EWB使用与仿真演示

合集下载

EWB的使用.ppt

EWB的使用.ppt

选的元器件上,拖动到电路所需要的地方,然后松开元件就放置该处。该元
器件以红色显示,便于识别。 3.2.元器件的移动:
①对准元器件按下左键拖曳到目标区,最后松开即可。
②多个元器件的移动,先框选中这些元器件,然后用鼠标的左键拖曳其中
的任意一个元器件,所有选中的元器件就会一起移动到指定的位置
3.3.元器件的方位调整:
a电路中必须有接地点。 b所有元件都要相连,并接在电路中,容易出错的是只是元件紧靠在一起, 而不是通过导线把两个器件连在一起。 检查的方法:是拖动元件,元件如被拖出,表示他们无相连。。 c.电容和电流源不能串联连接,电感和电压源不能并联连接。 d. 电路连接正确,无悬空节点和多余不用的元器件。元器件摸型和子电路 选择正确。
首先选中该元器件,按下工具栏中的元器件特性按钮(或双击 该元器件),会弹出相关参数特性对话框,提供参数的修改。
3.元器件的故障项设4F.显au示lt选:项设置Display: 1标可编一改标,识赋般号识但项 予 取项项必(器默(L须件认LRa2可中可abe保容值.bf元e设的通eel证易,:r器l置当设过e)编识也n件某大定改c号别可e的些小器变的的以I数D元、件数惟标自)值器单值值一记行。项件位((性; 修可 器 SOLNV有及VRhpea。o设件aeoea数公lnlusrunk置管etie值差eas:在脚)→gt→→大ae电之n对→开短小无c路间话e路路时漏故)仿漏框,电障真电:故、设设编选项O“件障短p漏定号项子S的t点路hio参的”菜各电o,、nw数显设单项电s/如开)H标示定项参阻i所设路d识方为(数e设置。、式。S”C内c定i元。hr容c的e器默um来i件认ta电显t值“ic路示、电图元模路选器型图、
4.2.数字多用表:

仿真软件EWB应用

仿真软件EWB应用

二极管库







发桥





光式






二整






极流






管器




晶体管库
晶体管库
P N
PMOS NMOS PMOS NMOS PMOS NMOS PMOS NMOS P N PNP NPN
三三四四三三四四 端端端端端端端端 耗耗耗耗增增增增 沟沟尽尽尽尽强强强强 三三道道型型型型型型型型 极极结结 管管型型
输出部分可选取数码管和发光管来 观察。
芯片的一些空余管脚最好能接高电 平。否则逻辑就会出现差错。
数字电路仿真注意事项
新建文件
保存文件 恢复原 存储文件 导出 至…… 打印设置
退出
打开文件 另存为 由……导入
打印 程序选项
安装
剪 切 复 制 粘贴
删除
全部选中 以位图形式 拷贝到剪切板
EDIT菜单介 绍
显示剪切板内容
CIR CUIT菜单介绍
水平旋转
元器件属性 放大 显示
缩小显 示
旋转 垂直旋转 创建子电路
原理图选项 限制
3.EWB的工具栏
新建
元 水平反转 器
件 子电路 特

放大
帮助
旋转 垂直反转分析图 缩小 缩放比
信号源库
信号源库
直交交 流流流 电电电 接电流压流 地池源源源
电电电电 压压流流 控控控控 制制制制 电电电电 压流压流 源源源源

ewb仿真实例1

ewb仿真实例1

波电路,其典型电路如图1.3-1所示。输入信号经过一个由RC元
件组成的双T型选频网络后,送至集成运放的同相输入端。当输 入信号频率比较高时,由于电容的容抗很小,可认为短路,因 此高频信号可从上面两个电容和一个电阻构成的支路通过。而 当频率较低时,因容抗很大,可将电容视为开路,故低频信号 可从下面两个电阻和一个电容构成的支路通过。只有频率处于 低频和高频中间某一范围的信号将被阻断。所以双T网络具有 “带阻”的特性。
(1) 根据所需要的振荡频率f0计算RC值。
(2) 由ri>>R>>ro,选取合适的R,然后再确定C。
(3) 为了减小偏置电流的影响,应尽量使RF//Rf=R,同时由反
馈系数的要求,即可确定RF和Rf的大小。
(4) 当需要频率较高时,选用增益带乘积较高的集成运放。 该电路中采用了匹配对接的两只二极管作为稳幅电路,其上 并联R0可适当削弱二极管的非线性影响,改善波形失真。
图1.4-1是一个由N沟道增强型MOS场效应管组成的共源极
放大电路。该电路只需一路直流电源,同时解决了输入电压与
输出电压的共地问题,因此比较实用。
图1.4-1 场效应放大电路原理图
静态时,栅极电压由VDD经电阻R1、R2分压后提供,静态
漏极电流流过电阻Rs产生一个自偏压,场效应管的静态偏置电
压UGSQ由分压和自偏压的结果共同决定,因此称为分压—自偏 压式共源放大电路。引入源极电阻Rs也有益于稳定静态工作点,
B f 2 f1 2(2 A up )f 0

