塑料成型技术
塑料成型技术现状与发展
塑料成型技术现状与发展塑料成型技术是一种将塑料原料通过一系列加工工艺,加热、压力等作用下,使其变形成为所需形状的方法。
随着塑料在工业生产和日常生活中的广泛应用,塑料成型技术也得到了快速发展。
本文将从塑料成型技术的现状与发展两个方面进行探讨。
一、塑料成型技术的现状1.注塑成型技术注塑成型技术是目前最常用的塑料成型技术之一。
它通过将加热熔化的塑料原料注入模具中,经过冷却后得到所需的产品形状。
注塑成型技术具有生产效率高、成本低、产品精度高等优点,广泛应用于电子、汽车、家电等领域。
2.吹塑成型技术吹塑成型技术主要用于生产中空塑料制品,如瓶子、容器等。
它是将热塑性塑料颗粒加热熔化后注入到吹塑机的模具中,通过气压将塑料吹成所需的形状。
吹塑成型技术具有生产效率高、成本低、产品质量好等特点,被广泛应用于食品、化妆品等行业。
3.挤出成型技术挤出成型技术是将加热熔化的塑料原料通过螺杆挤出机挤出成型。
挤出成型技术可以生产出形状复杂的塑料制品,如管道、板材等。
挤出成型技术具有生产效率高、产品质量稳定、适用范围广等优点,在建筑、包装等领域得到了广泛应用。
二、塑料成型技术的发展1.高速成型技术高速成型技术是近年来发展起来的一种新型塑料成型技术。
它通过增加注塑机的射出速度和压力,缩短冷却时间,实现塑料制品的高速生产。
高速成型技术能够提高生产效率,降低生产成本,适用于大批量生产的需求。
2.微纳米成型技术随着微纳米科技的发展,微纳米成型技术逐渐应用于塑料制品的生产。
微纳米成型技术可以制造出微小尺寸的塑料制品,如微型零件、微流控芯片等。
微纳米成型技术具有高精度、高灵活性等特点,有望在医疗、电子等领域得到更广泛的应用。
3.可持续发展成型技术随着环保意识的增强,可持续发展成型技术成为塑料成型技术的一个重要发展方向。
可持续发展成型技术主要包括生物降解塑料的应用、回收利用塑料原料等。
这些技术可以减少对环境的污染,提高资源利用率,符合可持续发展的要求。
塑料加工技术手册
塑料加工技术手册在现代工业中,塑料材料已经成为最为常用的材料之一。
在各类机械设备、家电产品和日常用品中,塑料制品随处可见。
因此,提高塑料加工技术已经成为了现代工业发展的一个重要方向。
本文将详细介绍塑料加工的各种方法和技术。
一、注塑成型技术注塑成型技术是目前最为常用的塑料加工方式之一。
这种方式是通过将熔化的塑料材料注入成型模具中,经过冷却硬化后取出成品。
注塑成型技术能够制造出各种形状和大小不同的产品,而且生产效率高,生产周期短。
注塑成型技术在生产中的应用非常广泛。
在汽车零部件、家电产品、玩具制品等领域,注塑成型技术都有着广泛的应用。
二、吹塑成型技术吹塑成型技术是一种利用空气压力将加热的塑料材料吹成型的加工方式。
这种方法主要用于生产中空体和薄壁体的产品,如瓶子、容器、桶等。
吹塑成型技术生产产品的周期较短,而且能够大量生产符合要求的产品。
同时,吹塑成型技术能够制造出形状规则、壁薄、重量轻、透明度高的产品。
三、挤出成型技术挤出成型技术是将塑料材料推入挤出机中,经过熔化和加工后,通过模头挤出制成成品的加工方式。
挤出成型技术广泛应用于生产各种管材、棒材、板材以及各类异型材料等。
挤出成型技术的特点是可以生产出连续性的成型产品,而且产品尺寸可以根据需要进行调整。
挤出成型技术的应用范围非常广泛,在建筑、自行车、包装等行业都有着广泛的应用。
四、热熔焊接技术热熔焊接技术是指将两个或多个物体通过加热使它们的接触表面部分熔化,然后冷却成型后制成焊接部分的过程。
对于塑料材料的加工和制造过程中,热熔焊接技术应用非常广泛,尤其是在各种管道和容器的制造和修复中更受重视。
通过热熔焊接技术可以对塑料材料进行加工和制造,从而制成符合工业要求和使用要求的塑料制品。
五、压延成型技术压延成型技术是指将加热的材料通过辊子的挤压和冷却制成各种板材状的制品的加工方式。
压延成型技术应用非常广泛,在建筑、家电以及日常用品制造的过程中都有着重要的作用。
塑料封装的成型技术
塑料封装的成型技术塑料封装的成型技术主要有以下几种:1.注射成型(简称注塑):将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备,注塑成型是通过注塑机和模具来实现的。
2.挤出:物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。
3.旋转成型(又称滚塑成型、旋塑、旋转模塑、旋转铸塑、回转成型等):该成型方法是先将计量的塑料(液态或粉料)到加入模具中,在模具闭合后,使之沿两垂直旋转轴旋转,同时使模具加热,模内的塑料原料在重力和热能的作用下,逐渐均匀地涂布、熔融粘附于模腔的整个表面上,成型为与模腔相同的形状,再经冷却定型、脱模制得所需形状的制品。
4.吹塑:热成型Thermoforming 片材夹在框架上加热到软化状态,在外力作用下,使其紧贴模具的型面,以取得与型面相仿的形状。
5.模压成型:压延成型。
6.低压注塑:将聚酰胺材料放入低压注塑机的胶池内;将待处理的PCB放入与该PCB对应的模具中;将步骤2)所述的PCB和模具一起放到低压注塑机的操作台上;启动低压注塑机,在低压状态下,向模具内注入液态的聚酰胺材料(低压注塑胶料),填满PCB周围的空间,完成低压注塑操作;快速固化,完成PCB封装;如PCB需外壳,则将低压注塑处理后的PCB装入与所述PCB对应的外壳内,完成封装。
7.超临界流体微孔发泡成型:首先是将超临界流体(二氧化碳或氮气)溶解到热融胶中形成单相溶体;然后通过开关式射嘴射人温度和压力较低的模具型腔,由于温度和压力降低引发分子的不稳定性从而在制品中形成大量的气泡核,这些气泡核逐渐长大生成微小的孔洞。
