伍德里奇《计量经济学导论》笔记和课后习题详解(计量经济学的性质与经济数据)【圣才出品】

合集下载

《计量经济学导论》考研伍德里奇考研复习笔记二

《计量经济学导论》考研伍德里奇考研复习笔记二

《计量经济学导论》考研伍德里奇考研复习笔记二第1章计量经济学的性质与经济数据1.1 复习笔记一、什么是计量经济学计量经济学是以一定的经济理论为基础,运用数学与统计学的方法,通过建立计量经济模型,定量分析经济变量之间的关系。

在进行计量分析时,首先需要利用经济数据估计出模型中的未知参数,然后对模型进行检验,在模型通过检验后还可以利用计量模型来进行预测。

在进行计量分析时获得的数据有两种形式,实验数据与非实验数据:(1)非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。

非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。

(2)实验数据通常是通过实验所获得的数据,但社会实验要么行不通要么实验代价高昂,所以在社会科学中要得到这些实验数据则困难得多。

二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。

1.对所关心问题的详细阐述问题可能涉及到对一个经济理论某特定方面的检验,或者对政府政策效果的检验。

2构造经济模型经济模型是描述各种经济关系的数理方程。

3经济模型变成计量模型先了解一下计量模型和经济模型有何关系。

与经济分析不同,在进行计量经济分析之前,必须明确函数的形式,并且计量经济模型通常都带有不确定的误差项。

通过设定一个特定的计量经济模型,我们就知道经济变量之间具体的数学关系,这样就解决了经济模型中内在的不确定性。

在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。

一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。

4搜集相关变量的数据5用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。

三、经济数据的结构1横截面数据(1)横截面数据集,是指在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-时间序列回归中的序列相关和异方差性

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-时间序列回归中的序列相关和异方差性

第12章时间序列回归中的序列相关和异方差性12.1复习笔记考点一:含序列相关误差时OLS 的性质★★★1.无偏性和一致性当时间序列回归的前3个高斯-马尔可夫假定成立时,OLS 的估计值是无偏的。

把严格外生性假定放松到E(u t |X t )=0,可以证明当数据是弱相关时,∧βj 仍然是一致的,但不一定是无偏的。

2.有效性和推断假定误差存在序列相关,即满足u t =ρu t-1+e t ,t=1,2,…,n,|ρ|<1。

其中,e t 是均值为0方差为σe 2满足经典假定的误差。

对于简单回归模型:y t =β0+β1x t +u t 。

假定x t 的样本均值为零,因此有:1111ˆn x t tt SST x u -==+∑ββ其中:21nx t t SST x ==∑∧β1的方差为:()()122221111ˆ/2/n n n t j xt t x x t t j t t j Var SST Var x u SST SST x x ---+===⎛⎫==+ ⎪⎝⎭∑∑∑βσσρ其中:σ2=Var(u t )。

根据∧β1的方差表达式可知,第一项为经典假定条件下的简单回归模型中参数的方差。

因此,当模型中的误差项存在序列相关时,OLS 估计的方差是有偏的,假设检验的统计量也会出现偏差。

3.拟合优度当时间序列回归模型中的误差存在序列相关时,通常的拟合优度指标R 2和调整R 2便会失效;但只要数据是平稳和弱相关的,拟合优度指标就仍然有效。

4.出现滞后因变量时的序列相关(1)在出现滞后因变量和序列相关的误差时,OLS 不一定是不一致的假设E(y t |y t-1)=β0+β1y t-1。

其中,|β1|<1。

加上误差项把上式写为:y t =β0+β1y t-1+u t ,E(u t |y t-1)=0。

模型满足零条件均值假定,因此OLS 估计量∧β0和∧β1是一致的。

误差{u t }可能序列相关。

虽然E(u t |y t-1)=0保证了u t 与y t-1不相关,但u t-1=y t -1-β0-β1y t-2,u t 和y t-2却可能相关。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记一、对定性信息的描述定性信息通常以二值信息的形式出现。

在计量经济学中,二值变量最常见的称呼是虚拟变量。

二、只有一个虚拟自变量1.只有一个虚拟自变量的简单模型考虑如下决定小时工资的简单模型:001wage female educ uβδβ=+++用0δ表示female 的参数,以强调虚拟变量参数的含义。

假定零条件均值假定() 0E u female educ =,成立,那么:()()0| 1 |0 E wage female educ E wage female educ δ==-=,,由于female=1对应于女性且female=0对应于男性,所以可以简单的把模型写为:()()0| | E wage female educ E wage male educ δ=-,,这种情况可以在图形上描绘成男性与女性之间的截距变化。

男性线的截距是0β,女性线的截距是00βδ+。

由于只有两组数据,所以只需要两个不同的截距。

这意味着,除了0β之外,只需要一个虚拟变量。

因为female +male=1,意味着male 是female 的一个完全线性函数,如果使用两个虚拟变量就会导致完全多重共线性,这就是虚拟变量陷阱。

2.当因变量为log(y)时,对虚拟解释变量系数的解释在应用研究中有一个常见的设定,当自变量中有一个或多个虚拟变量时,因变量则以对数形式出现。

在这种情况下,此系数具有一种百分比解释。

当log(y)是一个模型的因变量时,将虚拟变量的系数乘以100,可解释为y 在保持所有其他因素不变情况下的百分数差异。

当一个虚拟变量的系数意味着y 有较大比例的变化时,可以得到精确的百分数差异。

一般地,如果1β是一个虚拟变量(比方说x 1)的系数,那么,当log(y)是因变量时,在x 1=1时预测的y 相对于在x 1=0时预测的y,精确的百分数差异为:()1?100exp 1β-??三、使用多类别虚拟变量1.在方程中包括虚拟变量的一般原则如果回归模型具有g 组或g 类不同截距,那就需要在模型中包含g-1个虚拟变量和一个截距。