当Aup=2时,Q将趋于无穷大,表示电路将产生自激振荡。为了 避免发生此种情况,根据Aup的表达式可知,选择电路元件参数 时应使RF < R4。

模拟电路的EWB仿真举例

模拟电路的EWB仿真举例

7、模拟电路的EWB仿真举例7.1 晶体管基本放大电路共射极、共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB对其进行仿真分析,进一步熟悉三种电路在静态工作点、电压放大倍数、频率特性以及输入、输出电阻等方面各自的不同特点。

7.1.1 共射极基本放大电路按图7.1—1 搭接共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option)中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。

图7.1—1共射极基本放大电路1. 静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量),电路静态分析结果如图7.1—2所示,分析结果表明晶体管Q1工作在放大状态。

图7.1—2共射极基本放大电路的静态工作点22. 动态分析用仪器库的函数发生器为电路提供正弦输入信号V i (幅值为5mV ,频率为10kHz ),用示波器观察到输入、输出波形如图7.1—3所示。

图中V A 为输入电压(电路中节点4),V B 为输出电压(电路中节点5)。

由波形图可观察到电路的输入、输出电压信号反相位关系。

由两个测试指针处(T 1、T 2)分别读得输入、输出电压峰值,估算出电压放大倍数约为100倍。

再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

图7.1—3 共射极基本放大电路的输入、输出电压波形输出电压的有效值后,再转换为峰值与输入电压峰值相比求得电压放大倍数。

晶体管Q 1(2N2712)电流放大系数β的典型值为204,读者还可以利用共射极放大器电压放大倍数理论计算公式:be L I O V r R V V A /...β-=-= 求得电压放大倍数再与上两种测试方法测得结果加以比较,进一步加深对理论计算公式的理解。

3. 参数扫描分析在图7.1—1所示的共射极基本放大电路中,偏置电阻R 1的阻值大小直接决定了静态电流I C 的大小,保持输入信号不变,改变R 1的阻值,可以观察到输出电压波形的失真情况。

