结构;30-40年代由柯尔莫戈罗夫、费勒、德布林、莱维和杜布等人建立了马尔可夫过程的一般理论,并把时间序列转移概率的链式称为马尔可夫链。

马尔可夫分析法已成为市场预测的有效工具,用来预测顾客的购买行为和商品的市场占有率等,同时也应用在企业的人力资源管理上。

基本涵义单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。

在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化,企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。

市场占有率的预测可采用马尔可夫分析法,也就是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。

俄国数学家马尔可夫在20世纪初发现:一个系统的某些因素在转移中,第N次结果只受第N-1次结果影响,只与当前所处状态有关,与其他无关。

例如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计销售额都无关。

在马尔可夫分析中,引入状态转移这个概念。

所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转移到另一种状态的概率。

马尔可夫分析法的一般步骤为:1、调查目前的市场占有率情况;2、调查消费者购买产品时的变动情况;3、建立数学模型;4、预测未来市场的占有率。

马尔可夫链-

马尔可夫链-

利用积事件的概率及上述定义知: P{X0=i0,X1=i1,…,Xn=in} =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1}P{X0=i0,X1=i1,…, Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{X0=i0,X1=i1,…,Xn-1=in-1} =… =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1|Xn-2=in-2}…P{X1=i1| X0=i0}P{X0=i0}. 即马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in} 所决定. 如何确定这个条件概率,是马尔可夫链理论和应 用中的重要问题之一.
p21 p22 … p2n … … … … …… pi1 pi2 … pin … …… … … …
称为系统状态(1) pij≥0, i,j∈I; (2) pij=1, i∈I.
jI
通常称满足(1)、(2)性质的矩阵为随机矩阵. 为进一步讨论马尔可夫链的统计性质, 还须了解n步转 移概率,初始概率和绝对概率的概念. 定义2.4 称条件概率 pij(n)=P{Xm+n=j|Xm=i},i,j∈I,m≥0,n≥1
改变游动的概率规则,可以得到不同方式的随机 游动和相应的马氏链.如当把点1(及5)改为吸收 壁,Q一旦到达点1(5),则将永远留在点1(5)上.此 时相应链的转移概率矩阵只须在上述矩阵P中将 第一行改为(1,0,0,0,0),第五行改为(0,0,0,0,1) 即可.
例2.3 某计算机机房的一台计算机经常出故障,研究者每 隔15分钟观察一次计算机的运行状态,收集了24小时的数 据(共做97次观察).用1表示正常状态,0表示不正常状态, 所得的数据序列为:

为马尔可夫链{Xn,n∈T}的n步转移概率,并称 P(n)=(pij(n)) 为马尔可夫链的n步转移矩阵,其中pij(n)≥0, pij(n)=1

马尔科夫链

马尔科夫链

1.马尔可夫链马尔可夫过程是随机过程的一个分支, 它的最基本特征是“无后效性”, 即在已知某一随机过程“现在”的条件下, 其“将来”与“过去”是独立的。

马尔可夫链是状态与时间参数都离散的马尔可夫过程。

定义在概率空间(Ω,F , P ) 上的随机序列{X (t),t ∈T }, 其中T = {0, 1, 2, ⋯}, 状态空间I = {0, 1, 2,⋯}, 称为马尔可夫链, 如果对任意正整数L ,m ,k, 及任意非负整数j L >⋯>j 2>j 1 (m>j L ), i m + k , i m , i jL , ⋯, i j2,i j1有P{X (m + k) = i m + k ︳X (m) = i m , X jL = i jL , ⋯, X j2 = i j2 , X j1 = i j1}= P{X (m + k) = i m + k ︳X (m ) = i m } (1) 这里,需假定P{X (m) = i m , X (jL) = i jL , ⋯, X (j1) =i j1} > 0实际应用中, 一般考虑齐次马尔可夫链, 即对任意 k,n ∈N +,有P ij (n,k)=P ij (k) i,j = 0, 1, ⋯ (2)其中P ij (n,k)表示“于n 阶段状态为i,经k 步转移至状态j 的概率”, P ij (k)表示“从状态i 经k 步转移至状态j 的概率”。

齐次的马尔可夫链{X (t)}完全由其初始分布{P (i),i= 0,1,⋯}及其状态转移概率矩阵(状态转移概率P ij ,(i,j=0,1,⋯) 所构成的矩阵)所决定。

