人教版-数学-七年级上册-《解一元一次方程(一)》第四课时教案

合集下载

5.2 解一元一次方程第4课时 利用去分母解一元一次方程(共31张PPT)【人教2024版七上数学】

5.2 解一元一次方程第4课时 利用去分母解一元一次方程(共31张PPT)【人教2024版七上数学】
解得x=360.
答:该单位参加旅游的职工有360人.
5.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生名算者,算来寺内几多增?
诗的意思: 3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了 364只碗,请问寺内有多少僧人?
移项 合并同类项
移项法则
合并同类项法 则
两边同除以未知 等式性质2 数的系数
移项要变号 系数相加,不漏项 不要把分子、分母搞颠倒
3
6
2
A.x=1 B.x=2 C.x=4
D.x=6
2
解方程
5 6
6 5
x-1
=2.
下面几种解法中,较简便
的是( C )
A.先两边同乘6
B.先两边同乘5
C.先去括号再移项
D.括号内先通分
3. 解下列方程:
(1) x 3 3x 4; 5 15
(2) 5y 4 y 1 2 5y 5 .
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
步骤 去分母
根据
等式性质2
注意事项
1.不要漏乘不含分母的项 2. 分子是多项式应添括号
去括号
分配率 去括号法则
1.不要漏乘括号中的每一项 2.括号前是“—”号,要变号
去括号,得
18x+3x-3 =18-4x +2. 移项,得
18x+3x+4x =18 +2+3. 合并同类项,得
25x = 23. 系数化为1,得

人教版数学七年级上册解一元一次方程(一)——合并同类项与移项课件

人教版数学七年级上册解一元一次方程(一)——合并同类项与移项课件

例2 在国庆节来临之际,七年级(1)班课外活动小组计划 做一批中国结.如果每人做6个,那么比计划多做7个;如 果每人做5个,那么比计划少做13个.该小组计划做多少 个中国结?
解:设该小组共有 x 名成员. 根据题意列方程,得 6x-7=5x+13. 移项,得 6x-5x=13+7.合并同类项,得 x=20. 所以 6x-7=113. 答:该小组计划做113个中国结.
3.2 解一元一次方程(一)
——合并同类项与移项
第4课时
初中数学 七年级上册 RJ
知识回顾
列一元一次方程解决实际问题的一般步骤:
审题 找等量关系
设未知数
列方程
写出答案
检验
解方程
注意:1. 列一元一次方程解决实际问题的关键是审题,
寻找等量关系.
2. 求出方程的解后要进行检验(检验的过程在草稿纸上
进行),既要检验所求出的解是不是方程的解,又要检
“盈不足”问题 “盈”是分配中的多余情况,“不足”是分配中的缺 少情况,有的题目不会出现“盈”或“不足”的字样. “盈不足”问题中,一般会给出两个条件:什么情况 下会“盈”,“盈”多少;什么情况下会“不足”, “不足”多少.
利用“表示同一个量的两个不同的式子相等”解应用 题的步骤: (1) 找出题中不变的量; (2)用两个不同的式子表示出这个量; (3)由表示同一个量的两个不同的式子相等列出方程; (4)解方程,并作答.
2.《九章算术》中有一道阐述“盈不足术”的问题,原 文如下:今有人共买物,人出八,盈三;人出七,不足 四.问人数、物价各几何?译文为:现有一些人共同买 一个物品,每人出8元,还盈余3元;每人出7元,则还 差4元.问共有多少人?这个物品的价格是多少?请解答 上述问题. 解:设共有 x 人. 根据题意,得 8x-3=7x+4. 移项,得 8x-7x=4+3.

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。

教学方法是“引导分类归纳”。

本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

2024年秋人教版七年级数学上册 第五章 “一元一次方程”《解一元一次方程(4)去分母》精品课件

2024年秋人教版七年级数学上册 第五章 “一元一次方程”《解一元一次方程(4)去分母》精品课件
最新人教版七年级数学上册
第五章 一元一次方程
解一元一次方程(4)
去分母
一、预习导学
二、课堂导学
三、重难导学
1
1
(1)若 b= c,等式两边乘6,得
2
3
3b=2c ;
1
1
(2)若 b= c-1,等式两边乘6,得
2
3
3b=2c-6
Байду номын сангаас
.
在解带分母的方程时,通常要利用等式的性质,方程两边同乘分母