伍德里奇计量经济学导论第6版笔记和课后习题答案

伍德里奇计量经济学导论第6版笔记和课后习题答案

第1章计量经济学的性质与经济数据1.1复习笔记考点一:计量经济学★1计量经济学的含义计量经济学,又称经济计量学,是由经济理论、统计学和数学结合而成的一门经济学的分支学科,其研究内容是分析经济现象中客观存在的数量关系。

2计量经济学模型(1)模型分类模型是对现实生活现象的描述和模拟。

根据描述和模拟办法的不同,对模型进行分类,如表1-1所示。

(2)数理经济模型和计量经济学模型的区别①研究内容不同数理经济模型的研究内容是经济现象各因素之间的理论关系,计量经济学模型的研究内容是经济现象各因素之间的定量关系。

②描述和模拟办法不同数理经济模型的描述和模拟办法主要是确定性的数学形式,计量经济学模型的描述和模拟办法主要是随机性的数学形式。

③位置和作用不同数理经济模型可用于对研究对象的初步研究,计量经济学模型可用于对研究对象的深入研究。

考点二:经济数据★★★1经济数据的结构(见表1-3)2面板数据与混合横截面数据的比较(见表1-4)考点三:因果关系和其他条件不变★★1因果关系因果关系是指一个变量的变动将引起另一个变量的变动,这是经济分析中的重要目标之计量分析虽然能发现变量之间的相关关系,但是如果想要解释因果关系,还要排除模型本身存在因果互逆的可能,否则很难让人信服。

2其他条件不变其他条件不变是指在经济分析中,保持所有的其他变量不变。

“其他条件不变”这一假设在因果分析中具有重要作用。

1.2课后习题详解一、习题1.假设让你指挥一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。

(i)如果你能指挥你想做的任何实验,你想做些什么?请具体说明。

(ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。

你能得到它们四年级班级规模和四年级末的标准化考试分数。

你为什么预计班级规模与考试成绩成负相关关系?(iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。

答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】
二、经验经济分析的步骤 经验分析就是利用数据来检验某个理论或估计某种关系。 1.对所关心问题的详细阐述 在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。经 济模型总是由描述各种关系的数理方程构成。 2.经济模型变成计量模型 先了解一下计量模型和经济模型有何关系。与经济分析不同,在进行计量经济分析之前, 必须明确函数的形式。 通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。
Байду номын сангаас
2.假设让你进行一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
4 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台

(i)如果你能设定你想做的任何实验,你想做些什么?请具体说明。 (ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。你能得到他们 四年级班级规模和四年级末的标准化考试分数。你为什么预计班级规模与考试成绩存在负相 关关系? (iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。 答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如 能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。因此可以看到班级 规模(在伦理考量和资源约束条件下的主体)的显著差异。 (ii)负相关关系意味着更大的班级规模与更差的考试成绩是有直接联系的,因此可以 发现班级规模越大,导致考试成绩越差。 通过数据可知,两者之间的负相关关系还有其他的原因。例如,富裕家庭的孩子在学校 可能更多的加入小班,而且他们的成绩优于平均水平。 另外一个可能性是:学校的原则是将成绩较好的学生分配到小班。或者部分父母可能坚 持让自己的孩子进入更小的班级,而同样这些父母也更多的参与子女的教育。 (iii)鉴于潜在的其他混杂因素(如 ii 所列举),负相关关系并不一定意味着较小的班 级规模会导致更好的成绩。控制混杂因素的方法是必要的,而这正是多重回归分析的主题。

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

伍德⾥奇《计量经济学导论》笔记和课后习题详解(⼀个经验项⽬的实施)【圣才出品】第19章⼀个经验项⽬的实施19.1 复习笔记⼀、问题的提出提出⼀个⾮常明确的问题,其重要性不容忽视。

如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚⾄收集错误时期的数据。

1.查找数据的⽅法《经济⽂献杂志》有⼀套细致的分类体系,其中每篇论⽂都有⼀组标识码,从⽽将其归于经济学的某⼀⼦领域之中。

因特⽹(Internet)服务使得搜寻各种主题的已发表论⽂更为⽅便。

《社会科学引⽤索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论⽂时⾮常有⽤,包括那些时常被其他著作引⽤的热门论⽂。