EWB电路仿真软件使用说明

EWB电路仿真软件使用说明

EWB电路仿真软件使用说明EWB(Electronic Workbench)是一款用于电路仿真和分析的软件工具,广泛应用于电子工程师和学生之间。

本文将为您提供EWB电路仿真软件的使用说明。

一、软件安装和启动二、创建电路图在EWB中,您可以通过绘图功能创建各种类型的电路图。

在工具栏上选择所需的元器件,然后在绘图区点击鼠标来放置元器件。

通过拖动连接线将元器件相连接,并在连接处加上节点标记。

电路图可以包含电源、电阻、电容、电感、二极管、晶体管、运算放大器等各种元器件。

三、设置元器件属性在属性栏中,您可以为所选元器件设置特定的属性。

例如,对于电阻元器件,您可以设置电阻值;对于电容元器件,您可以设置电容值。

您还可以设置元器件的名称、供电电压等等。

四、连接电路当您完成电路图的绘制后,需要为电路创建电源。

在菜单栏中选择“电源”选项,在绘图区点击鼠标以放置电源。

然后,通过连接线连接电源与其它元器件,并设置电源的电压值。

同时,您可以设置电路的输入或输出端口,以便进行相应的信号分析。

五、进行仿真在创建完电路图并连接好电源后,您可以进行电路的仿真。

在菜单栏中选择“仿真”选项,在仿真窗口中选择仿真类型,如直流分析、交流分析、脉冲响应等。

然后,您可以设置仿真参数,如输入电压、频率等,并开始仿真。

软件将模拟电路中的电流、电压等数据,并将结果以图表的形式显示出来。

六、分析和优化电路在仿真结果中,您可以进行各种分析和优化操作。

例如,您可以通过图表来查看各个元器件的电流和电压变化情况,以判断电路是否正常工作。

您还可以调整电路中的元器件参数,观察其对电路性能的影响。

通过不断的试验和优化,您可以得到一个更好的电路设计。

七、保存和导出八、学习资源和社区支持。

EWB数字电路仿真实验

EWB数字电路仿真实验

EWB数字电路仿真实验引言在数字电路设计中,仿真实验是非常重要的一环。

它能够帮助我们验证设计的正确性,优化电路的性能,以及避免在实际制造电路之前出现的问题。

本文将介绍EWB(Electronic Workbench)软件的使用,以进行数字电路仿真实验。

什么是EWB?EWB是一款常用的电子电路设计与仿真软件,它可以用来方便地创建、编辑和仿真各种类型的电路。

EWB提供了丰富的元件库和功能,使得我们可以轻松地进行数字电路的设计和仿真实验。

数字电路仿真实验的步骤进行数字电路仿真实验通常可以分为以下几个步骤:步骤一:打开EWB软件首先,我们需要打开EWB软件。

在电脑桌面或应用程序中找到EWB的图标,双击打开软件。

步骤二:创建新电路在EWB软件中,我们可以选择创建一个新电路。

单击软件界面上的“新建”按钮或者选择菜单栏中的“文件 -> 新建”选项,即可创建一个空白的电路。

步骤三:选择元件在EWB软件的元件库中,有各种各样的数字电路元件,如门电路、寄存器、计数器等。

我们可以通过拖拽元件到电路画布上的方法将其添加到电路中。

步骤四:连接元件将所选元件拖拽到电路画布上后,我们需要正确地连接这些元件。

在EWB软件中,选择“连线”工具,然后点击元件上的引脚进行连接。

我们可以使用鼠标在电路画布上拖拽连线,或者直接点击元件引脚进行连接。

步骤五:设置元件参数在EWB软件中,我们可以修改元件的参数,以满足我们的需求。

例如,我们可以修改门电路的真值表或计数器的计数范围。

通过设置元件参数,我们可以进行更加灵活的仿真实验。

步骤六:进行仿真实验完成电路的搭建和参数设置后,我们可以通过点击软件界面上的“仿真”按钮或者选择菜单栏中的“仿真 -> 运行”选项,来进行数字电路的仿真实验。

EWB软件会根据设计的电路和设置的参数,模拟电路的工作过程,并显示相应的结果。

步骤七:分析仿真结果在仿真实验完成后,我们可以观察和分析仿真结果。

EWB 软件提供了丰富的工具和功能,以便我们对仿真结果进行分析和评估。

EWB电路仿真软件使用说明

EWB电路仿真软件使用说明

EWB电路仿真软件使用说明EWB电路仿真软件一、软件简介随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。

电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。

EDA是在计算机辅助设计(CAD)技术的基础上发展起来的计算机设计软件系统。

与早期的CAD软件相比,EDA软件的自动化程度更高、功能更完善、运行速度更快,而且操作界面友善,有良好的数据开放性和互换性。

电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点:(1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取;信号源库基本器件库二极管库模拟集成电路库指示器件库仪器库三、Electronics Workbench 基本操作方法介绍1.创建电路(1)元器件操作元件选用:打开元件库栏,移动鼠标到需要的元件图形上,按下左键,将元件符号拖拽到工作区。

元件的移动:用鼠标拖拽。

元件的旋转、反转、复制和删除:用鼠标单击元件符号选定,用相应的菜单、工具栏,或单击右键激活弹出菜单,选定需要的动作。

元器件参数设置:选定该元件,从右键弹出菜单中选Component Properties可以设定元器件的标签(Label)、编号(Reference ID)、数值(Value)和模型参数(Model)、故障(Fault)等特性。

说明:①元器件各种特性参数的设置可通过双击元器件弹出的对话框进行;②编号(Reference ID)通常由系统自动分配,必要时可以修改,但必须保证编号的唯一性;③故障(Fault)选项可供人为设置元器件的隐含故障,包括开路(Open)、短路(Short)、漏电(Leakage)、无故障(None)等设置。

EWB的基本操作方法

EWB的基本操作方法

创建一个仿真实验电路,必须掌握一些基本的操作方法。

为了叙述方便,对鼠标器和键盘的有关操作术语规定如下:单击:按鼠标左键一下,然后马上放开;双击:快速、连续按鼠标左键两下;拖曳:把鼠标指针放在某一对象上,按鼠标左键不放,移动鼠标指针到一个新的位置,然后再释放鼠标左键。

3.1 元器件的操作使用(1)元器件的选用。

根据电路需要,先在元器件库栏中打开该元器件库的下拉菜单,然后从元器件库中将选中的元器件拖曳到电路工作区,如图3.1.1所示。

图3.1.1 打开并将选中的元器件拖曳到工作区(2)元器件的选中。

选择单个元器件的方法:单击要选中的元器件,被选中的元器件以红色显示,便于识别。

选择多个元器件的方法:Ctrl+单击需要的所有元器件,被选中的所有元器件都以红色显示。

如果要同时选中一组相邻的元器件,可以在电路工作区的适当位置拖曳画出一个矩形区域,包围在该矩形区内的一组元器件即被同时选中。

取消选中元器件的方法:取消所有被选中元器件的选中状态,只需单击工作区的空白部分。

要取消某一元器件的选中状态,只需使用Ctrl+单击该元器件。

(3)元器件的移动。

移动元器件至特定的位置,只要拖动该元器件即可。

如移动的元器件为多个,则必须先用前面的方法选中这些元器件,然后用鼠标的左键拖曳其中的任意一个元器件,则所有选中的元器件就会一起移动到指定的位置。

需注意的是与其连接的导线也会重新排列。

如果只是想微移动某个(或某些)元器件的位置,也可以先选中它(们),然后再使用键盘上的箭头键作微小的移动。

(4)元器件的调整。

为便于电路的合理布局和连线,经常需要对元器件进行调整,这些调整包括旋转、垂直翻转、和水平翻转等。

在元器件被选中状态下,可用下面三种方式实现:①菜单方式,菜单栏中命令如下:Circuit / Rotate → 电路/ 旋转Circuit/Flip Vertical → 电路/ 垂直反转Circuit / Flip Horizintal → 电路/ 水平反转②工具栏图标方式:旋转→垂直反转→水平反转→③热键方式:Ctrl+R → 旋转例:如图3.1.2所示为一个二输入与非门的旋转、水平反转、垂直反转的调整结果。