最小公倍
= +2.
8
4
解:(2)去分母(方程两边乘8),得
8x-(3x-1)=2x+16.
去括号,得8x-3x+1=2x+16.
移项,得5x-2x=16-1.
合并同类项,得3x=15.
系数化为1,得x=5.
x+1 x
1.解方程1- = ,去分母、去括号得(
2
4
A.1-2x+2=x
B.1-2x-2=x
C.4-2x+2=x


去分母(方程两边乘30),得5(3x-6)=12x-90.
去括号,得15x-30=12x-90.
移项,得15x-12x=-90+30.
合并同类项,得3x=-60.
系数化为1,得x=-20.
2x-1 x+a
4.小虎在解关于x的方程

-1去分母时,方程右边的-1漏乘
3
3
了3,因而求得方程的解为x=-2,请你求出a的值,并正确求出原方
(1)


-5
15
解:(1)去分母(方程两边乘15),得
-3(x-3)=3x+4.
去括号,得-3x+9=3x+4.

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。

今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。

初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。

在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。

这为过渡到本节的学习起着铺垫作用。

合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。

因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。

其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。

教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。

本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。

教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。

但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。

三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。

2.能够运用移项法解一元一次方程。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。

2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。

2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。

示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。

3.操练(10分钟)教师给出一些练习题,让学生独立完成。

教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。

4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。

教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。

5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教学设计

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教学设计

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教学设计一. 教材分析人教版七年级数学上册3.2《解一元一次方程(一)——移项》是学生在掌握了方程的基本概念和一元一次方程的解法的基础上进行学习的内容。

本节内容主要介绍了解一元一次方程中移项的方法,是解决更复杂方程的基础。

教材通过具体的例子引导学生发现移项的规律,并通过练习让学生掌握移项的方法。

二. 学情分析七年级的学生已经具备了一定的代数基础,对一元一次方程的解法有一定的了解。

但是,学生在解决实际问题时,还不能熟练运用移项的方法。

因此,在教学过程中,需要通过具体的例子,让学生观察、思考、总结移项的规律,从而提高学生解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握移项的方法,能够正确解一元一次方程。

2.过程与方法:通过观察、思考、总结移项的规律,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:移项的方法。

2.难点:在解决实际问题时,如何灵活运用移项的方法。

五. 教学方法采用问题驱动法、合作学习法、练习法等,引导学生观察、思考、总结移项的规律,并通过练习让学生巩固所学知识。

六. 教学准备1.准备相关的例题和练习题。

2.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容,引导学生思考如何解决这个问题。

2.呈现(10分钟)展示相关的例题,引导学生观察、思考,总结移项的规律。

3.操练(10分钟)让学生分组合作,解决一些类似的练习题,巩固移项的方法。

4.巩固(5分钟)对学生在练习中遇到的问题进行讲解,帮助学生巩固所学知识。

5.拓展(5分钟)引导学生思考如何在解决更复杂的问题时,灵活运用移项的方法。

6.小结(5分钟)对本节课的内容进行总结,强调移项的方法和注意事项。

7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。

8.板书(5分钟)板书本节课的主要内容和重点知识点。

人教版(2024)数学七年级上册 第五章 一元一次方程 第4课时 去分母解一元一次方程

人教版(2024)数学七年级上册 第五章 一元一次方程 第4课时 去分母解一元一次方程
移项,得10x+3x=-5+15+3.
合并同类项,得13x=13.
系数化为1,得x=1.
知识点2
去分母解方程的应用
7.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做
4天,然后甲、乙两人合作x天完成这项工程,则可以列的方程是( D )

A. +

+

C. + =1
C.2x+6-x-1=15-x
D.2x-3-x+1=15-3x
-
3.方程


=1 的解是( D )

A.x=
B.x=-
C.x=
D.x=-



4.把方程
A.
C.







-1=
.



的分母化为整数可得方程( B )
.


-10=
B.
-10=
D. -1=
(1)2-

=

;
解:(1)去分母,得12-2(2x+1)=3(1+x).
去括号,得12-4x-2=3+3x.
移项,得-4x-3x=3+2-12.
合并同类项,得-7x=-7.
系数化为1,得x=1.
+ +
(2)
-
. .
=3;
(+) (+)
解:(2)方程变形,得
Hale Waihona Puke -去括号,得 5x+5-10x-30=3.
(4) 合并同类项 ;(5) 系数化为1 .