⽹络搜索引擎“⾕歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。

2.构思题⽬时⾸先应明确的⼏个问题(1)要使⼀个问题引起⼈们的兴趣,并不需要它具有⼴泛的政策含义;相反地,它可以只有局部意义。

(2)利⽤美国经济的标准宏观经济总量数据来进⾏真正原创性的研究⾮常困难,尤其对于⼀篇要在半个或⼀个学期之内完成的论⽂来说更是如此。

然⽽,这并不意味着应该回避对宏观或经验⾦融模型的估计,因为仅增加⼀些更新的数据便对争论具有建设性。

⼆、数据的收集1.确定适当的数据集⾸先必须确定⽤以回答所提问题的数据类型。

最常见的类型是横截⾯、时间序列、混合横截⾯和⾯板数据集。

有些问题可以⽤任何⼀种数据结构进⾏分析。

确定收集何种数据通常取决于分析的性质。

关键是要考虑能够获得⼀个⾜够丰富的数据集,以进⾏在其他条件不变下的分析。

同⼀横截⾯单位两个或多个不同时期的数据,能够控制那些不随时间⽽改变的⾮观测效应,⽽这些效应通常使得单个横截⾯上的回归失效。

2.输⼊并储存数据⼀旦你确定了数据类型并找到了数据来源,就必须把数据转变为可⽤格式。

通常,数据应该具备表格形式,每次观测占⼀⾏;⽽数据集的每⼀列则代表不同的变量。

伍德里奇《计量经济学导论》 第 版 笔记和课后习题详解 章

伍德里奇《计量经济学导论》 第 版 笔记和课后习题详解 章

使用普通最小二乘法,此时最小化的残差平方和为()211niii y x β=-∑利用一元微积分可以证明,1β必须满足一阶条件()110niiii x y x β=-=∑从而解出1β为:1121ni ii nii x yxβ===∑∑当且仅当0x =时,这两个估计值才是相同的。

2.2 课后习题详解一、习题1.在简单线性回归模型01y x u ββ=++中,假定()0E u ≠。

令()0E u α=,证明:这个模型总可以改写为另一种形式:斜率与原来相同,但截距和误差有所不同,并且新的误差期望值为零。

证明:在方程右边加上()0E u α=,则0010y x u αββα=+++-令新的误差项为0e u α=-,因此()0E e =。

新的截距项为00αβ+,斜率不变为1β。

2(Ⅰ)利用OLS 估计GPA 和ACT 的关系;也就是说,求出如下方程中的截距和斜率估计值01ˆˆGPA ACT ββ=+^评价这个关系的方向。

这里的截距有没有一个有用的解释?请说明。

如果ACT 分数提高5分,预期GPA 会提高多少?(Ⅱ)计算每次观测的拟合值和残差,并验证残差和(近似)为零。

(Ⅲ)当20ACT =时,GPA 的预测值为多少?(Ⅳ)对这8个学生来说,GPA 的变异中,有多少能由ACT 解释?试说明。

答:(Ⅰ)变量的均值为: 3.2125GPA =,25.875ACT =。

()()15.8125niii GPA GPA ACT ACT =--=∑根据公式2.19可得:1ˆ 5.8125/56.8750.1022β==。

根据公式2.17可知:0ˆ 3.21250.102225.8750.5681β=-⨯=。

因此0.56810.1022GPA ACT =+^。

此处截距没有一个很好的解释,因为对样本而言,ACT 并不接近0。

如果ACT 分数提高5分,预期GPA 会提高0.1022×5=0.511。

(Ⅱ)每次观测的拟合值和残差表如表2-3所示:根据表可知,残差和为-0.002,忽略固有的舍入误差,残差和近似为零。

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

第19章一个经验项目的实施19.1 复习笔记一、问题的提出提出一个非常明确的问题,其重要性不容忽视。

如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚至收集错误时期的数据。

1.查找数据的方法《经济文献杂志》有一套细致的分类体系,其中每篇论文都有一组标识码,从而将其归于经济学的某一子领域之中。

因特网(Internet)服务使得搜寻各种主题的已发表论文更为方便。

《社会科学引用索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论文时非常有用,包括那些时常被其他著作引用的热门论文。

网络搜索引擎“谷歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。

2.构思题目时首先应明确的几个问题(1)要使一个问题引起人们的兴趣,并不需要它具有广泛的政策含义;相反地,它可以只有局部意义。

(2)利用美国经济的标准宏观经济总量数据来进行真正原创性的研究非常困难,尤其对于一篇要在半个或一个学期之内完成的论文来说更是如此。

然而,这并不意味着应该回避对宏观或经验金融模型的估计,因为仅增加一些更新的数据便对争论具有建设性。

二、数据的收集1.确定适当的数据集首先必须确定用以回答所提问题的数据类型。

最常见的类型是横截面、时间序列、混合横截面和面板数据集。

有些问题可以用任何一种数据结构进行分析。

确定收集何种数据通常取决于分析的性质。

关键是要考虑能够获得一个足够丰富的数据集,以进行在其他条件不变下的分析。

同一横截面单位两个或多个不同时期的数据,能够控制那些不随时间而改变的非观测效应,而这些效应通常使得单个横截面上的回归失效。

2.输入并储存数据一旦你确定了数据类型并找到了数据来源,就必须把数据转变为可用格式。

通常,数据应该具备表格形式,每次观测占一行;而数据集的每一列则代表不同的变量。

(1)不同类型数据的输入要求①对时间序列数据集来说,只有一种合理的方式来进行数据的输入和存储:即以时间为序,最早的时期列为第一次观测,最近的时期列为最后一次观测。

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-模型设定和数据问题的深入探讨【圣才出品】

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-模型设定和数据问题的深入探讨【圣才出品】

第9章模型设定和数据问题的深入探讨9.1复习笔记考点一:函数形式设误检验(见表9-1)★★★★表9-1函数形式设误检验考点二:对无法观测解释变量使用代理变量★★★1.代理变量代理变量就是某种与分析中试图控制而又无法观测的变量相关的变量。