8.纳米注塑成型(NMT):是金属与塑胶以纳米技术结合的工法,先将金属表面经过奈米化处理后,塑胶直接射出成型在金属表面,让金属与塑胶可以一体成形。
塑料挤出成型技术
塑料挤出成型技术塑料挤出成型技术是一种常见的塑料加工工艺,广泛应用于塑料制品的制造过程中。
本文将从挤出成型的原理、设备、优势和应用领域等方面介绍这一技术。
一、挤出成型的原理塑料挤出成型是通过将加热熔融的塑料物料通过挤出机的螺杆进行高压挤出,通过模具形成所需的截面形状,然后冷却固化成型的一种工艺。
其基本原理是将塑料物料通过螺杆的旋转,使其在高温和高压下熔融,并通过模具的形状,使塑料物料在挤出口形成所需的截面形状。
挤出成型工艺具有连续性、高效率、高产量等优点,可以制造出各种复杂形状的塑料制品。
二、挤出成型的设备塑料挤出成型设备主要包括挤出机、模具、冷却系统和切割装置等。
挤出机是挤出成型的核心设备,由电机、螺杆和加热系统等组成。
螺杆通过传动装置带动旋转,将塑料物料从进料口输送到挤出口,实现挤出成型的过程。
模具是根据制品的形状设计的,通过模具的形状决定了挤出成型的截面形状。
冷却系统用于快速冷却挤出的塑料制品,确保其固化成型。
切割装置用于将挤出成型的制品按照一定的长度进行切割。
三、挤出成型的优势1. 生产效率高:塑料挤出成型工艺具有连续性,可以实现大批量的生产,提高生产效率。
2. 制品质量稳定:挤出成型的制品形状稳定,尺寸精确,质量可靠。
3. 适用范围广:挤出成型工艺适用于各种塑料,可以制造出各种形状的制品,如管材、板材、型材等。
4. 设备投资少:相对于其他塑料加工工艺,挤出成型设备投资较少,生产成本较低。
5. 可塑性强:挤出成型的塑料物料可根据需要选择,可以加入各种填充剂、增强剂等,增加塑料的性能。
四、挤出成型的应用领域塑料挤出成型技术广泛应用于建筑、包装、汽车、电子、家电等行业。
在建筑行业中,挤出成型制造的塑料管材、型材、板材等被广泛应用于室内装饰、给排水系统、电线电缆等方面。
在包装行业中,挤出成型用于制造各种塑料包装盒、瓶子、袋子等。
在汽车行业中,挤出成型的塑料制品用于汽车内饰、外饰等部件。
在电子和家电行业中,挤出成型的塑料制品用于电线电缆的保护管、电器外壳等。
八大塑料注塑成型技术及特点
八大塑料注塑成型技术及特点气辅注塑(GAIM)成型原理:气辅成型(GAIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术。
特点:•减少残余应力、降低翘曲问题;•消除凹陷痕迹;•降低锁模力;•减少流道长度;•节省材料;•缩短生产周期时间;•延长模具寿命;•降低注塑机机械损耗;•应用于厚度变化大之成品。
GAIM可用于生产管状和棒状制品、板状制品以及厚薄不均的复杂制品。
水辅注塑(WAIM)成型原理:水辅注塑(WAIM)是在GAIM 基础上发展起来的一种辅助注塑技术,其原理和过程与GAIM类似。
WAIM用水代替GAIM的N2做为排空、穿透熔体和传递压力的介质。
特点:与GAIM相比,WAIM具有不少优势•水的热传导率和热容量比N2大得多,故制品冷却时间短,可缩短成型周期;•水比N2更便宜,且可循环使用;•水具有不可压缩性,不容易出现手指效应,制品壁厚也较均匀;•气体易渗入或溶入熔体而使制品内壁变粗糙,其至在内壁产生气泡,而水不易渗入或溶入熔体,故可制得内壁光滑的制品。
精密注塑成型原理:精密注塑是指能成型内在质量、尺寸精度和表面质量均要求很高的产品的一类注塑技术。
其生产出来的塑胶制品的尺寸精度,可以达到0.01mm 以下,通常在0.01~0.001mm之间。
特点:•制件的尺寸精度高,公差范围小,即有高精度的尺寸界限精密塑胶制件的尺寸偏差会在0.03mm以内,有的甚至小到微米级,检测工具依赖于投影仪。
•制品重复精度高主要表现在制件重量偏差小,重量偏差通常在0.7%以下。
•模具的材料好,刚性足,型腔的尺寸精度、光洁度以及模板间的定位精度高•采用精密注射机设备•采用精密注射成型工艺精确控制模具温度、成型周期、制件重量、成型生产工艺。
•适用的精密注射成型材料PPS、PPA、LCP、PC、PMMA、PA、POM、PBT、加玻纤或碳纤的工程材料等。
塑料成型技术现状与发展
塑料成型技术现状与发展塑料成型技术是一种广泛应用于工业生产中的塑料加工方法。
它通过加热和塑造塑料原料,以制造出各种形状和尺寸的塑料制品。
随着科技的不断进步和需求的变化,塑料成型技术也在不断发展和创新,为各个行业提供了更多的可能性。
塑料成型技术主要包括注塑成型、吹塑成型、挤塑成型和压塑成型等多种方法。
其中,注塑成型是最常见和广泛应用的一种方法。
它通过将加热熔融的塑料原料注入模具中,经过冷却和固化后,得到所需的塑料制品。
注塑成型技术具有生产效率高、制品精度高、成本低等优点,因此被广泛应用于电子、汽车、医疗器械等领域。
吹塑成型是将加热熔融的塑料原料注入到模具中,通过模具内的气流吹制成型的方法。
这种方法适用于制作中空的塑料制品,如瓶子、桶子等。
吹塑成型具有制品成型周期短、生产效率高、制品质量稳定等优点,因此在日常生活中被广泛应用。
挤塑成型是将加热熔融的塑料原料挤出模具,经过冷却和固化后,得到所需的塑料制品。
这种方法适用于制作连续长度的塑料制品,如塑料管材、塑料板材等。
挤塑成型具有生产效率高、制品质量稳定、适用范围广等优点,因此在建筑、包装、电力等领域得到广泛应用。
压塑成型是将加热熔融的塑料原料放置在模具中,通过压力使其成型的方法。
这种方法适用于制作大型、复杂形状的塑料制品,如汽车外壳、家电外壳等。
压塑成型具有制品强度高、制品表面光滑等优点,因此在汽车、电子等领域得到广泛应用。
随着科技的不断进步和需求的变化,塑料成型技术也在不断发展和创新。
一方面,随着新型材料的涌现,塑料成型技术得到了更多的应用。