七年级数学《解一元一次方程-第4课时》教案

七年级数学《解一元一次方程-第4课时》教案




知识与技能
会根据实际问题中数量关系列方程解决问题,熟练掌握一元一次方程的解法.
过程与方法
2、培养学生数学建模能力,分析问题、解决问题的能力.
情感态度与价值观
3、培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。
教学重点
寻找实际问题中的等量关系,建立数学模型。培养学生自己发现问题、解决问题的能力。
A.54 B.27 C.72 D.45
2、三个连续偶数的和为18,设最大的偶数为x,则可列方程______.
3、为了迎接“316”工程验收学校要打印一些文件,向老师单独做要20小时完成,张老师单独做要12小时完成。现在先由向老师单独做4小时,剩下的部分由甲向老师、张老师合作。剩下的部分需要多少小时才能完成?
(3)从我们身边的问题入手,加强了学生学习的主动性和探究性,激发学生积极的思维,效果会更好。体现“人人受到良好的数学教育”的课程理念。
(4)通过具体的例子反复的感受方程在解决实际问题中的作用,理解方程是刻画现实的一种模型,渗透模型化的思想。
活动三变式训练,巩固新知
1、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()
回顾本题列方程的过程,可以发现:
工作总量=人均效率×人数×时间
这是计算工作量的常用数量关系式.
【教师活动】
(1)根据学生活动进程依次出示问题1、2、3和例3
(2)检查学生独立尝试解决问题1、2、3的情况,根据学生表现,适时的出示每一个问题后思考分析过程,重点关注全体学生是否能理解分析过程中的数量关系,并能正确地用式子表示列出方程,必要时进行适当地提醒。
(4)在学生解完方程后,提出问题2,结合学生归纳,板书解一元一次方程的步骤,相机导入新课。

人教版七年级数学3.2.4解一元一次方程-方程的应用教案

人教版七年级数学3.2.4解一元一次方程-方程的应用教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。它在解决实际问题中有着广泛的应用,可以帮助我们简化问题,找到答案。
2.案例分析:接下来,我们来看一个具体的案例。比如,小华以5公里/小时的速度跑步,1小时后小明以8公里/小时的速度从同一地点出发,问小明多久可以追上小华?这个案例将展示一元一次方程在实际中的应用,以及它如何帮助我们解决问题。
c.钱数问题
d.其他实际应用问题
4.练习与巩固:选取典型题目,让学生独立列出方程并求解;
5.课堂小结:总结一元一次方程在实际问题中的应用及解题步骤。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,强化数学与生活实际的联系,增强数学应用的意识;
2.提升学生逻辑思维与推理能力,通过列方程、解方程的过程,锻炼学生分析问题、解决问题的逻辑思维;
-例如:在解决年龄问题时,学生需要理解年龄随时间的变化关系,并能用方程表示这种关系。
b.掌握一元一次方程的解法,包括移项、合并同类项、化简等基本步骤;
-如:在路程与速度问题中,学生需要掌握如何将问题中的信息转化为方程,并正确求解。
c.能够解释方程解在实际问题中的意义,理解解的合理性和实际意义;
-例如:在钱数问题中,学生需要理解方程解不仅是一个数值,还代表实际的钱数。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版-数学-七年级上册-人教数学七上 解一元一次方程(移项) 教案

人教版-数学-七年级上册-人教数学七上 解一元一次方程(移项) 教案

解一元一次方程(一)——移项——————教学案例分析【案例背景】1、教材分析:本节课内容是数学人教版七年级上册第三章第二小节的内容,是在学习了一元一次方程概念和用“化系数为1”、“合并同类项”解一元一次方程及等式基本性质的基础上进行学习,重点是学习用“移项”法解一元一次方程。

移项是解一元一次方程的重要步骤,是学生学习解一元一次方程的基础。

这一部分内容在方程中占有很重要的地位,在以后学习的解方程、解一元一次不等式、解一元二次方程中都要用到。

2、学生分析:通过对前一节课学生的作业反馈,学生已较好地掌握了用“系数化为1”、“合并同类项”解一元一次方程,对本节课的学习奠定了良好的基础。

针对七年级学生学习热情高,便观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考动手,激发学生的求知欲,提高学生学习的兴趣与积极性。