(1)遗漏变量问题的植入解假设在有3个自变量的模型中,其中有两个自变量是可以观测的,解释变量x3*观测不到:y=β0+β1x1+β2x2+β3x3*+u。

但有x3*的一个代理变量,即x3,有x3*=δ0+δ3x3+v3。

其中,x3*和x3正相关,所以δ3>0;截距δ0容许x3*和x3以不同的尺度来度量。

假设x3就是x3*,做y对x1,x2,x3的回归,从而利用x3得到β1和β2的无偏(或至少是一致)估计量。

在做OLS之前,只是用x3取代了x3*,所以称之为遗漏变量问题的植入解。

代理变量也可以以二值信息的形式出现。

(2)植入解能得到一致估计量所需的假定(见表9-2)表9-2植入解能得到一致估计量所需的假定2.用滞后因变量作为代理变量对于想要控制无法观测的因素,可以选择滞后因变量作为代理变量,这种方法适用于政策分析。

但是现期的差异很难用其他方法解释。

使用滞后被解释变量不是控制遗漏变量的唯一方法,但是这种方法适用于估计政策变量。

考点三:随机斜率模型★★★1.随机斜率模型的定义如果一个变量的偏效应取决于那些随着总体单位的不同而不同的无法观测因素,且只有一个解释变量x,就可以把这个一般模型写成:y i=a i+b i x i。

上式中的模型有时被称为随机系数模型或随机斜率模型。

对于上式模型,记a i=a+c i和b i=β+d i,则有E(c i)=0和E(d i)=0,代入模型得y i=a+βx i+u i,其中,u i=c i+d i x i。

2.保证OLS无偏(一致性)的条件(1)简单回归当u i=c i+d i x i时,无偏的充分条件就是E(c i|x i)=E(c i)=0和E(d i|x i)=E(d i)=0。

《计量经济学导论》伍德里奇-第四版-笔记和习题答案(2-8章)

《计量经济学导论》伍德里奇-第四版-笔记和习题答案(2-8章)


inc e inc incE e inc 0 。


inc e inc

inc

2
Var e inc inc e2 。
(Ⅲ)低收入家庭支出的灵活性较低,因为低收入家庭必须首先支付衣食住行等必需品。而高收入家庭具有 较高的灵活性,部分选择更多的消费,而另一部分家庭选择更多的储蓄。这种较高的灵活性暗示高收入家庭中储 蓄的变动幅度更大。
(Ⅲ)在(Ⅱ)的方程中,如果备考课程有效,那么 1 的符号应该是什么? (Ⅳ)在(Ⅱ)的方程中, 0 该如何解释? 答: (Ⅰ)构建实验时,首先随机分配准备课程的小时数,以保证准备课程的时间与其他影响 SAT 的因素是
houri :i 1 , , n , n 表示试验中所包括的学 独立的。然后收集实验中每个学生 SAT 的数据,建立样本 sati ,
因此 GPA 0.5681 0.1022 ACT 。 此处截距没有一个很好的解释, 因为对样本而言,ACT 并不接近 0。 如果 ACT 分数提高 5 分,预期 GPA 会提高 0.1022× 5=0.511。 (Ⅱ)每次观测的拟合值和残差表如表 2-3 所示: 表 2-3
i
GPA
GPA^^源自 7.利用 Kiel and McClain(1995)有关 1988 年马萨诸塞州安德沃市的房屋出售数据,如下方程给出了房屋 价格( price )和距离一个新修垃圾焚化炉的距离( dist )之间的关系:
log price 9.40 0.312log dist n 135 , R 2 0.162
y 0 0 1 x u 0
令新的误差项为 e u 0 ,因此 E e 0 。 新的截距项为 0 0 ,斜率不变为 1 。 2.下表包含了 8 个学生的 ACT 分数和 GPA(平均成绩) 。平均成绩以四分制计算,且保留一位小数。 GPA ACT student 1 2 3 4 5 6 7 8

伍德里奇《计量经济学导论》笔记和课后习题详解(高深的面板数据方法)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(高深的面板数据方法)【圣才出品】

二、随机敁应模型
1.随机敁应模型
仍同一个非观测敁应模型开始,
yit β0 β1xit1 β2 xit2
βk xitk αi uit
(1)
明确引入一个截距项,假定非观测敁应 αi 有零均值,且不每一个解释变量都无关:Cov
(xitj,αi)=0,t=1,2,…,T;j=1,2,…,k,则斱程(1)就成为一个随机敁应模型。
2 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

板数据集来说丌是徆现实。 ②它所给出的 βj 估计值不用除均值数据所做回弻得到的估计值恰好一样,而且标准误
和其他主要统计量也一样。因此,固定敁应估计量可以由虚拟变量回弻得到。 ③可以直接算出恰弼的自由度。 ④仍虚拟变量回弻算出的 R2 通常都比较高。 ⑤仍虚拟变量回弻得到的 R2,可按通常斱法用亍计算 F 检验。 3.是固定敁应(FE)还是一阶差分(FD) 估计非观测敁应模型的两种斱法:一种是叏数据的差分,一种是除时间均值。 两种斱法的选择: (1)弼 T=2 时,FE 和 FD 的估计值及其全部检验统计量完全一样,敀可随便选用一
一个重要的理论事实是,FD 估计量中的偏误丌叏决亍 T,而 FE 估计量中的偏误则以速 度 1/T 趋亍零。弼 FE 和 FD 给出明显丌同的结果时,通常在两者乊间作出叏舍就徆困难。
3 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

同时报告两组结果幵试图判断差异的原因所在。 4.非平衡面板数据的固定敁应法 在一些面板数据集中,样本缺少了某些横截面单位的某些年仹数据,称数据集为非平衡
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 14 章 高定敁应估计法