Ewb仿真实验与实例教程

Ewb仿真实验与实例教程

Ewb仿真实验与实例教程1 Electronics Workbench简介电子设计自动化(Electronic Design Automation,简称EDA)技术是近代电子信息领域发展起来的杰出成果。

EDA包括电子工程设计的全过程,如系统结构模拟、电路特性分析、绘制电路图和制作PCB(印刷电路板),其中结构模拟、电路特性分析称之为EDA仿真。

目前著名的仿真软件SPICE(Simulation Program With Integrated Circuit Emphasis)是由美国加州大学伯克利分校于1972年首先推出的,经过多年的完善,已发展成为国际公认的最成熟的电路仿真软件,当今流行的各种EDA软件,如PSPICE、or/CAD、Electronics Workbench等都是基于SPICE开发的。

Electronics Workbench(简称EWB)是加拿大Interactive Image Technologies Led 公司于1988年推出的,它以SPICE3F5为模拟软件的核心,并增强了数字及混合信号模拟方面的功能,是一个用于电子电路仿真的“虚拟电子工作台”,是目前高校在电子技术教学中应用最广泛的一种电路仿真软件。

EWB软件界面形象直观,操作方便,采用图形方式创建电路和提供交互式仿真过程。

创建电路需要的元器件、电路仿真需要的测试仪器均可直接从屏幕中选取,且元器件和仪器的图形与实物外型非常相似,因此极易学习和操作。

EWB软件提供电路设计和性能仿真所需的数千种元器件和各种元器件的理想参数,同时用户还可以根据需要新建或扩充元器件库。

它提供直流、交流、暂态的13种分析功能。

另外,它可以对被仿真电路中的元器件设置各种故障,如开路、短路和不同程度的漏电,以观察不同故障情况下电路的状态。

EWB软件输出方式灵活,在仿真的同时它可以储存测试点的所有数据,列出被仿真电路的所有元器件清单,显示波形和具体数据等。

EWB电子电路仿真实验

EWB电子电路仿真实验

可无磁非
调芯芯线
电电

感感



图 1.5 EWB5.0 的基本器件库
1.3.3 二极管库和晶体管库


















PMOS NMOS PMOS NMOS P-J-MOS N-J-MOS
PNP NPN
二稳发全 极压光波 管二二桥
极极式 管管整
流 器
肖单双双 特向向向 基可稳可 二控压控 极硅管硅 管
如果要同时选中多个元器件,可以反复使用 CTRL+“鼠标左键单击”选中这些元器件。被选中的元器 件以红色显示,便于识别。
如果要同时选中一组相邻的元器件,可以用鼠标在电路工作区的适当位置拖曳画出一个矩形区域, 包围在该矩形区域内的所有元器件即被同时选中。
要取消某一个元器件的选中状态,可以使用 CTRL+“鼠标左键单击”。要取消所有被选中元器件的选 中状态,只需单击电路工作区的空白部分即可 (3) 元器件的移动。要移动一个元器件,只要拖曳该元器件即可。要移动一组元器件,必须先用前述的方 法选中这些元器件,然后用鼠标器左键拖曳其中的任意一个元器件,则所有选中的部分就会一起移动。 选中元器件后,也可以使用箭头键便之作微小的移动。 (4) 元器件的旋转与反转。为了使电路便于连接、布局合理,常常需要对元器件进行旋转或反转操作。这 可先选中该元器件,然后使用工具栏的“旋转、垂直反转、水平反转”等按钮。 (5) 元器件的复制、删除。对选中的元器件,使用菜单命令 Edit/Cut、Edit/Copy、Edit/Paste 和 Edit/Delete, 可以分别实现元器件的复制、删除等操作。 (6) 元器件标识、编号、数值、模型参数的设置。双击元器件后,会弹出器件持性对话框,可供输入数据。 元器件特性对话框具有多种选项可供选挥,包括 Label(标识)、Model(模型)、value(数值)、Fault(故障 设置)、Display(显示)、Analysis Setup(分析设置)等内容。下面介绍这些选项的含义和设置方法。 ① Label 选项对话框。用于设置元器件的 Label(标识)和 Reference ID(编号)。其对话框如图 2.1 所示。 Reference ID(编号)通常由系统自动分配,必要时可以修改,但必须保证编号的唯一性。