例如,高性能塑料、环保塑料等新型材料的使用,使得塑料制品在耐高温、耐腐蚀等方面有了更好的性能。
另一方面,随着数字化技术的应用,塑料成型技术也向着智能化、自动化方向发展。
例如,通过机器人技术实现自动化生产,通过模具设计软件进行数字化设计等,都使得塑料成型技术更加高效和精确。
随着人们对环境保护意识的增强,塑料成型技术也面临着挑战和发展。
塑料材料的加工与成型技术
塑料材料的加工与成型技术塑料材料是一种非常重要的工业材料,广泛应用于各个领域。
塑料的加工与成型技术在塑料制品的生产过程中起着至关重要的作用。
本文将介绍塑料材料的加工与成型技术的基本原理、常见方法和应用领域,帮助读者更好地了解和掌握相关知识。
一、塑料材料的加工与成型技术的基本原理塑料材料的加工与成型技术主要基于其独特的物理性质。
塑料材料在一定的温度范围内可以通过外力加工,并保持一定的形状。
主要的基本原理包括以下几个方面:1. 熔融性:塑料材料可在一定温度下熔化成流动的液体,使其能够通过模具或挤压机械加工成所需形状。
2. 可塑性:塑料材料易于塑性变形,即能够被挤压、压延、吹制等加工方法改变其形状。
3. 固化性:一旦塑料材料冷却,液态塑料就会迅速固化成固体,保持特定的形状。
4. 高分子链结:塑料材料由高分子链组成,链与链之间有一定的交联力,可使塑料具有一定的韧性和强度。
以上原理为塑料材料加工与成型提供了基础,下面将介绍塑料常见的加工与成型方法。
二、常见的塑料材料加工与成型方法1. 注塑成型:注塑成型是将熔化的塑料材料通过注塑机注入模具中,在一定的压力和温度下让其固化成型的过程。
注塑成型方法广泛应用于塑料制品的生产,如塑料家具、电子产品外壳等。
2. 吹塑成型:吹塑成型是通过先使塑料挤压成膜状,再通过对薄膜进行吹气、拉伸等操作,使其成形为中空物体的方法。
吹塑成型主要用于制造塑料瓶、塑料容器等。
3. 挤出成型:挤出成型是将塑料料柱加热熔融,通过挤压机将其挤出成型的方法。
挤出成型适用于制造塑料管、塑料板等。
4. 压延成型:压延成型是将熔化的塑料通过挤压机械挤压成薄板状,然后通过冷却固化成所需形状的方法。
压延成型通常用于制造塑料薄膜、塑料片等。
除了以上常见的成型方法,还有其它方法如注塑拉伸吹塑、热成型、压力成型等。
不同的加工与成型方法适用于不同的塑料制品,具体应根据实际情况选择最适合的方法。
三、塑料加工与成型技术的应用领域塑料加工与成型技术广泛应用于各个领域,如电子、汽车、家居、医疗等。
塑料的制作工艺
塑料的制作工艺塑料是一种常见的合成材料,广泛应用于各个领域,包括日常生活用品、工业制品以及建筑材料等。
塑料的制作工艺涉及到多个环节,包括原料处理、塑料成型技术以及后续处理等,本文将对这些方面进行详细介绍。
一、原料处理塑料的制作过程中,首先需要对原料进行处理。
常见的塑料原料有聚乙烯、聚丙烯、聚氯乙烯等,它们通常以颗粒或者粉末的形式存在。
原料处理的主要目的是清洁和干燥原料,以确保制作出的塑料制品具有高质量和良好的性能。
在原料处理的过程中,首先需要将原料进行筛选,去除其中的杂质和不符合要求的颗粒。
随后,将干净的原料送入塑料挤出机或注塑机中进行熔融。
二、塑料成型技术1. 挤出成型挤出成型是一种常见的塑料成型技术,适用于制作连续性的塑料制品,如管道、板材、薄膜等。
在挤出成型过程中,先将原料送入到挤出机中,经过高温和高压下的熔融处理,然后通过模具进行形状的塑造,最后通过冷却装置进行固化和冷却。
2. 注塑成型注塑成型是一种常用的塑料成型技术,适用于制作各种复杂形状的塑料制品,如密封件、零部件等。
注塑成型过程中,将熔化的塑料原料注入到注塑机的注射筒中,经过高压注塑成形,然后通过模具冷却、固化和脱模。
3. 吹塑成型吹塑成型主要用于制作空心的塑料制品,如瓶子、容器等。
吹塑成型过程中,首先将塑料原料进行熔化,然后将融化的塑料吹入模具中,并采用压缩空气使其充分填充模具中的空腔,最后通过冷却和脱模来得到成型的塑料制品。
三、后续处理1. 表面处理塑料制品在成型过程中可能会出现表面缺陷,为了提升外观质量和光泽度,常常需要进行表面处理。
常见的表面处理方式有研磨、抛光、喷漆等,以使塑料制品具有更好的外观效果。
2. 附加工艺根据不同的需求,塑料制品可能需要进行附加工艺的处理。
例如,某些制品需要进行喷涂、丝印、雷雕等工艺来增加标识或装饰效果;某些制品还可能需要进行层叠、组装等工艺来满足实际使用需求。
3. 塑料废料处理在塑料制作过程中,会产生大量的废料。
塑料成型工艺技术
塑料成型工艺技术塑料成型工艺技术是制造塑料制品的核心技术之一。
它指的是将塑料原料经过加热熔融,通过压力或吹气等方法,使塑料原料充分填充模具中的空腔,经过冷却固化后得到所需的塑料制品。
塑料成型工艺技术主要包括注塑成型、吹塑成型、压延成型和挤出成型等。
注塑成型是目前应用最广泛的一种塑料成型工艺。
具体步骤包括:将塑料颗粒经过加热熔融,将熔化状态的塑料原料注入注塑机的注射缸中;然后,通过注射缸中的螺杆将熔化的塑料原料注入到模具的腔室中;待塑料原料充分充填模具的腔室后,关闭模具,加大注射缸中的压力,使得塑料原料充分填充模具中的空腔,并保持一定的压力和时间;最后,冷却模具,使塑料原料固化,取出模具,得到所需的塑料制品。
吹塑成型是将塑料颗粒熔融后,通过压缩空气将塑料原料吹入模具中形成形状各异的塑料制品的一种成型工艺。
这种工艺主要适用于对中空或薄壁塑料制品的生产,如塑料瓶、塑料容器等。
压延成型是将熔融状态的塑料原料通过双辊或多辊机械压延成薄片或薄膜的一种成型工艺。
这种工艺主要适用于生产塑料薄片、塑料薄膜等产品。
挤出成型是将熔融状态的塑料原料通过挤出机的螺杆,并在模具中形成连续的截面恒定的塑料制品的一种成型工艺。
这种工艺主要适用于生产塑料管材、塑料棒材等线状塑料制品。