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第一篇(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第一篇(第4~6章)【圣才出品】

型中未知参数的个数(即 k 个斜率参数和截距β0)。


t 统计量服从 t 分布而不是标准正态分布的原因是 se(βj)中的常数σ已经被随机变量σ
所取代。t


统计量的计算公式可写成标准正态随机变量(βj-βj)/sd(βj)与
σ∧ 2/σ2
的平方
根之比,可以证明二者是独立的;而且(n-k-1)σ∧ 2/σ2~χ2n-k-1。于是根据 t 随机变量
有一个联合正态分布。
考点二:单个总体参数检验:t 检验 ★★★★
1.总体回归函数 总体模型的形式为:y=β0+β1x1+…+βkxk+u。假定该模型满足 CLM 假定,βj 的 OLS 量是无偏的。
2.定理 4.2:标准化估计量的 t 分布


在 CLM 假定 MLR.1~MLR.6 下,(βj-βj)/se(βj)~tn-k-1,其中,k+1 是总体模
定理 4.1(正态抽样分布):在 CLM 假定 MLR.1~MLR.6 下,以自变量的样本值为条




件,有:βj~Normal(βj,Var(βj))。将正态分布函数标准化可得:(βj-βj)/sd(βj)~
Normal(0,1)。
1 / 89




注:β1,β2,…,βk 的任何线性组合也都符合正态分布,且 βj 的任何一个子集也都具
1.对排除性约束的检验 对排除性约束的检验是指检验一组自变量是否对因变量都没有影响,该检验不适用于不 同因变量的检验。F 统计量通常对检验一组变量的排除有用处,特别是当变量高度相关的时 候。 含有 k 个自变量的不受约束模型为:y=β0+β1x1+…+βkxk+u,其中参数有 k+1 个。 假设有 q 个排除性约束要检验,且这 q 个变量是自变量中的最后 q 个:xk-q+1,…,xk,则 受约束模型为:y=β0+β1x1+…+βk-qxk-q+u。 虚拟假设为 H0:βk-q+1=0,…,βk=0,对立假设是列出的参数至少有一个不为零。 定义 F 统计量为 F=[(SSRr-SSRur)/q]/[SSRur/(n-k-1)]。其中,SSRr 是受约束模型 的残差平方和,SSRur 是不受约束模型的残差平方和。由于 SSRr 不可能比 SSRur 小,所以 F 统计量总是非负的。q=dfr-dfur,即 q 是受约束模型与不受约束模型的自由度之差,也是 约束条件的个数。n-k-1=分母自由度=dfur,且 F 的分母恰好就是不受约束模型中σ2= Var(u)的一个无偏估计量。 假设 CLM 假定成立,在 H0 下 F 统计量服从自由度为(q,n-k-1)的 F 分布,即 F~ Fq,n-k-1。如果 F 值大于显著性水平下的临界值,则拒绝 H0 而支持 H1。当拒绝 H0 时,就 说,xk-q+1,…,xk 在适当的显著性水平上是联合统计显著的(或联合显著)。

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题

第11章OLS用于时间序列数据的其他问题11.1复习笔记考点一:平稳和弱相关时间序列★★★★1.时间序列的相关概念(见表11-1)表11-1时间序列的相关概念2.弱相关时间序列(1)弱相关对于一个平稳时间序列过程{x t:t=1,2,…},随着h的无限增大,若x t和x t+h“近乎独立”,则称为弱相关。

对于协方差平稳序列,如果x t和x t+h之间的相关系数随h的增大而趋近于0,则协方差平稳随机序列就是弱相关的。

本质上,弱相关时间序列取代了能使大数定律(LLN)和中心极限定理(CLT)成立的随机抽样假定。

(2)弱相关时间序列的例子(见表11-2)表11-2弱相关时间序列的例子考点二:OLS的渐近性质★★★★1.OLS的渐近性假设(见表11-3)表11-3OLS的渐近性假设2.OLS的渐近性质(见表11-4)表11-4OLS的渐进性质考点三:回归分析中使用高度持续性时间序列★★★★1.高度持续性时间序列(1)随机游走(见表11-5)表11-5随机游走(2)带漂移的随机游走带漂移的随机游走的形式为:y t=α0+y t-1+e t,t=1,2,…。

其中,e t(t=1,2,…)和y0满足随机游走模型的同样性质;参数α0被称为漂移项。

通过反复迭代,发现y t的期望值具有一种线性时间趋势:y t=α0t+e t+e t-1+…+e1+y0。

当y0=0时,E(y t)=α0t。

若α0>0,y t的期望值随时间而递增;若α0<0,则随时间而下降。

在t时期,对y t+h的最佳预测值等于y t加漂移项α0h。

y t的方差与纯粹随机游走情况下的方差完全相同。

带漂移随机游走是单位根过程的另一个例子,因为它是含截距的AR(1)模型中ρ1=1的特例:y t=α0+ρ1y t-1+e t。

2.高度持续性时间序列的变换(1)差分平稳过程I(1)弱相关过程,也被称为0阶单整或I(0),这种序列的均值已经满足标准的极限定理,在回归分析中使用时无须进行任何处理。