仿真软件EWB的使用

仿真软件EWB的使用

仿真软件EWB的使用第一章EWB概述EWB是Electronics Workbench的缩写,称为电子工作平台,是一种在电子技术界广为应用的优秀计算机仿真设计软件,被誉为"计算机里的电子实验室"。

其特点是图形界面操作,易学、易用,快捷、方便,真实、准确,使用EWB可实现大部分硬件电路实验的功能。

电子工作平台的设计试验工作区好像一块"面包板",在上面可建立各种电路进行仿真实验。

电子工作平台的器件库可为用户提供350多种常用模拟和数字器件,设计和试验时可任意调用。

虚拟器件在仿真时可设定为理想模式和实模式,有的虚拟器件还可直观显示,如发光二极管可以发出红绿蓝光,逻辑探头像逻辑笔那样可直接显示电路节点的高低电平,继电器和开关的触点可以分合动作,熔断器可以烧断,灯泡可以烧毁,蜂鸣器可以发出不同音调的声音,电位器的触点可以按比例移动改变阻值。

电子工作平台的虚拟仪器库存放着数字电流表、数字电压表、数字万用表、双通道 1000MHz 数字存储示波器、999MIHz数字函数发生器、可直接显示电路频率响应的波特图仪、16路数字信号逻辑分析仪、16位数字信号发生器等,这些虚拟仪器随时可以拖放到工作区对电路进行测试,并直接显示有关数据或波形。

电子工作平台还具有强大的分析功能,可进行直流工作点分析,暂态和稳态分析,高版本的EWB还可以进行傅立叶变换分析、噪声及失真度分析、零极点和蒙特卡罗等多项分析。

使用EWB对电路进行设计和实验仿真的基本步骤是: 1. 用虚拟器件在工作区建立电路;2.选定元件的模式、参数值和标号; 3.连接信号源等虚拟仪器; 4. 选择分析功能和参数;5.激活电路进行仿真;6.保存电路图和仿真结果。

第二章初识EWB2.1 EWB5.0的安装和启动EWB5.0版的安装文件是EWB50C.EXE。

新建一个目录EWB5.0作为EWB的工作目录,将安装文件复制到工作目录,双击运行即可完成安装。

电子电路仿真软件EWB5.0的使用

电子电路仿真软件EWB5.0的使用
实验 电子电路仿真软件EWB5.0的使用
一、实验目的 ● 了解EWB5.0视窗操作界面。 ● 掌握从元件工具箱中选取各种不同类型电子 元件的方法。 ● 对所取的各电子元件进行连线,构成正确的电 子电路图。 ● 掌握从仪表工具箱中选取所需类型的仪表, 完成对电路图的仿真测试。
二、 EWB5.0软件的介绍
在EWB中创建基本共射放大电路

实验要求: 1、每组按下图参数要求绘制放大电路并进行仿真,观察输 入、输出信号波形,并且打印波形。
2. 元器件与仪器的连线:

当元器件和仪器放置好后,就可对元器件和仪器开始 连线。先移动鼠标到要连接的元器件的端点,此时鼠 标会变成一个小黑圆点,按下鼠标并拖动它,当拖动 到另一元器件端点时鼠标又变成小黑圆点形状,此时 松开鼠标按键,则两个元器件间就建立了一根连线。 当从一个元器件端点往一根连线上连线时,拖动鼠标 靠近该线时线上会出现一个小黑圆点,此时松掉鼠标 则该元器件会连接到该连线上,并自动产生一个节点。 同样,当往一个节点上连线时也是作同样的操作。只 是线与节点上可以产生不止一个的小黑圆点,分别对 应不同的方向,连线时应注意小黑圆点的朝向。
3. 元器件参数的编辑与修改:
用鼠标双击要编辑的元器件就会弹出该元器件的 参数对话框,用户可在该对话框中对它的各种参数进 行修改。
4. 对绘制好的电路进行仿真:
在上述步骤完成后,按下启动按钮即可进行电路 仿真。此时用户可以对电路的工作进行各种分析,如 付里叶分析,噪声分析等等,用鼠标双击电路中的仪 器可以打开仪器面板,通过改变面板上的参数来改变 电路输入状态或查看电路仿真结果,如改变信号发生 器的输出波形、幅度和频率等来改变电路的输入状态, 用户也可以查看它的仿真结果,如查看万用表上的指 示值,查看示波器上的波形等。 EWB中的仪器是非 常直观的,其仪器面板几乎和我们平时所用的仪器一 样,用户会发觉这些仪器比实际使用中的那些仪器还 要好用,比如示波器,它不仅无需进行同步调整,而 且它还有波形记忆功能,用户可以随时查看仿真过程 中任一时该的输出波形。

实验一EWB仿真软件的使用方法

实验一EWB仿真软件的使用方法

实验一EWB仿真软件的使用方法一、实验目的熟悉EWB软件环境和基本操作方法。

二、实验内容1.EWB简介EWB(本课程使用Electronics Workbench 5.12)是由加拿大Interactive Image Technologies Ltd开发的以SPICE3F5为核心的电子电路计算机仿真软件。