2.权马尔可夫链预测的思想由于生产井产量是一相依的随机变量,各阶自相关系数刻画了各种滞时的产量间的相关关系及其强弱。

因而,可考虑先分别依其前面若干时段的产量对该时段产量状况进行预测,然后,按前面各时段与该时段相依关系的强弱加权求和,即达到充分、合理利用信息进行预测的目的。

马尔可夫链

马尔可夫链

马尔可夫链马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。

该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。

1原理简介马尔可夫链(Markov Chain),描述了一种状态序列,其每个状态值取决于前面有限个状态[1]。

马尔可夫链是具有马尔可夫性质的随机变量X_1,X_2,X_3...的一个数列。

这些变量的范围,即它们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。

如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则P(X_{n+1}=x|X_1=x_1,X_2=x_2,...,X_n=x_n) = P(X_{n+1}=x|X_n=x_n).这里x为过程中的某个状态。

上面这个恒等式可以被看作是马尔可夫性质。

2理论发展马尔可夫在1906年首先做出了这类过程。

而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。

物理马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算术编码(著名的LZMA数据压缩算法就使用了马尔可夫链与类似于算术编码的区间编码)。

马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。

隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。

3过程马尔可夫过程的定义:⑴设{(X(t),t∈T)}是一个随机过程,如果{X(t),t∈T}在t0时刻所处的状态为已知时,与它在时刻t>t0之前所处的状态无关,则称{X(t),t∈T)}具有马尔可夫性。

⑵设{X(t),t∈T)}的状态空间为S,如果对于任意的n≧2,任意的t1<t2<....<tn∈T,在条件X(ti)=xi,xi∈S,i=1,2,...,n-1下,X(tn)的条件分布函数恰好等于在条件X(tn-1)=xn-1下的条件分布函数,即P(X(tn)<=xn|X(t1)=x1,X(t2)=x2,...,X(tn-1)=xn-1)=P(X(tn)<=xn|X(tn-1)=xn-1)则称{(X(t),t∈T)}为马尔可夫过程。

第20讲马尔可夫(Markov)链

第20讲马尔可夫(Markov)链
6
性质: (1)
∑p
j =1
N
j
(n) = 1 ( s , n ) = ∑ P{ xn = a j x s = ai } = 1
j =1
N
(2)
∑p
j =1
N
N
ij
(3)
p j ( n ) = ∑ pij ( s , n ) pi ( s )
i =1
(4)
p ( n ) = P T ( s , n )p ( s )
p j (n) = P{xn = a j }
p(n) = [ p1 (n)
p2 (n) L pN (n)]
T
pij (s, n) = P{xn = a j xs = ai }
P (s, n) L P N (s, n) 11 1 P(s, n) = M M M PN1 (s, n) L PNN (s, n)
第二十讲 主要内容:
• 马尔可夫(Markov)链 马尔可夫链的定义及一般特性 齐次马尔可夫链 平稳马尔可夫链及其求解 马尔可夫链状态分类 马尔可夫链的遍历性
1
6.1 马尔可夫链 1、定义 状态和时间参量都是离散的随机过程,在tr 时刻状 态已知的条件下,其后tr+1时刻所处的状态只与tr 时刻的 状态有关,而与以前tr-1、tr-2……时刻的状态无关,则该 过程称马尔可夫链。 用公式可表示如下:
p j , j = 1, 2, L , N 是该链平稳时的状态概率。
定理 对有穷马尔可夫链,如存在正整数s,使
Pij (s ) > 0
式中 i , j = 1, 2, L , N ,则该链具有遍历性。
17
例3:设马尔可夫链的一步转移矩阵为

第10章 - 马尔可夫链

第10章 - 马尔可夫链
有 P{ X mn a j | Xt1 ai1 , Xt2 ai2 ,, Xtr air , X m ai }
P{Xmn a j | Xm ai }
记 pij (m, m n) P{ Xmn a j | Xm ai }
称 pij (m, m n) 为马氏链在时刻 m 处于状态 ai 条件下,
=P{ X n1 ai1 }P{ X n2 ai2 | X n1 ai1 }P{ X n3 ai3 | X n2 ai2 }
P{ X nk aik | X nk1 aik1 }
pi1 (n1 ) pi1i2 (n2 n1 ) pik1ik (nk nk1 )
q2
r2
p2






i
0



0
qi
ri
pi
0
这里 pi 0,qi 0,ri 0, 并且 pi qi ri 1, i 1,2,
p0 0, r0 0, r0 p0 1
01
如果状态空间I {0,1,2,, N }是有限的,且状态 0 与状态
N 都为吸收状态,即 r0 1, p0 0, rN 1,qN 0
称为具有两个吸收壁的随机游动.
qi
ri pi
01
i 1 i i 1
N
第二节
多步转移概率的确定
定理: 设{X (n), n 0,1,2,}为齐次马氏链,则对任意的 u, v 有
第十章 马尔可夫链
• 第一节 马尔可夫链的概念及转移概率 • 第二节 多步转移概率的确定 • 第三节 马氏链的有限维分布 • 第四节 遍历性