塑料成型工艺技术的发展使得塑料制品的生产更加高效、精确。
它在各个行业都有广泛的应用,例如家居用品、汽车零部件、电子产品等。
随着科技的不断进步和创新,塑料成型工艺技术也在不断提高和发展,为塑料制品的设计与生产提供了更多的选择。
塑料成型工艺技术在现代制造业中起着非常重要的作用。
随着塑料制品市场的不断扩大和需求的增加,塑料成型工艺技术也在不断发展和创新。
以下将对塑料成型工艺技术的新发展进行介绍。
首先,注塑成型工艺技术在模具设计和控制系统方面取得了重大突破。
传统的注塑模具设计主要考虑产品的形状和尺寸,但随着高科技材料的出现,比如复杂的玻璃纤维增强塑料(GFRP)和碳纤维增强塑料(CFRP),模具设计需要配合复杂的纤维方向和布局,以确保产品在注塑过程中如预期一样得到合适的纤维增强。
车用塑料制品成型工艺技术
车用塑料制品成型工艺技术车用塑料制品成型工艺技术是指将塑料原料通过加热软化后,通过注塑、吹塑、挤塑、压延等工艺,将塑料制品成型的过程。
车用塑料制品广泛应用于汽车内外装饰件、车身结构件和功能件等领域,具有重量轻、成本低、性能稳定等优点。
首先,注塑成型是车用塑料制品最常用的工艺之一。
注塑成型是指将塑料颗粒加热熔化后,通过注射机将熔融的塑料注入到模具中,冷却后得到成型的塑料制品。
注塑成型工艺技术可以实现复杂形状的制品,具有高效、稳定的生产能力。
其次,吹塑成型也是车用塑料制品常用的工艺之一。
吹塑成型是指将熔化的塑料通过吹塑机加工成一定形状的制品。
吹塑工艺一般分为挤出吹塑和注射吹塑两种,通过各种模具和机械设备,可以制造出不同形状和大小的塑料容器、车内储物箱等。
另外,挤塑成型也是车用塑料制品常用的工艺之一。
挤塑成型是指将塑料颗粒通过挤出机预热熔融后,通过挤出机头的模具将塑料挤出成型。
挤塑成型工艺技术可以实现长条状或具有一定截面形状的塑料制品,如汽车踏板、车内饰板等。
此外,压延成型也常用于车用塑料制品的生产中。
压延成型是指将熔化的塑料通过压延机加工成一定形状和尺寸的塑料膜或板材。
压延工艺可以制造出塑料薄膜、薄板等制品,如车内壁板、遮阳帘等。
总的来说,车用塑料制品成型工艺技术可以根据不同的形状、尺寸和材料要求,选择合适的成型工艺,通过加热塑料原料、注塑、吹塑、挤塑、压延等过程,将塑料制品制造出来。
这些工艺技术的应用,大大促进了车用塑料制品的发展和应用。
车用塑料制品成型工艺技术在汽车工业中具有重要地位。
随着汽车工业的快速发展,对车用塑料制品的需求越来越高,同时也对成型工艺技术提出了更高的要求。
首先,注塑成型在车用塑料制品生产中占有重要的地位。
注塑成型技术通过注射机将加热熔化的塑料注入模具中,经过一定的冷却时间后,得到既具有复杂形状又具有一定强度的塑料制品。
注塑成型具有高效、稳定的生产能力,可以满足大规模生产的需求。
塑料挤出成型技术
塑料挤出成型技术塑料挤出成型技术是一种常见的塑料加工方法,也是工业生产中常用的一种成型工艺。
它通过塑料熔化、挤出和冷却过程,将原料塑料加工成希望的形状,广泛应用于包装、建筑、电子、汽车等行业。
塑料挤出成型技术的主要步骤包括原料准备、料斗进料、塑化、挤出、冷却、切割和收集。
首先需要选择合适的塑料原料,常见的有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等多种塑料。
然后将原料倒入料斗,通过螺杆与筒筒的高速旋转和加热,将塑料逐渐熔化和塑化,形成熔融状态的塑料。
接下来,熔融塑料被螺杆推进到挤出机头处。
挤出机头上设有一个模具,通过机头的压力和模具的形状来决定最终挤出产物的形状。
同时,通过调整机头和模具的温度和压力,可以控制挤出产物的尺寸和外观。
在挤出机头之后,熔融塑料经过冷却系统的冷却,使其迅速固化。
冷却系统通常由水或气流组成,可以根据具体需求进行调整。
冷却后的塑料产品被切割成所需的长度,然后便可由收集系统进行收集和包装。
塑料挤出成型技术具有许多优点。
首先,它可以高效地生产出大量形状复杂、尺寸精确的塑料制品。
其次,挤出成型的产品表面光滑,质量稳定可靠。
此外,该技术可以应用于各种塑料品种,满足不同行业的需求。
与注塑成型相比,塑料挤出成型的设备和工艺简单,易于操作和维护。
然而,塑料挤出成型技术也存在一些问题需要注意。
首先,塑料挤出过程中的原材料选择和控制非常重要,不同的塑料材料具有不同的特性,选择合适的塑料对产品质量至关重要。
其次,在挤出机的运行过程中,需要严格控制温度、压力等参数,确保挤出产物的质量和外观。
综上所述,塑料挤出成型技术是一种重要的塑料加工方法,广泛应用于各个行业。
正确掌握和应用塑料挤出成型技术,可以提高产品质量、降低生产成本,并为工业发展提供有力支持。
因此,我们在实际生产中要充分了解该技术的原理和操作要点,注重原料的选择和质量控制,以确保塑料挤出成型的效果和成品质量。
这样才能更好地推动我国塑料行业的快速发展,迎接技术创新和市场竞争的挑战。
塑料挤出成型技术论文
塑料挤出成型技术论文塑料挤出成型技术是一种常见的塑料加工方法,广泛应用于工业生产中。
本文将对塑料挤出成型技术进行详细介绍,包括其原理、工艺特点以及应用领域。
一、原理塑料挤出成型是指将塑料颗粒通过加热软化后,通过挤出机的螺杆将软化塑料挤出成型具有一定截面形状的产品的一种加工方法。
挤出机将熔融塑料物料压入模具中成形,然后冷却固化,最终得到所需的塑料制品。
二、工艺特点1.高效率:塑料挤出成型技术生产效率高,一台挤出机可以连续24小时工作,生产效率高,适合大批量生产。
2.成型精度高:通过挤出机的螺杆和模具的设计,可以实现复杂形状的产品挤出成型,保证产品的尺寸精准。
3.节能环保:相比其他塑料加工方法,挤出成型过程中能耗较低,且废料少,符合环保要求。