EWB提供了8000多个元器件。

元器件模型参数齐全,并可随愿设置、修改。

用户还可自建新的元件模型。

EWB提供了齐全的虚拟电子测量设备,如双踪示波器、数字万用表、多功能函数发生器、存储式频谱分析仪等,如同置身于实验室一样。

EWB提供了14种分析工具,可对电路进行直流分析、交流频率分析、瞬态分析、傅里叶分析、灵敏度分析等。

特别适用于电子电路的教学、实验、研究与设计。

2.软件界面图 1 EWB软件界面元器件栏依次为:自建器件库、信号源库、基本器件库、二极管库、三极管库、模拟集成电路库、混合集成电路库、数字集成电路库、逻辑门电路库、数字器件库、指示器件库、控制器件库、其他器件库及仪器库。

元器件栏下方为电路仿真区。

仿真电源开关及暂停/恢复按钮:3.搭建一个电路(1)拖入元件:将鼠标移至“信号源库”,单击左键,在展开的“信号源库”中选择“交流电压源”,按住鼠标左键将其拖到仿真区,松开左键。

在仿真区中双击该元件可修改其属性,请把其属性修改为220V/50Hz。

同样方法把“信号源库”中的接地、“基本元件库”中的电阻、“二极管库”中的二极管都放置在仿真区中相应位置,如下所示:图 2 布局元件(电阻的方向需旋转,使用工具栏上的按钮。

其值可通过与修改电源属性相同的方法修改)(2)连接电路:将鼠标移至某元件端点处,出现黑点后,点击鼠标左键不放,把光标拖动到需要连接的元件的一端,出现黑点后松开鼠标,两元件便连接起来。

若需要元件与连线连接,则要把光标拖动到连线上直到看到一个白点,此时松开左键,若两连线交点处出现一个黑色的节点显示元件已与连线连接。

EWB仿真实验指导

EWB仿真实验指导

EWB仿真实验指导时述有主编装备与材料学院实验一基尔霍夫电压定律一、实验目的1、测量串联电阻电路的等效电阻并比较测量值和计算值。

2、确定串联电阻电路中流过每个电阻的电流。

3、确定串联电阻电路中每个电阻两端的电压。

4、根据电路的电流和电压确定串联电阻电路的等效电阻。

5、验证基尔霍夫电压定律。

二、实验器材直流电压源 1个数字万用表 1个电压表 3个电流表 3个电阻 3个三、实验原理及实验电路两个或两个以上的元件首尾依次连在一起称为串联,串联电路中流过每一个元件的电流相等。

若串联的元件是电阻,则总电阻等于各个电阻值和。

因此,在图1—1所示电阻串联电路中R=R1+R2+R3。

图1—1电阻串联电路串联电路的等效电阻确定以后,由欧姆定律,用串联电阻两端的电压U除以等效电阻R,便可求出电流I,即 I=U/R 。

基尔霍夫电压定律指出,在电路中环绕任意闭合路径一周,所有电压降的代数和必须等于所有电压升的代数和。

这就是说,在图1—2所示电路中,串联电阻两端电压降之和必须等于串联电路所加的电源电压之和。

因此,由基尔霍夫电压定律有:U 1=Ubc+Ude+Ufo式中,Ubc=IR1,Ude=IR2,Ufo=IR3。

图1—2基尔霍夫电压定律实验电路四、实验步骤1、建立如图1—1所示的电阻串联实验电路。

2、用鼠标左键单击仿真电源开关,激活实验电路,用数字万用表测量串联电路的等效电阻R,记录测量值,并与计算值比较。

3、建立如图1—2所示的基尔霍夫电压定律实验电路。

4、用鼠标左键单击仿真电源开关,激活实验电路,记录电流Iab 、Icd、Ief及电压Ube 、Ude、Ufo。

5、利用等效电阻R,计算电源电压U1和电流I 。

6、用R1两端的电压计算流过电阻R1的电流IR1。

7、用R2两端的电压计算流过电阻R2的电流IR2。

8、用R3两端的电压计算流过电阻R3的电流IR3。

9、利用电路电流Iab 和电源电压U1计算串联电路的等效电阻R 。

multisim仿真 EWB的使用和放大电路的计算机仿真

multisim仿真   EWB的使用和放大电路的计算机仿真

实验四EWB的使用和放大电路的计算机仿真实验目的:1、学习电子线路的计算机仿真软件EWB的使用方法;2、用EWB对胆管放大件路瞬态特性频率特性进行计算机仿真。

实验内容:1、学习和练习在EWB环境下绘制单管放大电路的电路图,电路同实验三;2、学习和使用EWB的交流频率分析功能,对单管放大电路的幅频和相频特性进行计算机仿真,记录放大电路的下限频率f L和上限频率f H,并绘制出幅频和相频特性曲线。