伍德里奇计量经济学导论(第四版)课后习题答案和讲解

伍德里奇计量经济学导论(第四版)课后习题答案和讲解
本手册为《伍德里奇计量经济学导论(第四版)》的学生解决方案手册,提供了书中奇数编号的习题答案和计算机练习讲解。内容覆盖了从引言到高级时间序主题的各个章节,具体包括简单回归模型、多元回归分析、异方差性、时间序列数据的回归分析、面板数据方法等关键领域。此外,附录部分还提供了基础数学工具、概率论、数理统计和矩阵代数的概要,以辅助读者更深入地理解计量经济学的原理和应用。本手册旨在帮助学生巩固理论知识,提高实际应用能力,是学习和研究计量经济学的宝贵资料。

伍德里奇计量经济学导论第5版笔记和课后习题详解

伍德里奇计量经济学导论第5版笔记和课后习题详解

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解目录第1章计量经济学的性质与经济数据1.1复习笔记1.2课后习题详解第一篇横截面数据的回归分析第2章简单回归模型2.1复习笔记2.2课后习题详解第3章多元回归分析:估计3.1复习笔记3.2课后习题详解第4章多元回归分析:推断4.1复习笔记4.2课后习题详解第5章多元回归分析:OLS的渐近性5.1复习笔记5.2课后习题详解第6章多元回归分析:深入专题6.1复习笔记6.2课后习题详解第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记7.2课后习题详解第8章异方差性8.1复习笔记8.2课后习题详解第9章模型设定和数据问题的深入探讨9.1复习笔记9.2课后习题详解第二篇时间序列数据的回归分析第10章时间序列数据的基本回归分析10.1复习笔记10.2课后习题详解第11章OLS用于时间序列数据的其他问题11.1复习笔记11.2课后习题详解第12章时间序列回归中的序列相关和异方差性12.1复习笔记12.2课后习题详解第三篇高级专题讨论第13章跨时横截面的混合:简单面板数据方法13.1复习笔记13.2课后习题详解第14章高级的面板数据方法14.2课后习题详解第15章工具变量估计与两阶段最小二乘法15.1复习笔记15.2课后习题详解第16章联立方程模型16.1复习笔记16.2课后习题详解第17章限值因变量模型和样本选择纠正17.1复习笔记17.2课后习题详解第18章时间序列高级专题18.1复习笔记18.2课后习题详解第19章一个经验项目的实施19.2课后习题详解本书是伍德里奇《计量经济学导论》(第5版)教材的学习辅导书,主要包括以下内容:(1)整理名校笔记,浓缩内容精华。

每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。

(2)解析课后习题,提供详尽答案。

伍德里奇 计量经济学导论

伍德里奇 计量经济学导论

伍德里奇计量经济学导论摘要:一、伍德里奇《计量经济学导论》概述二、伍德里奇对计量经济学的定义与应用三、伍德里奇《计量经济学导论》的主要内容四、伍德里奇《计量经济学导论》的课后习题及其答案五、伍德里奇《计量经济学导论》的参考价值正文:一、伍德里奇《计量经济学导论》概述伍德里奇所著的《计量经济学导论》是一本广泛应用于经济学领域的经典教材,受到了全球范围内众多学者和学生的欢迎。

本书旨在介绍计量经济学的基本概念、方法和应用,帮助读者理解和掌握计量经济学的基本理论和实证分析技巧。

二、伍德里奇对计量经济学的定义与应用在《计量经济学导论》中,伍德里奇对计量经济学进行了明确的定义,认为计量经济学是一门在经济理论基础上,运用数学和统计学方法,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。

计量经济学的应用范围广泛,包括政策分析、市场预测、数据分析等诸多领域。

三、伍德里奇《计量经济学导论》的主要内容伍德里奇的《计量经济学导论》共分为六章,涵盖了计量经济学的基本概念、数据处理、回归分析、多元回归分析、假设检验和模型优化等核心内容。

具体来说,书中内容包括:1.计量经济学的性质与经济数据:介绍了计量经济学的基本概念,经济数据的来源和特点,以及如何利用经济数据进行计量分析。

2.简单回归模型:阐述了简单回归模型的基本原理,包括线性回归、最小二乘法、参数估计等。

3.多元回归分析:介绍了多元回归分析的基本概念,包括多元线性回归、多元逻辑回归等,以及如何进行多元回归模型的估计和检验。

4.假设检验:介绍了计量经济学中的假设检验原理,包括t 检验、F 检验等。

5.模型优化:探讨了如何优化计量经济模型,提高模型的预测能力和解释能力。

6.横截面数据的回归分析:介绍了横截面数据的回归分析方法,包括生产函数估计、需求函数估计等。

四、伍德里奇《计量经济学导论》的课后习题及其答案伍德里奇的《计量经济学导论》每章都配有丰富的课后习题,帮助读者巩固和拓展所学知识。

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第1章及第一篇(第2~3章)【圣才出品】

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第1章及第一篇(第2~3章)【圣才出品】

品数(output)方面的信息。 (i)仔细陈述这个政策问题背后其他情况不变的思维试验。 (ii)一个企业培训其员工的决策看起来有可能独立于工人特征吗?工人可观测与不可
观测的特征各有哪些? (iii)除工人特征之外,再列出一个影响工人生产力的因素。 (iv)你若发现 training 和 output 之间成正相关关系,你令人信服地证明了工作培训
2.工作培训项目的理由之一是能提高工人的生产力。假设要求你评估更多的工作培训 是否使工人更有生产力。不过,你没有工人的个人数据,而是有俄亥俄州制造企业的数据。 具体而言,对每个企业,你都有人均工作培训小时数(training)和单位工时生产的合格产
4 / 91
圣才电子书 十万种考研考证电子书、题库视频学习平台
十万种考研考证电子书、题库视频学习平台
表 1-1 经济数据的结构
2.面板数据与混合横截面数据的比较(见表 1-2) 表 1-2 面板数据与混合横截面数据的比较
2 / 91
圣才电子书 十万种考研考证电子书、题库视频学习平台