4.适用范围广:塑料挤出成型技术适用于各种类型的塑料,包括聚乙烯、聚丙烯、聚氯乙烯等,应用领域广泛。
三、应用领域1.建筑行业:塑料挤出成型技术在建筑行业中得到广泛应用,如生产塑料管道、门窗框等建筑材料。
2.包装行业:塑料挤出成型技术可生产各种塑料包装制品,如塑料瓶、塑料薄膜等,应用于食品、日用品等包装行业。
3.交通运输:塑料挤出成型技术也用于生产汽车配件、船舶构件等交通运输领域的制品。
4.家居用品:塑料挤出成型技术可制造家具、厨房用具等家居用品,广泛应用于家居生活领域。
综上所述,塑料挤出成型技术作为一种常见的塑料加工方法,具有高效率、成型精度高、节能环保等特点,被广泛应用于建筑、包装、交通运输、家居用品等领域,为各行业提供了高质量的塑料制品。
随着科技的不断进步,塑料挤出成型技术将在未来有更广阔的发展空间,为塑料制品的生产带来更多创新和可能性。
机械工程中的塑料成型技术应用
机械工程中的塑料成型技术应用在现代机械工程领域中,塑料成型技术被广泛应用于各种制造过程中。
塑料成型技术是指通过熔融、注射、挤出等方式将塑料材料加工成所需形状的过程。
它在机械工程中的应用涵盖了许多领域,如汽车制造、电子产品、医疗设备等。
本文将探讨塑料成型技术在机械工程中的应用,并对其优势和挑战进行分析。
首先,塑料成型技术在汽车制造中发挥着重要作用。
汽车的外部和内部构件大部分都采用塑料材料制造,如车身、仪表板、座椅等。
塑料成型技术可以实现对复杂形状的精确加工,使得汽车零部件具有更高的精度和质量。
此外,塑料材料相对于金属材料来说更轻,可以降低汽车的整体重量,提高燃油效率。
因此,塑料成型技术在汽车制造中的应用不仅提高了产品的质量,还具有环保和节能的优势。
其次,塑料成型技术在电子产品制造中也占据重要地位。
电子产品的外壳、键盘、连接器等部件通常采用塑料材料制造。
塑料成型技术可以实现对微小零件的高精度加工,保证电子产品的稳定性和可靠性。
此外,塑料材料具有良好的绝缘性能,可以防止电子产品发生短路和漏电等问题。
因此,塑料成型技术在电子产品制造中的应用不仅提高了产品的性能,还增强了产品的安全性。
另外,塑料成型技术在医疗设备制造中也发挥着重要作用。
医疗设备的外壳、仪器配件等部件通常采用塑料材料制造。
塑料成型技术可以实现对微小零件的高精度加工,保证医疗设备的准确性和可靠性。
此外,塑料材料具有良好的耐腐蚀性和生物相容性,可以避免对人体造成不良影响。
因此,塑料成型技术在医疗设备制造中的应用不仅提高了产品的质量,还保障了患者的安全。
然而,塑料成型技术在机械工程中也面临一些挑战。
首先是原材料选择的问题。
不同的塑料材料具有不同的性能和特点,选择适合的塑料材料对于产品的质量和性能至关重要。
其次是加工过程中的能耗问题。
塑料成型技术需要通过加热和冷却等过程来实现塑料材料的变形,这些过程需要消耗大量的能源。
因此,如何提高能源利用效率,降低能源消耗是一个亟待解决的问题。
塑料挤出成型技术有哪些
塑料挤出成型技术有哪些在塑料加工领域中,塑料挤出成型技术是一种常见且广泛应用的制造方法。
通过塑料挤出成型技术,可以生产出各种形状和尺寸的塑料制品,应用于日常生活、工业生产等诸多领域。
塑料挤出成型技术主要包括以下几种形式。
1. 单螺杆挤出技术单螺杆挤出技术是一种较为基础的挤出成型技术,通过单螺杆挤出机将加热熔化的塑料原料压入模具中,形成所需形状的制品。
单螺杆挤出机具有结构简单、操作方便等优点,广泛应用于塑料管材、板材等制品的生产。
2. 双螺杆挤出技术双螺杆挤出技术相较于单螺杆挤出技术,在挤出效果和生产效率上有所提升。
双螺杆挤出机通过两根螺杆共同作用,使塑料原料更均匀地被挤出,适用于生产复杂结构或要求更高精度的塑料制品。
3. 鼓风机挤出技术鼓风机挤出技术是一种应用较为广泛的塑料挤出工艺,主要适用于生产塑料薄膜、袋类制品等。
通过鼓风机挤出机将高压气流吹入熔化的塑料原料中,使其在模具中薄而均匀地被挤压形成薄膜状制品。
4. 吹塑挤出技术吹塑挤出技术是一种常用于生产塑料容器、瓶子等中空制品的挤出工艺。
通过吹塑挤出机将熔化的塑料颗粒挤出并在模具中吹气,使其膨胀成型而成中空制品。
吹塑挤出技术能够生产出形状复杂、壁薄的塑料制品,广泛应用于包装行业。
5. 挤出涂层技术挤出涂层技术是将熔化的塑料原料挤出并涂覆在基材表面,形成带有塑料涂层的制品的工艺。
挤出涂层技术可以提高制品的耐磨性、防水性等性能,广泛应用于制造建筑材料、电缆等领域。
综上所述,塑料挤出成型技术涵盖了单螺杆挤出、双螺杆挤出、鼓风机挤出、吹塑挤出和挤出涂层等多种形式。
这些技术各具特点,适用于不同类型的塑料制品生产,为塑料加工领域的发展提供了多种解决方案。
随着技术的不断发展和创新,塑料挤出成型技术将会进一步完善和拓展,推动塑料制品的生产和应用领域不断扩大。
塑料成型技术
塑料成型技术一、概述塑料成型技术是指将熔融的塑料通过模具形成所需的产品的过程。
它是现代工业中最重要的加工方式之一,广泛应用于制造各种日用品、电子产品、汽车零件等领域。
本文将从材料选择、模具设计、成型方法等方面详细介绍塑料成型技术。
二、材料选择1. 塑料种类常见的塑料有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)等。
不同种类的塑料具有不同的物理性质和化学性质,因此在选择材料时需要根据产品的要求进行选取。
2. 材料特性在进行材料选择时需要考虑以下特性:强度:指材料抵抗外部力量的能力,一般来说强度越高,产品越耐用。
韧性:指材料在受到外部力量作用时发生形变而不断裂的能力。
硬度:指材料表面抵抗刮擦或压缩变形的能力。
耐腐蚀性:指材料对化学物质或自然环境的耐受能力。
透明度:指材料的透明程度,对于需要透明或半透明的产品来说尤为重要。