在课堂教学中学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。

3、教学目标:知识与技能:①能在实际问题中找出等量关系,列出一元一次方程②用移项解一元一次方程③掌握移项变号的基本原则过程与方法:①经历用方程刻画实际问题的过程,发展学生抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立等量关系。

②经历探索“移项法”解一元二次方程及发现、归纳移项法则的过程培养学生观察力、抽象概括能力以及渗透转化思想。

情感与态度:在合作交流中,享受探究发现新知的乐趣,培养学生勇于探索和勤于思考的精神。

通过“合并同类项”和“移项”的学习,体会古老的代数书中的“对消”和“还原”的思想,激发学生学习数学的热情。

4、教学策略:①自主探究策略:分组讨论,学生通过观察、分析发现结论,归纳概括总结。

②师生交流策略:教师引导,让学生学会学习数学的方法和数学思想。

学生之间互相交流,分组讨论问题,在讨论的过程中大胆发表个人的见解,对问题进行讨论,互相学习。

七年级数学《一元一次方程》教案4篇

七年级数学《一元一次方程》教案4篇

七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿

人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿

人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿一. 教材分析《人教版七年级数学上册》第三章第二节《解一元一次方程(一)——合并同类项与移项》是学生在学习了代数基础和方程概念之后,进一步深入研究一元一次方程的解法。

此节内容主要介绍了一元一次方程的解法——合并同类项与移项,是学生解决实际问题,提高解决实际问题能力的重要工具。

二. 学情分析七年级的学生已经具备了一定的代数基础,对方程的概念有了初步的了解,但是解一元一次方程的方法和技巧还不够熟练,需要通过本节课的学习进一步提高。

同时,学生在这个阶段的学习中,需要培养抽象思维能力和逻辑推理能力。

三. 说教学目标1.知识与技能目标:理解合并同类项与移项的概念,学会运用合并同类项与移项解一元一次方程。

2.过程与方法目标:通过自主学习、合作交流,培养学生的抽象思维能力和逻辑推理能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:合并同类项与移项的方法及应用。

2.教学难点:如何引导学生理解并掌握合并同类项与移项的原理和技巧。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。

2.教学手段:利用多媒体课件辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过复习上节课的内容,引出本节课的主题——解一元一次方程。

2.自主学习:让学生自主探究合并同类项与移项的方法,引导学生发现解题规律。

3.合作交流:学生分组讨论,分享解题心得,互相学习,提高解题能力。

4.教师讲解:针对学生的疑问和难点,进行讲解和辅导,帮助学生掌握解题方法。

5.巩固练习:布置适量的练习题,让学生巩固所学知识,提高解题技巧。

6.课堂小结:总结本节课的学习内容,强化学生对合并同类项与移项的理解。

7.课后作业:布置相关的作业,让学生进一步巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

解一元一次方程人教版数学七年级上册教案

解一元一次方程人教版数学七年级上册教案

解一元一次方程人教版数学七年级上册教案一、教学目标1.知识与技能目标:使学生掌握一元一次方程的定义,理解一元一次方程的解法,能够熟练地解一元一次方程。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生解决问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生独立思考、合作探究的精神。

二、教学重点与难点1.教学重点:一元一次方程的定义及解法。

2.教学难点:一元一次方程的移项和系数化为1的方法。

三、教学过程1.导入新课师:同学们,我们之前学过不等式,那么大家知道方程吗?方程与不等式有什么区别和联系呢?生:方程是表示两个表达式相等的式子,不等式是表示两个表达式不相等的式子。

师:很好,那今天我们就来学习一种特殊的方程——一元一次方程。

2.学习一元一次方程的定义师:请同学们看教材第39页,一元一次方程的定义是什么?生:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