第七讲马尔可夫链

第七讲马尔可夫链
E{a1,a2,,aN},若对于任意的 n,满足 P { X n a i(n )|X n 1 a i(n 1 ),X n 2 a i(n 2 ),,X 1 a i(1 )}
P { X n a i(n )|X n 1 a i(n 1 )}(i1,2,,N) 则称 { X n }为马尔可夫链(简称马氏链)。
为了完整的描述一个随机过程,需要给出任意 有限维概率函数。 对于马氏链的任意有限维概率函 数完全由初始分布和转移概率矩阵来描述。
设 {X(n),n0,1 ,2,}为一马氏链,其状态空间
E{0,1,2,}或为有限子集。
令 p i(0 ) P [X (0 ) i], i E,且对任意的 i E
均有
pi (0) 0
若与m无关,则称该马氏链为齐次马氏链,此时
pij (m,mk) 表示为 p ij ( k ) 。
(1) 一步转移概率
在齐次条件下,令 p ij( m ,m k ) P [X m k a j|X m a i]
中 k 1 则
pij(1 )pij(m ,m 1 )pij
称为一步转移概率。
由所有一步转移概率 p ij 构成的矩阵
均有
pi (n) 0 pi (n) 1 iE
则称 {pi(n),iE}为该马氏链的绝对分布,也称
绝对概率。
定理 马氏链的绝对概率由初始分布和相应的转移概 率唯一确定。
利用C-K方程,则n步转移矩阵可由一步转移 矩阵唯一确定。
推论 马氏链的绝对概率由初始分布和一步转移概率 唯一确定。
转移图(状态转移图与概率转移图)
p jj (n)
n0
推论 如果状态j是非常返的,则必有
ln im pjj(n)0
设i是一常返态,则从i出发可经过n (n1,2,)步 首次返回i,
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
n
P{Tij l, X n j | X 0 i} P{Tij l | X 0 i}P{X n j | Tij l, X 0 i}
l 1
l 1
n
fij (l)P{X n j | X 0 i, X1 j, X l1 j, X l j} l 1
n
n
fij (l)P{X n j | X l j} fij (l)Pjj (n l)
p
j
jl
n
m
p
j
i
mpii
n
pij
l
pii
n
定理8 若 i j ,则 (1)i与j同为常返或同为非常返; (2)若i与j常返,则i与j同为正常返或同为零常返; (3)i与j或同为非周期的,或同为周期的且有相同的周期。
遍历性与平稳分布
1 遍历性
定义1 设齐次马氏链 {X (n), n 0}的状态空间为E,若对一切 i, j E ,存在 不依赖于i的极限
显然有
fij () P{Tij } 1 fij
(i 不能到达 j 的概率)
0 fij (n) fij 1
fjj 表示从 j 出发迟早返回 j 的概率
定理4: 对任何状态 i, j G, n 1, 有
n
pij n fij lp jj n l i 1
证明:
pij (n) P{X n j | X 0 i} P{Tij n, X n j | X 0 i}
则称马尔可夫链具有遍历性。并 p j称为状态j的稳态概率。
定理9
对于一有限状态的马氏链,如 m 0,对一切i, j I, pij m 0
则 此链具有遍历性。且 p j p1, p2,p3, , pN