3、在发射级与地之间接一个100 电阻,再做交流频率分析,与第2项实验结果比较。

实验步骤:在multisim环境下的电路仿真简介:设置节点名设置节点名的作用是便于分析节点的静态信息用于静态分析,同时也便于根据节点的动态信息做幅频和相频曲线。

做如图所示的操作:弹出以下窗口后,选中Show All即可:分析静态工作点:做如图所示操作:弹出如下窗口:选中节点名,再点击Add,即可进行添加。

幅频和相频特性的仿真做如下图操作:弹出窗口如下,参数调整到图中所示,选择合适的节点后点击simulate即可。

1、学习和练习在EWB环境下绘制单管放大电路的电路图①在multisim软件环境下绘出单管放大电路:如图在电路中,取交流电流源为5mV,1000Hz,两个电容C1=C5=33μF,取电阻R1=100KΩ,R2=900KΩ,R3=R4=3KΩ。

其中R2本为点位器,通过测试得当R2=900KΩ时,电路工作在稳定的静态工作点。

绘制好的电路图如下图所示:此时的静态工作点为合适的,可通过计算机仿真得到静态工作点即示波器波形:将交流源的参数改变为10mF,电路出现顶部失真,即截止失真,由计算机仿真得到静态工作点和示波器波形如下:若要使电路底部失真,即饱和失真,则需要改变静态工作点,这里讲R2的值由900KΩ改变为400KΩ,由计算机仿真得到静态工作点和示波器波形如下:2、学习和使用EWB的交流频率分析功能,对单管放大电路的幅频和相频特性进行计算机仿真,记录放大电路的下限频率f L和上限频率f H,并绘制出幅频和相频特性曲线。

实验5 应用EWB进行电路设计与仿真

实验5  应用EWB进行电路设计与仿真

实验五应用EWB进行电路设计与仿真班级:学号:姓名:实验时间:2013年月日;实验学时:2学时;实验成绩:一、实验目的1.熟悉EWB的使用环境和EWB使用一般步骤。

2.掌握模拟、数字电子电路的设计与仿真方法。

二、实验内容1、虚拟仪器的使用(1)示波器示波器为双踪模拟式,其图标和面板如下图1所示。

图 1 虚拟示波器其中:Expand ---- 面板扩展按钮;Time base ---- 时基控制;Trigger ---- 触发控制,包括:①Edge ---- 上(下)跳沿触发;②Level ---- 触发电平;③触发信号选择按钮:Auto(自动触发按钮);A、B(A、B通道触发按钮);Ext(外触发按钮)X(Y)position ---- X(Y)轴偏置;Y/T、B/A、A/B ---- 显示方式选择按钮(幅度/时间、B通道/A通道、A通道/B通道);AC、0、DC ---- Y轴输入方式按钮(AC、0、DC)。

(2)电压表电压表的图标:,电压表的属性设置对话框如右图2所示。

图 2 电压表的属性设置对话框(3)电流表 电流表的图标:,电流表的属性设置对话框如图3所示。

图 3 电流表的属性设置对话框(4)数字信号发生器 数字信号发生器的图标:,数字信号发生器的属性设置对话框如图4所示:图4 虚拟数字信号发生器面板(5)逻辑分析仪逻辑分析仪的图标:,逻辑分析仪输出结果图5所示:图5 虚拟逻辑分析仪的输出结果2、实验电路图(1)半波整流电容滤波电路仿真实验原理如图6。