师:非常正确。

那么请同学们思考一下,一元一次方程的一般形式是什么?生:一元一次方程的一般形式是ax+b=0,其中a、b是常数,且a ≠0。

3.学习一元一次方程的解法师:我们来看一下如何解一元一次方程。

我们要把方程写成一般形式ax+b=0。

然后,我们通过移项和系数化为1的方法来求解。

师:请同学们看教材第40页例1,我们一起分析一下这个方程的解法。

生:将方程2x+3=5写成一般形式2x=5-3,然后通过系数化为1,得到x=1。

师:很好,那现在请同学们自己尝试解一下方程3x-4=7。

生:将方程写成一般形式3x=7+4,然后系数化为1,得到x=3。

4.巩固练习师:同学们,我们已经学习了一元一次方程的定义和解法,现在我们来巩固一下。

3x+2=5;2x^2+3=5;5x-3=2x+1。

2x-3=5;3x+4=2x-1。

师:通过本节课的学习,我们掌握了一元一次方程的定义和解法。

那么,同学们认为解一元一次方程的关键是什么?生:关键是把方程写成一般形式,然后通过移项和系数化为1的方法来求解。

(RJ)人教版七年级数学上册教学课件第5章 一元一次方程3 第4课时 方案选择问题

(RJ)人教版七年级数学上册教学课件第5章 一元一次方程3 第4课时 方案选择问题
= 0.19t + 21.5
1. 小翼打算办一张电话卡,有如下计费方式:
月使用 主叫限定 主叫超时费/ 费/元 时间/min (元/min)
被叫
方式一 585+80.25(t -115500) = 0.250t .+2520.5 免费
方式二 888+80.19(t -335500) = 0.190t .+1921.5 免费
问题3:你认为哪种空调更划算呢? 当 t = 5 时,两款空调的综合费用相等; 当 t < 5 时,3 级能效空调的综合费用较低; 当 t > 5 时,1 级能效空调的综合费用较低. 同样是 1.5 匹的空调,1 级能效空调虽然售价高,
但由于比较省电,使用年份长 (超过 5 年) 时综合费用 反而低. 根据相关行业标准,空调的安全使用年限是 10 年 (从生产日期计起),因此购买、使用 1 级能效空 调更划算.
新知一览
从算式到方程
方程

等式的性质

用合并同类项的方法 解一元一次方程
一 解一元一次方程 次
用移项的方法解一元一次方程 利用去括号解一元一次方程

利用去分母解一元一次方程
程 实际问题与
产品配套问题和工程问题
一元一次方程
销售中 球赛积分 不同能效空调的 的盈亏 表问题 综合费用比较
第五章 一元一次方程
(2) 当 x=20 时,图书馆价格便宜;
(3) 当 x 大于 20 时,令 2.4+0.09(x-20)=0.1x,
解得 x=60. 所以,当 x 大于 20 且小于 60 时,图书馆价格便宜;
当 x 等于 60 时,两者价格相同; 当 x 大于 60 时,复印社价格便宜.

初中七年级上册数学解一元一次方程教案优质(优秀5篇)

初中七年级上册数学解一元一次方程教案优质(优秀5篇)

初中七年级上册数学解一元一次方程教案优质(优秀5篇)元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。

2.使学生掌握含有字母系数的一元一次方程的解法。

3.使学生会进行简单的公式变形。

4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。

5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。

教学重点:(1)含有字母系数的一元一次方程的解法。

(2)公式变形。

教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。

(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。

教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。

(2)移项——未知项移到等号一边常数项移到等号另一边。

注意:移项要变号。

(3)合并同类项——提未知数。

(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。

(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。

引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。

)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。

(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。

2022年人教版七年级数学上册第三章 一元一次方程教案 实际问题与 一元一次方程(第4课时)

2022年人教版七年级数学上册第三章  一元一次方程教案  实际问题与 一元一次方程(第4课时)

第三章一元一次方程3.4 实际问题与一元一次方程第4课时一、教学目标【知识与技能】体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案.【过程与方法】经历计费问题的解答过程,学习方案选择问题,体会最优化思想.【情感态度与价值观】进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和能力.二、课型新授课三、课时第4课时,共4课时。