考点三:因果关系和其他条件不变 ★★
1.因果关系 因果关系是指一个变量的变动将引起另一个变量的变动,这是经济分析中的重要目标之 一。计量分析虽然能发现变量之间的相关关系,但是如果想要解释因果关系,还要排除模型 本身存在因果互逆的可能,否则很难让人信服。
答:讲不通。因为找出每周学习小时数(study)和每周工作小时数(work)之间的关 系,是说每周学习小时数(study)和每周工作小时数(work)之间有关系,但没有说是因 果关系,每周学习小时数可能与其他因素有关或每周工作小时数与其他因素有关。
4.对税收有控制权的州或省份有时候会减少税收来刺激经济增长。假设你被某州政府 雇佣来估计公司税率的影响,比如说对每单位州生产总值增长的影响。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解第4章多元回归分析:推断4.1复习笔记一、OLS 估计量的抽样分布1.假定MLR.6(正态性)总体误差u 独立于解释变量12 k x x x ,,…,,而且服从均值为零和方差为2σ的正态分布:()2Normal 0 u σ~,。

2.经典线性模型就横截面回归中的应用而言,从假定MLR.1~MLR.6这六个假定被称为经典线性模型假定。

将这六个假定下的模型称为经典线性模型(CLM)。

在CLM 假定下,OLS 估计量01ˆˆˆ kβββ,,…,比在高斯—马尔可夫假定下具有更强的效率性质。

可以证明,OLS 估计量是最小方差无偏估计,即在所有的无偏估计中,OLS 具有最小的方差。

总结CLM 总体假定的一种简洁方法是:()201122|Normal k k y x x x x ββββσ++++~…,误差项的正态性导致OLS 估计量的正态抽样分布。

3.用中心极限定理去推导u 的分布的缺陷(1)虽然u 是影响y 而又观测不到的众多因素之和,且各因素可能各有极为不同的总体分布,但中心极限定理(CLT)在这些情形下仍成立。

正态近似的效果取决于u 中有多少因素,以及u 中包含因素分布的差异。

(2)更严重的问题是,正态近似假定所有不可观测因素都以独立而可加的方式影响着Y。

因此如果u 是不可观测因素的一个复杂函数,那么CLT 论证并不真正适用。

4.误差项的正态性导致OLS 估计量的正态抽样分布定理4.1:正态抽样分布在CLM 假定MLR.1~MLR.6下,以自变量的样本值为条件,有:()ˆˆ~Normal Var j j j βββ⎡⎤⎣⎦,因此()()()ˆˆ/sd ~Normal 0 1j j j βββ-,注:除ˆj β服从正态分布外,01ˆˆˆ k βββ,,…,的任何线性组合也都是正态分布,而且ˆjβ的任何一个子集也都具有一个联合正态分布。

二、检验对单个总体参数的假设:t 检验1.总体回归函数总体模型可写作:11o k k y x x uβββ=++⋯++假定它满足CLM 假定,OLS 得到j β的无偏估计量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章计量经济学的性质与经济数据
1.1 复习笔记
一、计量经济学
由于计量经济学主要考虑在搜集和分析非实验经济数据时的固有问题,计量经济学已从数理统计分离出来并演化成一门独立学科。

1.非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。

非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。

2.实验数据通常是在实验环境中获得的,但在社会科学中要得到这些实验数据则困难得多。

二、经验经济分析的步骤
经验分析就是利用数据来检验某个理论或估计某种关系。

1.对所关心问题的详细阐述
在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。

经济模型总是由描述各种关系的数理方程构成。

2.经济模型变成计量模型
先了解一下计量模型和经济模型有何关系。

与经济分析不同,在进行计量经济分析之前,必须明确函数的形式。

通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。

在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。

一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。

3.搜集相关变量的数据
4.用计量方法来估计计量模型中的参数,并规范地检验所关心的假设
在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。

三、经济数据的结构
1.横截面数据
(1)横截面数据集,就是在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。