三、模具设计1. 模具种类常见的模具有注塑模具、吹塑模具、挤出模具等。
不同种类的模具适用于不同种类的成型方法,因此在进行模具设计时需要根据成型方法进行选择。
2. 模具材料常见的模具材料有钢铁、铝合金等。
不同种类的材料在强度、硬度等方面存在差异,在进行模具设计时需要根据产品要求进行选择。
3. 模具结构在进行模具设计时需要考虑以下结构:流道:指熔融塑料进入模腔的通道,其大小和形状对产品质量有重要影响。
冷却系统:指将熔融塑料冷却成固态产品所需的冷却设备,其位置和数量对产品质量和生产效率有重要影响。
顶出机构:指将成型好的产品从模腔中弹出的机构,其设计对于产品外观和尺寸精度有重要影响。
四、成型方法1. 注塑成型注塑成型是将熔融的塑料注入模具中,通过高压将其形成所需的产品。
该方法适用于制造各种尺寸和形状的产品,如塑料杯、塑料盒等。
2. 吹塑成型吹塑成型是将熔融的塑料通过挤出机挤出成管状,再通过模具吹气将其形成所需的产品。
该方法适用于制造空心产品,如塑料瓶、玩具等。
3. 挤出成型挤出成型是将熔融的塑料通过挤出机挤出成连续的条状或管状,再通过模具将其形成所需的产品。
塑料成型技术手册
塑料成型技术手册1. 引言塑料成型技术是一项广泛应用于各个行业的重要工艺,它通过对塑料原料进行加热、压力施加和冷却等步骤,将其转化为各种形状和尺寸的制品。
本手册旨在介绍塑料成型技术的基本原理、工艺流程和常见的成型方法。
2. 塑料成型工艺2.1 塑料成型原理塑料成型的基本原理是将固态塑料通过热压、注塑、吹塑、挤出等方式使其变形成型。
这些成型过程中,塑料原料在受热后变成熔融状态,然后通过模具或者挤出机的形状来冷却、固化,最终形成所需的制品。
2.2 塑料成型工艺流程塑料成型的一般工艺流程包括塑料原料处理、熔化、成型、冷却和后处理等环节。
首先,塑料原料会经过预处理,如颗粒破碎、融化过滤等,以保证成型质量。
然后,将加热的塑料原料注入到模具中,形成制品的初步形状。
接下来,制品通过冷却来固定形状,并进行必要的后处理,如切除余料、喷漆等。
3. 塑料成型方法3.1 注塑成型注塑成型是一种常见的塑料成型方法,它通过将熔融状态的塑料原料注入到注射机中,再将其注射到模具中进行冷却成型。
注塑成型可以制造各种形状的制品,如容器、零件等。
3.2 吹塑成型吹塑成型是一种通过将熔融的塑料原料放置在模具中,然后通过气流吹制成型的方法。
吹塑成型通常用于制造中空的制品,如塑料瓶、塑料桶等。
3.3 挤出成型挤出成型是一种将热塑性塑料原料加热融化,并通过挤出机将其挤出成型的方法。
挤出成型常用于制造连续的制品,如塑料管、塑料薄膜等。
4. 塑料成型设备4.1 注射机注射机是实现注塑成型的关键设备,它将熔融状态的塑料原料注入到模具中进行成型。
注射机具有高压力、高温度的特点,需要具备稳定的操作控制系统,以确保成型质量。
4.2 吹塑机吹塑机是实现吹塑成型的设备,它通过给熔融的塑料原料施加气流来使其充分膨胀,并充满模具内的形状。
吹塑机需要具备稳定的气流控制和温度控制系统,以确保制品的一致性。
4.3 挤出机挤出机是实现挤出成型的设备,它通过将预热的塑料原料加入挤出螺杆中,并通过机械运动将其加热、熔化、挤出成型。
塑料主要成型技术介绍
塑料主要成型技术介绍(1)压塑。
也称模压成型或压制成型,主要用于酚醛树脂、脲醛树脂、不饱和聚酯树脂热固性塑料的成型。
压塑是利用模压机和成型模具,在模压成型后继续加热通过发生化学反应而交联固化。
该成型工艺和设备较简单,适应性广。
压制成型所用的设备主要有液压机和层压机,它们都是液压传动的压力机械。
(2)挤塑。
挤塑又称挤出成型,将物料加热熔融成粘流态,借助螺杆挤压作用,推动粘流态的物料,使其通过口模而成为截面与口模形状相仿的连续体的一种成型方法。
主要包括成型主机和辅助装置两大部分。
挤出机是成型的主要设备,也称主机。
为保证制品质量,除主机外,一套挤出设备还包括与之相配套的若干辅助装置。
(3)注塑。
注塑又称注射成型。
注塑是使用注塑机(或称注射机) 将热塑性塑料熔体在高压下注入到模具内经冷却、固化获得产品的方法。
注塑也能用于热固性塑料及泡沫塑料的成型。
注塑的优点是生产速度快、效率高,操作可自动化,能成型形状复杂的零件,特别适合大批量生产。
缺点是设备及模具成本高,注塑机清理较困难等。
注塑设备为注塑机。
按物料在机筒中被塑化的形式分为柱塞式和螺杆式两种。
(4)吹塑。
吹塑又称中空吹塑或中空成型。
吹塑是借助压缩空气的压力使闭合在模具中热的树脂型坯吹胀为空心制品的一种方法,吹塑包括吹塑薄膜及吹塑中空制品两种方法。
(5)压延。
压延是将树脂和各种添加剂经预期处理(混合、过滤等)后通过压延机的两个或多个转向相反的压延辊的间隙加工成薄膜或片材,随后从压延机辊筒上剥离下来,再经冷却定型的一种成型方法。
(6)真空成型。
将热塑性塑料薄片或薄板( 厚度小于6 mm)重新加热软化。
(7)滚塑成型。
把粉状或糊状塑料置于模塑中,通过加热并滚动旋转塑模,使模内物料熔融塑化,进而均匀散布到模具表面,经冷却定型即得到制品。
(8)浇注成型。
将加入了固化剂和其他辅助材料的液态树脂混合物料倒入成型模具中,使其在常温或加热条件下逐渐固化,成为一定形状的塑料产品。
塑料成型工艺
塑料成型工艺塑料成型工艺是一种将熔化的塑料材料注入模具中,经过冷却固化后形成所需产品的制造技术。
它是现代工业生产中必不可少的一种工艺,广泛应用于日用品、电子产品、汽车零部件等领域。
一、塑料成型工艺的分类塑料成型工艺按其加工方式可分为注塑成型、吹塑成型、挤出成型、压延成型和热成型等五种。
其中,注塑成型是最为常见和广泛应用的一种工艺,它所制造的产品种类繁多,包括塑料杯、塑料盒、塑料餐具、塑料玩具等。