图6 半波整流电容滤波电路(2)数字全加器电路如图7图7 数字全加器逻辑图三、实验步骤1、双击EWB 图标进入EWB 主窗口,创建仿真实验电路2、绘制设计电路(如图6、7所示):从相应库中拖拽出所需元器件和仪器仪表安放于合适的位置,然后利用工具栏的转动按钮使元器件符合电路的安放要求;点击元件引脚端点拉出引线至另一元件引脚端点即可连线;双击元件打开元件特性对话框,给元件标识、赋值;保存。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EWB介绍与使用: 电子工作平台Electronics Workbench (EWB) 5.0c软件 是加拿大Interactive Image Technologies公司于八十年代 末、九十年代初推出的电子电路仿真分析和设计软件,其丰 富的元器件库和多种虚拟实验仪器,为操作者提供了极大的 便利。 EWB时,宛如置身一个小型的实验室,它的虚拟仪器面板 与实际仪器的非常神似,可以用比实验室中更灵活的方式进
• 利用剪切——粘贴功能可将电路和分析图送到文 字处理软件中来制成高质量的实验报告或实现分 组联合设计。
EWB
• 总之,EWB是将大型实验室搬到电脑上,它具有以下突出的 特点: • (1)采用直观的图形界面创建电路:在计算机屏幕上 模仿真实实验室的工作台,绘制电路图需要的元器件、电路 仿真需要的测试仪器均可直接从屏幕上选取; • (2)软件仪器的控制面板外形和操作方式都与实物相 似,可以实时显示测量结果。 • (3)EWB软件带有丰富的电路元件库,提供多种电路 分析方法。 • (4)作为设计工具,它可以同其它流行的电路分析、 设计和制板软件交换数据。 • (5)EWB还是一个优秀的电子技术训练工具,利用它 提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实 验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法 (常规实验室、波特仪、逻辑分析仪) . • 是学习电路、模拟电子技术、数字电子技术、自动控制理论、 过程控制、通讯等课程的非常边检的工具!
多大公司的晶体管元器件、集成电路和数字门电路芯片,器件库中没
有的元器件,还可以由外部模块导入; • 在众多的电路仿真软件中,EWB是最容易上手的,它的工作界面非常直
观,原理图和各种工具都在同一个窗口内,未接触过它的人稍加学习
就可以很熟练地使用该软件; • 对于电子设计工作者来说,它是个极好的EDA工具,许多电路你无需动
行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器 测量方法,操作非常简单,因此非常适合电子类课程的教学 和实验,有助于学生理解和掌握课程的内容, EWB 5.0是一款 进行计算机辅助设计的优秀软件。
特点
• 图形操作界面,直观易用。在计算机屏幕 上模仿真实实验室的工作台,绘制电路图 需要的元器件、电路仿真需要的测试仪器 均可直接从屏幕上选取 ; • 仿真功能强大; • 元器件丰富,分析方法多样。EWB软件带 有丰富的电路元件库,提供了数千种元器 件。提供多种电路分析方法,实现电路的 仿真分析 ;
EWB
• 解决了购买大量元器件和高档仪器的问题, 又避免了元器件的损坏、仪器维护麻烦等 不利因素; • EWB不仅是优良的提高电子设计工作效率 的EDA解决方案,也是学习电子课程课堂 和实验的有利帮手,是非常好的电子实训 工具。
EWB
• 它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析 仪、数字信号发生器、逻辑转换器等工具,它的器件库中则包含了许
EWB的组成 EWB 以著名的SPICE 为基础,由三 部分集成起来:
即电路图编辑器(Schematic Editor);
SPICE3F5 仿真器(Simulator);
EWB 的操作界面
EWB5.12 的操作界面可分为以下几个部分:
(1)电路窗口 该区域为EWB 的主要工作区域,所有电路的输入、连接、测试及 仿真,均在该区域内完成。 (2)电路描述区 该区域位于电路窗口的下方,根据需要其大小可以调整。在该区域中可以 给电路加上必要的注释与说明,以便帮助使用者可以更清楚地理解电路的特 性。 (3)菜单栏 菜单栏位于电路窗口的上方,为下拉式菜单共分为以下几类:File(文 件)、Edit(编辑)、Circuit(电路)、Analysis(分析)、Window(窗口)、 Help(帮助)。 (4)工具栏 EWB5 把一些常用的功能以图标的形式排列成一条工具栏,以便于用户 使用。 (5)元件及仪器库栏 在电路窗口的上方以图标的形式给出了EWB5 中可用的元件库和测量仪 表库。
用烙铁就可得知它的结果,而且若想更换元器件或改变元器件参数,
只需点点鼠标即可,它也可以作为电学知识的辅助教学软件使用。
EWB
• EWB 提供了同其他软件的接口。例如,可输入标 准SPICE 网表并由系统自动将其转换为清晰易读 的电路图,也可将在EWB中设计好的电路图转换成 其他SPICE 仿真器所要求的格式,或送到像 Protel、OrCAD、PADS 等PCB 绘图软件中绘制PCB (印刷电路板)图。
虚的发展,电子元器件的种类越来越多,集成度越来越高, 所设计电路的复杂程度也相应提高,而电子产品的更新周期却越来越短, 再依靠传统的设计方法完成电路的功能设计、逻辑设计、性能分析、时序 测试直至印制电路板的设计与调试,除了设计周期过长以外,也不太经济。 现在,电子产品已和计算机系统紧密相连,借助EDA(Electronic Design Automation 电子设计自动化)软件除了可以完成传统的设计外, 还可进行多种测试,如元器件的老化实验、印制版的温度分布和电磁兼容 性测试等等。 现代电子技术的发展已进入了片上系统(System – on – Chip)时 代,大学里传统的电子技术实验方法的改进已刻不容缓.
虚拟电子实验台是一种利用在计算机上运行电路仿真 软件来模拟进行硬件实验的工作平台。 由于仿真软件可以逼真地模拟各种电子元器件以及仪 器仪表,从而不需要任何真实的元器件与仪器,就可以进 行电路、数字电路和模拟电路课程中的各种实验。它具有 功能全、成本低、效率高、易学易用以及便于自学、便于 开展综合性或设计性实验等优点。 它不仅可作为现行的各种实验的一种补充与替代手段, 而且可作为复杂的电子系统的设计、仿真与验 证的实用手段,可实现电子电路与系统的EDA。 这是当今电子技术的必然发展方向。
文件菜单(File Menu)
编辑菜单(Edit Menu)
电路菜单(Circuit Menu)
相关文档
最新文档