的满足条件

N
p j pi pij j 1,2, , N i0
的唯一解
n
fij fij (l) 0 l 1
必要性:若 fij 0 ,则由 fij fij (n) n1
使 fij (n) 0 ,故 i j
至少有一个
n 1
fii 表示自状态i出发,在有限步内迟早要返回状态i的概率, f ii是
在0与1之间的一个数。
状态分类的判别
定义7 设i 为常返态,如果 ui 则称状态i是正常返态;如果 ui
为 L为状态i的周期。若L>1,则称状态i是周期的,若L=1,则称状态i为非 周期的。 如果状态i是非周期且正常返的,则称状态i是遍历的。
马氏状态分类图
状态空间
周期
非周期
常返
非常返
正常返
零常返
遍历
状态分类判别法:
(1) i非常返 (2)i零常返 (3)i正常返
(4) i 遍历
pii (n) n 1
相通具有以下等价关系:
(1)若 i j ,则 i i ,自返性 (2)若 i j ,则 j i ,对称性 (3)若 i r , r j ,则 i j ,传递性
二、状态的分类
定义3 设 {X (n), n 0,1,2,}为一马氏链,对任一状态i与j,称
Tij min{ n, X 0 i, X n j, n 0} 为 {X (n), n 0,1,2,} 自状态i出发首次进入状态j的时刻,或称为自i到j 的首次到达时间(首达时)。
到达具有传递性,即若 i r , r j ,则 i j
证明:若 i r l 1 Pir l 0
r j k 1 Prj k 0
Pij l k Pik l Pkj k kI
i j
Pir l Prj k 0
定义2:若自状态i可达状态j,同时自状态j也可达状态i,则称状态 和状态相通,记为 i j
lim pjjn 0
n
定理6 fij 0的充要条件是 i j
证明:充分性:若 i j ,则根据到达的定义,总存在某个 n 1,使
所以
pij (n) 0
n
pij (n) fij (l) p jj (n l) 0 l 1
这样 fij (1) fij (2), fij (n),至少有一个为正(不为0),所以
1/2
① 0,1,3 常返态;2非常返态
0 1/4 1/4
②{0,1,2,3}; {0,1,3}; {0,1};{3};
③ {0,1,3}; {0,1}
1 2
1 2
0
P1
1 2
1 2
0
0 0 1
P2
1 2
1 2
1 2
1 2
1/2
1/2
2
3
1
1/4
1
1/4
1/2
N
0 p j 1, p j 1 j1
状态空间分解
定义
设 V G 若从V中任一状态i出发不能到达V外的任一状态,则称V为闭集。
显然,对一切 n 1 和 i, j V 有
pij n 1
jV
定理9 马氏链的所有常返状态的集合是一闭集。
定理10 (分解定理)状态空间E必可分解为 E N C1 C2 Ck
l 1
l 1
定义6 如果 f jj 1 ,则称状态j是常返的。如果 f jj 1,则 称状态j是非常返的(或称为瞬时的)。如果马尔可夫链 的任一状态都是常返的,则称此链为常返马尔可夫链。
定理5:状态j是常返( f jj 1 )的充要条件为
p jj n
n0
推论:如果状态j是非常返的,则必有
马氏链中的状态分类
一、到达与相通
定义1:如果对于状态 ai 与a(j 可简写为i和 j)总存在某个 n ( 1) ,
使得 pij (n) 0,则称自i状态经过n步可以到达j状态,并记为 i j
反之,若对所有的 n ( 1)有 pij (n) 0 ,则自i状态不可以到达j状态,并 记为 i j
Tij 是一随机变量。另外,对某一 X n 可能永不取值 j,这时我们就规定
Tij
T00=1
T01=1
T21=2
T02=2
0
1
T11=2
T20=1
T22=3
2
定义4 设 {X (n), n 0,1,2,}为一马氏链,对任一状态i与j,称
fij (n) P{Tij n | X0 i} P{X n j, X n1 j, , X1 j | X0 i}
fij P{X m j, 对一切m | X 0 i}
定义5 设 {X (n), n 0,1,2,}为一马氏链,对任一状态i与j,称
fij
fij (n)
P{Tij n | X0 i} P{Tij X0 i}
1n
1n
为 {X (n), n 0,1,2,} 自状态i出发迟早要到达状态j的概率。
则称状态i是零常返态。
定理7 设j为常返状态,有周期L(L>1),则
L
lim p jj n
n
uj
推论:如果j是常返态,则
(1)j零常返当且仅当 (2)j遍历当且仅当
n
lim pjjn
n
lim
p
j
j
n
1
uj
0
定义10 设正整数集合,n:n 1, pjj n 0 非空,则称该集合的最大公约数
0 0 0 0
1/2
0 1/2
1
1/2 1/2 1/2
1/2
2 1/2
3
1/2
00 11 22
33
2,4,6,
d 2 链周期为2
I 0,1 2,3
0,1 2,3 0,1
例: I 0,1,2,3
1 2
1 2
0 0
1 P 2
1 2
0 0
1 1 1 1
04
4
0
4
0
14
①状态分类 ②写出所有闭集及不可约闭集 ③写出一马尔科夫链
其中N是全体非常返态组成的集合,C1 C2 Ck 是互不相交的常返 态闭集组成。而且
(1)对每一确定的k, Ck 内任意两状态相通; (2) Ck 与 Cg ( k g )中的状态之间不相通;
例: I 0,1,2,3
0 0
1 2
1 2
P 0 0
1 2
1 2
1
2
1 2
1 2
1 2
pii (n) 且 n1
pii (n) 且 n1
lim
n
pii
(n)
0
lim
n
pii (n)
0
pii n
n1
且 lim pii n
n
1
ui
0
引理1 对任意i和j,若 i j 则存在正数α、β及正整数l、m,使对任意正整数,有
pii l n m pijlpjjnpjim pjjn
为 {X (n), n 0,1,2,}自状态i出发经过n步首次进入状态j的概率。
引理
fij (n) P{X n j ; X m j, m 1,2,, n 1| X 0 i}
p p p ii1 i1i2
in1 j
,n 1
i1 j in1 j
从而 fij (1) pij P{X1 j | X 0 i}
相关文档
最新文档