二、注塑成型工艺的流程注塑成型工艺的流程包括原料预处理、注塑机注塑、冷却固化、脱模、后处理等环节。
具体步骤如下:1.原料预处理:将塑料颗粒或粉末放入烘干机中进行烘干,以去除其中的水分和杂质,保证注塑成型时的质量。
2.注塑机注塑:将预处理好的塑料颗粒或粉末加入注塑机的料斗中,经过加热、熔融后,通过注塑机的射出口注入模具中,并在模具中冷却固化。
3.冷却固化:注塑机射出的熔化塑料在模具中冷却固化,并形成所需的产品形状。
4.脱模:冷却固化后的塑料产品从模具中取出,并进行清理和修整。
5.后处理:根据不同产品的要求,进行后续的加工处理,如喷漆、印刷、装配等。
三、注塑成型工艺的优缺点注塑成型工艺具有以下优点:1.制造成本低:注塑成型工艺的生产效率高,能够快速制造大量的产品,减少了生产成本。
2.产品质量稳定:注塑成型工艺能够制造出质量稳定、尺寸精确的产品,保证了产品的一致性和可靠性。
3.产品种类多样:注塑成型工艺适用于各种不同的塑料材料,可以制造出不同种类、不同形状的产品。
4.环保节能:注塑成型工艺生产过程中不会产生废水、废气等污染物,符合环保要求。
但是,注塑成型工艺也存在一些缺点:1.模具成本高:注塑成型工艺需要使用模具,模具的制造成本高,对生产成本有一定影响。
2.工艺复杂:注塑成型工艺需要进行多个步骤的加工,需要专业的技术和经验,对工艺要求较高。
3.塑料材料限制:注塑成型工艺只适用于某些特定的塑料材料,对材料的选择有一定限制。
塑料挤出成型
塑料挤出成型塑料挤出成型是一种常见的塑料加工工艺,它通过将熔融塑料材料挤压通过模具,使其形成所需的截面形状和尺寸。
这项技术广泛应用于生产塑料管材、板材、型材、薄膜等制品,是塑料加工行业中的重要工艺之一。
下面我们来详细介绍一下塑料挤出成型的原理、过程以及应用领域。
塑料挤出成型的原理塑料挤出成型的原理很简单,即通过挤出机将塑料颗粒或粉末加热融化,形成熔融状态的塑料料柱,然后将其挤压通过模具,使塑料材料成型。
在挤出过程中,塑料料柱受到挤出机螺杆的持续推进和高压力的作用,经过模具的成型口挤出后,瞬间冷却固化,最终形成所需形状的塑料制品。
塑料挤出成型的工艺过程塑料挤出成型的工艺过程通常包括以下几个步骤:原料预处理、挤出成型、冷却固化、切割定尺等。
首先,将塑料颗粒或粉末加入挤出机的加料口,经过螺杆的加热和混合后,形成熔融状态的塑料料柱。
然后,熔融塑料料柱被挤压通过模具的成型口,根据模具的形状和尺寸来制造不同的塑料制品。
挤出后的塑料制品经过冷却水槽降温固化,再经过切割机进行切割定尺处理,最终得到成品。
塑料挤出成型的应用领域塑料挤出成型技术在工业生产中有着广泛的应用领域。
首先,塑料管材是塑料挤出成型的典型应用之一,如PVC管、PE管等,被广泛用于建筑、电力、给排水等领域。
其次,塑料板材和型材也是挤出成型技术的重要应用,如塑料门窗型材、装饰线条等。
此外,塑料薄膜在包装、农业覆盖等方面也是挤出成型的主要产品之一。
值得注意的是,随着技术的不断发展,塑料挤出成型在汽车、航空航天等高端行业也有着重要的应用,为其提供轻量化、高强度的塑料制品。
综上所述,塑料挤出成型作为一种高效、经济的塑料加工技术,在工业生产中起着重要作用。
通过合理的工艺设计和生产实践,可以生产出各种形状、尺寸的塑料制品,满足不同行业的需求。
相信随着技术的不断进步,塑料挤出成型技术将会在未来发展中发挥更加重要的作用,为塑料制品的生产提供更好的解决方案。
塑料注塑成型工艺技术
塑料注塑成型工艺技术塑料注塑成型工艺技术是一种常见和广泛应用于各种工业领域的塑料制造技术。
它通过将熔化的塑料材料注入到模具中,经过冷却固化后,得到所需的塑料制品。
这种工艺技术具有成本低、生产效率高、产品质量好等优点,因此被广泛应用于汽车、电子、家电、日用品等行业。
塑料注塑成型工艺技术的主要步骤包括原料准备、模具设计、塑料料坯熔化、注塑成型、冷却固化、脱模以及产品后处理等。
首先,需要准备好塑料原料。
通常使用的塑料原料有聚丙烯、聚乙烯、聚苯乙烯等。
在原料准备的过程中,需要对原料进行加热处理,使其熔化成流动状态,以便注入模具。
接下来是模具设计的步骤。
模具的设计需要考虑到产品的形状、尺寸、结构等因素,以及产品的成型要求。
模具一般由两个部分组成,即模具的上半部分(凹模)和模具的下半部分(凸模)。
根据产品的形状和要求,模具可以是单腔型、多腔型或嵌模型。
当原料熔化后,将其注入到模具中的空腔中。
注塑机会通过高压将熔化的塑料原料推入到模具的腔内,同时保持一定的注塑时间,以确保塑料填充到模具的各个部位。
注塑过程中,需要控制注塑温度、注射速度、注塑压力等参数,以保证产品的质量。
注塑成型后,需要进行冷却固化。
冷却固化的目的是使塑料产品快速冷却,以固化塑料,保持其形状和尺寸。
常见的冷却方式包括冷却水冷却、风冷却等。
脱模是指将冷却固化后的塑料制品从模具中取出。
一般采用机械或气动方式进行脱模。
在脱模过程中,需要注意控制脱模力度,以避免塑料制品变形或损坏。
最后,需要对产品进行后处理。
后处理包括修边、修饰、加工等工序,以使产品达到客户的要求。
塑料注塑成型工艺技术的应用非常广泛,我们可以看到在我们的生活中几乎所有的塑料制品都是通过注塑成型工艺生产的。
这种工艺技术具有高效、经济、灵活等优点,是塑料制品生产的重要方法。
随着科技的发展和进步,塑料注塑成型工艺技术也在不断改进和创新,以满足不断增长的市场需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10-2 塑料成型理论基础