四、教学重难点【教学重点】能够理解题目信息,建立方程模型解决电话计费问题.【教学难点】关键点的选择,整体方案的确定.五、课前准备教师:课件、三角尺、计费表格等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课现在手机非常普及,你有手机吗?你的手机是如何收费的?你家里有几台手机?你知道手机的收费标准吗?(出示课件2)(二)探索新知1.师生互动,探究计费问题教师问1:下表中有两种移动电话计费方式:(出示课件5)你觉得哪种计费方式更省钱?师生共同讨论后解答如下:主叫通话时间不超过150分钟时,方式一省钱.教师问2:如果主叫通话时间超过150分钟呢?师生共同解答如下:(出示课件6)完成下面的表格:教师问3:通过填上面的表格,你有什么发现?学生回答:哪种计费方式更省钱与“主叫时间有关”.教师问4:如何确定那个方案省钱呢?师生共同解答如下:(出示课件7)(1)设一个月内移动电话主叫为t min (t是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.计费时首先要看主叫是否超过限定时间,主叫不超过限定时间,月使用费一定;主叫超过限定时间,超时部分加收超时费.考虑t 的取值时,两个主叫限定时间150 min和350 min是不同时间范围的划分点.当t 在不同时间范围内取值时,方式一和方式二的计费如下表:(出示课件8)教师问5:观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.(出示课件9)师生共同解答如下:①比较下列表格的第2、3行.(出示课件10)当t ≤150时,方式一计费少(58元);②比较下列表格的第2、4行.(出示课件11)当t 大于150且小于350时,存在某一个值,使得两种方式计费相等.依题意,得58+0.25(t-150) = 88,解得t =270.教师问6:当t >350分时,两种计费方式哪种更合算呢?(出示课件12)师生共同讨论后解答如下:解析:当t>350分时,方式一的计费其实就是在108元的基础上,加上超过350分部分的超时费[0.25(t-350)].当t >350时,方式一:58+0.25(t-150)= 108+0.25(t-350),方式二:88+0.19(t-350),所以,当t >350分时,方式二计费少.综合以上的分析,可以发现:(出示课件13)当t小于270 时,选择方式一省钱;当t大于270 时,选择方式二省钱;当t等于270 时,方式一、方式二均可.总结点拨:(出示课件15)例1:小明和小强为了买同一种火车模型,决定从春节开始攒钱,小明原有200元,以后每月存50元;小强原有150元,以后月存60元,每人攒钱的月数为x(个)(x为整数).(1)根据题意,填写下表:(出示课件16)(2)在几个月后小明与小强攒钱的总数相同?此时他们各有多少钱?(出示课件17)师生共同解答如下:解:根据题意,得200+50x=150+60x,解得x=5.所以150+60x=450.答:在5个月后小明与小强攒钱的总数相同,此时每人有450元钱.(3)若这种火车模型的价格为780元,他们谁能够先买到该模型?(出示课件18)解:根据题意,得200+50x=780,解得x=11.6,故小明在12个月后攒钱的总数超过780元.由150+60x=780,解得x=10.5,故小强在11个月后攒钱的总数超过780元.所以小强能够先买到该模型.总结点拨:(出示课件19)解决此类问题的关键是能够根据已知条件找到合适的分段点,然后建立方程模型分类讨论,从而得出整体选择方案.(三)课堂练习(出示课件23-31)1. 小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44C.9(x+2)=44 D.9(x+2)-4×2=442. 某市为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每户每月用水不超过7m3,则按2 元/m3收费;若每户每月用水超过7 m3,则超过的部分按3元/m3收费. 如果某居民户去年12月缴纳了53 元水费,那么这户居民去年12月的用水量为_______m3.3. 某市生活拨号上网有两种收费方式,用户可以任选其一. A计时制:0.05 元/分钟;B包月制:60 元/月(限一部个人住宅电话上网). 此外,两种上网方式都得加收通信费0.02 元/分钟.(1) 某用户某月上网时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;(2) 你认为采用哪种方式比较合算?4. 用A4纸在某复印社复印文件,复印页数不超过20时每页收费0.12元;复印页数超过20时,超过部分每页收费0.09元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元.问:如何根据复印的页数选择复印的地点使总价格比较便宜?(复印的页数不为零)5. 小王到超市购物,售货员告诉他,如果花20元钱办理“会员卡”,将享受八折优惠.请问:(1)在这次购物中小王买标价为多少元商品的情况下办会员卡与不办会员卡花钱一样多?(2)当小王买标价为200元的商品时,怎么做合算?能省多少钱?(3)当小王买标价为60元的商品时,怎么做合算?能省多少钱?参考答案:1.A2.203. 解:(1) 采用计时制:(0.05+0.02)×60x=4.2x,采用包月制:60+0.02×60x=60+1.2x;(2) 由4.2x =60+1.2x,得x=20. 又由题意可知,上网时间越长,采用包月制越合算.所以,当0 < x < 20 时,采用计时制合算;当x=20 时,两种方式费用相同;当x > 20 时,采用包月制合算.4. 