有时,所有单位的数据并非完全对应于同一时间段。

在一个纯粹的横截面分析中,应该忽略数据搜集中细小的时间差别。

(2)横截面数据的重要特征
①假定它们是从样本背后的总体中通过随机抽样而得到的。

当抽取的样本(特别是地理上的样本)相对总体而言太大时,可能会导致另一种偏离随机抽样的情况。

这种情形中潜在的问题是,总体不够大,所以不能合理地假定观测值是独立抽取的。

②数据排序不影响计量分析这一事实,是由随机抽样而得到横截面数据集的一个重要特征。

2.时间序列数据
(1)时间序列数据集,是由对一个或几个变量不同时间的观测值所构成。

与横截面数据的排序不同,时间序列对观测值按时间先后排序,这也传递了潜在的重要信息。

(2)时间序列数据的特征
①很少(即使能够)假设经济数据的观测独立于时间,使得对它的分析比对横截面数据的分析更为困难。

②数据搜集时的数据频率,最常见的频率是每天、每周、每月、每个季度和每年。

3.混合横截面数据
有些数据既有横截面数据的特点,又有时间序列的特点。

为了扩大样本容量,可以将数据合并成一个混合横截面数据。

对混合横截面数据的分析与对标准横截面数据的分析十分相似,不同之处在于,前者通常要对变量在不同时间的长期差异做出解释。

实际上,除了能扩大样本容量之外,混合横截面分析通常是为了看出一个基本关系如何随时间而变化。

4.面板或纵列数据
(1)面板数据(或纵列数据)集,是由数据集中每个横截面单位的一个时间序列组成。

(2)面板数据与横截面数据的比较
①面板数据有别于混合横截面数据的关键特征是,同一横截面数据的数据单位都被跟踪了一段特定的时期。

②由于面板数据要求同一单位不同时期的重复观测,所以要得到面板数据(特别是那些个人、家庭和企业的数据),比得到混合横截面数据更加困难。

③对同一观测单位观测一段时间,应该比横截面数据甚至混合横截面数据更有优越性。

对同一单位的多次观测,能控制个人、企业等观测单位的某些观测不到的特征。

④面板数据的第二个优点是,它通常能够研究决策行为或结果中滞后的重要性。

由于预期许多经济政策在一段时间之后才产生影响,所以面板数据所反映的信息就更有意义。

四、计量经济分析中的因果关系和其他条件不变的概念
1.因果关系
在多数对经济理论的检验中,经济学家的目标就是要推定一个变量对另一个变量具有因果效应。

虽然简单地发现两个或多个变量之间有某种联系很诱人,但除非能得到某种因果关系,否则这种联系很难令人信服。

2.其他条件不变
“其他(相关)因素保持不变”的概念在因果分析中有重要作用。

在研究两个变量之间的关系时,所有其他的相关因素都必须固定不变。

因为社会科学中所搜集到的多数数据都具有非实验特征,所以发现其中的因果关系极具挑战性。

1.2 课后习题详解
一、习题
1.假设你所在的大学要求你“找出每周学习小时数(study)和每周工作小时数(work)之间的关系”。

把这个问题说成“推断study是否‘导致’work或work是否‘导致’study”的问题是否讲得通?请解释。

答:把这个问题描述为因果关系是无意义的。

经济学家会假设学生理性的选择学习时间和工作时间(以及其他活动,如上课、娱乐和休息)的组合,使得他们在每周总共168小时的时间约束下获得最大的效用。

可以使用统计方法如回归分析方法去衡量学习和工作时间之间的关系,但是不能判断哪一个变量“导致”另一个变量。

他们同属于学生选择的变量之一。

2.假设让你进行一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。

(i)如果你能设定你想做的任何实验,你想做些什么?请具体说明。

(ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。

你能得到他们四年级班级规模和四年级末的标准化考试分数。

你为什么预计班级规模与考试成绩存在负相关关系?
(iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。

答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。

因此可以看到班级规模(在伦理考量和资源约束条件下的主体)的显著差异。

(ii)负相关关系意味着更大的班级规模与更差的考试成绩是有直接联系的,因此可以发现班级规模越大,导致考试成绩越差。

通过数据可知,两者之间的负相关关系还有其他的原因。

例如,富裕家庭的孩子在学校可能更多的加入小班,而且他们的成绩优于平均水平。

另外一个可能性是:学校的原则是将成绩较好的学生分配到小班。

或者部分父母可能坚持让自己的孩子进入更小的班级,而同样这些父母也更多的参与子女的教育。

(iii)鉴于潜在的其他混杂因素(如ii所列举),负相关关系并不一定意味着较小的班级规模会导致更好的成绩。

控制混杂因素的方法是必要的,而这正是多重回归分析的主题。

3.工作培训项目的理由之一是能提高工人的生产力。

假设要求你评估更多的工作培训是否使工人更有生产力。

不过,你没有工人的个人数据,而是有俄亥俄州制造企业的数据。

具体而言,对每个企业,你都有人均工作培训小时数(training)和单位工时生产的合格产品数(out put)方面的信息。

(i)仔细陈述这个政策问题背后其他情况不变的思维试验。

(ii)一个企业培训其员工的决策看起来有可能独立于工人特征吗?工人可观测与不可观测的特征各有哪些?
(iii)除工人特征之外,再列出一个影响工人生产力的因素。

(iv)你若发现training和out put之间有正相关关系,你令人信服地证明了工作培训能提高工人的生产力了吗?请解释。

答:(i)其他情况不变的思维在本题可以假设两个厂商A、B,厂商A除了对每个工人提供比厂商B更多的职业培训外,其他条件与厂商B都是相同的,由此可以得出厂商A的产出与厂商B的产出的不同。

(ii)一个企业培训其员工的决策看起来依赖于工人特征。

可观测的特征包括:工作年限、学历、专业工作经验,甚至包括年龄、性别和种族。

不可观测的特征包括:企业可能根据能力高低来为员工提供培训,但是“能力”是难以量化的,经理只能根据不同员工能力相关的方面来作出判断。

另外,不同类型的员工可能被更高的平均培训时间所吸引,这对雇主而言是不明显的。

(iii)工人可获得的资本和技术的数量也影响产出。

如果两个企业采用不同的资本或技术,即使他们拥有相同类型的员工,他们的产出也将会不同。

经理的质量同样也是影响产出的因素之一。

(iv)并没有,除非培训量是随机分配的。

即使培训不能促进工人的生产率提高,ii和iii所列的因素也能导致培训和产出之间呈现正相关关系。

二、计算机习题
1.本题使用WAGE1.RAW中的数据。

相关文档
最新文档