解:设复印页数为x,依题意,列表得:(1)当x <20 时,0.12x 大于0.1x 恒成立,图书馆价格便宜;(2)当x = 20 时,图书馆价格便宜;(3) 当x 大于20时,依题意得2.4+0.09(x-20) =0.1x.解得x =60所以,当x大于20且小于60时,图书馆价格便宜;当x等于60时,两者价格相同;当x大于60时,复印社价格便宜.综上所述:当x 小于60页时,图书馆价格便宜;当x 等于60时,两者价格相同;当x 大于60时,复印社价格便宜.5. 解:(1)设买标价x元的商品办会员卡与不办会员卡花钱一样多.根据题意,得x=20+0.8x,解得x=100.所以买标价100元的商品办会员卡与不办会员卡花钱一样多.(2)不办会员卡花200元,办会员卡时花20+200×0.8= 180(元),所以买标价为200元的商品时,办会员卡合算,能省20元.(3)不办会员卡花60元,办会员卡花20+60×0.8=68(元),所以买标价为60元的商品时,不办会员卡合算,能省8元.(四)课堂小结今天我们学了哪些内容:1. 解决电话计费问题需要明确“哪种计费方式更省钱”与“主叫时间”有关.2. 此类问题的关键是能够根据已知条件找到合适的分段点,然后建立方程模型分类讨论,从而得出整体选择方案.(五)课前预习预习下节课(4.1)114页到116页的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索分析
解决问题
学生充分交流讨论、整理归纳
解:1、用“全球通”每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用“神州行”不收月租费,根据累计通话时间按0.60元/分收通话费。
2、不一定,具体由当月累计通话时间决定。
3、
全球通
神州行
200分
130元
120元
300分
170元
180元
在前面几节学习中,已经对利用一元一次方程解决问题的基本过程进行多次渗透,逐步细化,本节要求学生用框图概括,使学生对“应用一元一次方程解决实际问题”有较理性的认识,进一步体会模型化的思想。
3.2 解一元一次方程(一)
第四课时
教学目标
1、经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。
2、通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。
教学难点
探究实际问题与一元一次方程的关系。
知识重点
建立一元一次方程பைடு நூலகம்决实际问题
教学过程(师生活动)
设计理念
本课教育评注(课堂设计理念,实际教学效果及改进设想)
课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识。
学生练习,教师巡视,指导,讨论解是否合理
开放题
学生在现实的、富有挑战性的问题情境中多种角度认识问题,多种策略思考问题,尝试解释答案的合理性,培养探索精神和创新意识
课堂小结
知识梳理
小组讨论,试用框图概括“用一元一次方程分析和解决实际问题”的基本过程
学生思考、讨论、整理。
这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。
以表格的形式呈现数据,简单明了,易于比较。
通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。
综合应用
巩固提高
一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较省钱?
3、一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?
4、对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?
本例是一道与生活相关的移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。
理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。
4,设累计通话t分,则用“全球通”要收费(50+0.4t)元,用“神州行”要收费0.6t元,如果两种计费方式的收费一样,则
0.6t=50+0.4t
移项得 0.6t-0.4t=50
合并,得0.2t=50
系数化为1,得t=250
答:如果一个月内通话250分,那么两种计费方式的收费相同。
问题2是开放性的,答案与通话时间有关
创设情境提出问题
信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。
出示教科书91页的例2;观察下列两种移动电话计费方式表:
全球通
神州行
月租费
50元/月
0
本地通话费
0.40元/分
0.60元/分
设计以下问题:
1、你能从中表中获得哪些信息,试用自己的话说说。
2、猜一猜,使用哪一种计费方式合算?
让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。
小结与作业
布置作业
自我评价
1、必做题:教科书93页习题3.2第2题。
2、一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。
3、选做:某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用相同数量60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算?租几辆车?
相关文档
最新文档