二、塑料成形过程的物理和化学变化 1.聚合物的结晶:在一定的外界条件下,聚合物分子在空 间作规则性的排列称为结晶 • 聚合物结晶态与低分子物质结晶有很大区别,主要表现 为晶体不整齐、结晶不完全、结晶速度慢、没有明晰的 熔点等。其形态常为球晶,用结晶度来表示其程度。一 般聚合物的结晶度为10%~60% • 结晶度的提高可增加聚合物密度、抗拉强度、刚度和热 变形温度,但降低了聚合物冲击韧性。由于结晶时形成 球晶,致使制品的透明度降低。另外结晶度提高会在制 品内产生较高的附加应力而引起制品翘曲 • 在塑性加工中影响结晶度的因素有:温度及冷却速度、 熔融温度与熔融时间和应力
§10-2 塑料成型理论基础
3.聚合物的降解:聚合物相对分子质量降低的现象称为聚合 物的降解。 • 通常聚合物分子是在受到热和应力或者微量水分、 酸、碱等杂质及空气中氧的作用而使大分子结构改 变,产生降解 • 降解是有害的,按轻重不同会使聚合物变色、出现 气泡和流纹、甚至焦化变黑
大分子链结构的类型
§10-1 塑料的组成、分类及主要的成型方法
二、塑料的分类 按制造方法分:聚合树脂塑料和缩聚树脂塑料两类 按成形性能分:热塑性塑料和热固性塑料两类 按用途ቤተ መጻሕፍቲ ባይዱ:通用塑料、工程塑料和特殊用途塑料等
常用塑料名称及英文代号
§10-1 塑料的组成、分类及主要的成型方法
三、塑料的可加工性及主要成型方法
§10-2 塑料成型理论基础
2.聚合物取向:聚合物的大分子及其链段或结晶聚合物的微 晶粒子在应力作用下形成的有序排列叫做取向。 • • • • 塑料在成形过程中会发生不同类型的取向。一种是流 动取向,另一种是拉伸取向 取向会使制品产生明显的各向异性。 其不利之处为增加了制品翘曲的可能性 有利之处为制品受力方向与取向方向一致可改善制品 质量。同时使结晶提前,使制品密度和强度都相应提 高 另外,取向程度的提高会使线收缩率增加,线膨胀系 数也随之变化
随温度升高,聚合物将呈现玻璃态、高弹态、粘流态三种状态
聚合物的物理状态与温度的关系 1-线性非结晶聚合物;2-线形聚合物;3-金属
§10-1 塑料的组成、分类及主要的成型方法
玻璃态是聚合物的使用状态, g 称为玻璃化温度 , 为衡量制 品使用范围的标致之一,g越高,制品对环境温度适应性越 强 f为粘流温度,是聚合物从高弹态转为粘流态的温度 m 为熔点,是聚合物的熔融温度 d 为热分解温度,是聚合物高温下开始分解的温度
f(m)和d 可用来衡量塑料的注射成型性能, f(m) 低时,有利于熔融,生产时耗能少;f(m)温度区间大时,
塑料熔体的热稳定性好,可在较宽温度范围内变形和流动 塑料的成型方法有很多,其中主要有:注射(塑)成型、 挤出成型、压缩成型、压铸成型、吹塑成型等。据统计,目 前注射制品约占所有塑料制品总产量的 30%,占工程塑料制品 的80%,故注射成型是一种最主要的成型方法
不同类型流体的流动曲线
不同类型流体的流变曲线
§10-2 塑料成型理论基础
表观粘度影响因素分析: 1)聚合物结构和其他组分的影响 聚合物相对分子质量越大,熔体的粘度和非牛顿性越 大。相对分子质量分布较宽的聚合物,其粘度对剪切 速率的敏感性较大,非牛顿性也较强 2)温度的影响 在粘流态,热塑性塑料熔体的粘度随温度升高而呈指 数规律降低,但不同熔体粘度对温度的敏感程度不同 3)压力的影响 随外部压力增大,熔体受压缩体积减少,分子间作用 力增加致使粘度也随之增大。由于塑料熔体的压缩率 不同,不同熔体的粘度对压力的敏感性也不同 4)剪切速率的影响 塑料熔体的表观粘度随着剪切速率或切应力的增大而 减少,不同种类的塑料对剪切速率的敏感性不同
§10-1 塑料的组成、分类及主要的成型方法
一、塑料的组成及结构特点 塑料是以人工合成树脂为主要成分,添加一定数量的稳定剂、 填充剂、增塑剂、润滑剂、着色剂、固化剂等助剂的高分子混 合物 低分子化合物单体经过聚合反应转变成大分子物质,其原子以 共价键的方式形成大分子结构,相对分子质量一般不低于104 聚合物所含单元的数量N,称为聚合度,N越大,聚合物的相对 分之质量越高 聚合物大分子均为长链状结构,容易弯曲。其链状结构有线性 、支链型和体型三种类型,如图示
称为聚合物熔体的表观粘度。它表征的是非牛顿流体在外力作用下 的抗切应变的能力 • • • 粘度是描述塑料熔体流变行为最重要的参数 对于牛顿流体,其粘度h为一个不变常量 对于非牛顿流体,其表观粘度受多种因素影响
§10-2 塑料成型理论基础
在聚合物流变学理论中,凡是服从指数流动规律的非牛顿流体统称为粘 性流体。根据n的取值范围可将粘性流体分为三类: n<1时,称为假塑性液体,绝大多数聚合物熔体与溶液的流动都接近 于假塑性流体 n>1时,称为膨胀性液体 n=1时,且只有切应力达到或超过一定值后才能流动的,称为 Bingham体
§10-2 塑料成型理论基础
一、塑料的流变性 牛顿流动规律:温度一定时,低分子液体流动时的切应 力与切应变速率成正比,即:
d d dt dt
式中: h 为剪切粘度( Pa· s )。符合上式的流体称为牛 顿流体,比例系数 h称为牛顿粘度,它是流体本身固有 的性质,其数值表征了流体抵抗外力引起流动形变的能 力
§10-2 塑料成型理论基础
层流流速分布模型
§10-2 塑料成型理论基础
塑料成形中,大多数塑料熔体都是非牛顿流体,它们中大部分近似 服从指数流动规律:
d n K K ( ) dt
n
式中:K-稠度系数,n-非牛顿系数 指数流动规律也可表示为:
a
n1 K
•
§10-2 塑料成型理论基础
取向的影响因素有: • 塑料熔体的加工温度,提高加工温度有利于产生解除取向效 应 • 聚合物分子松弛时间,结晶型塑料松弛时间短容易使取向冻 结,其取向成熟高于无定形塑料 • 模具温度低时熔体冷却速度加快,冷冻取向效应提高塑料比 热大,热导率低会降低熔体冷却速度,有利于取向的解除 • 注射压力可提高熔体的切应力和剪切速率,有助于分子取向 • 大浇口冷却慢,浇口封闭晚,取向作用加强 • 快速充模使制品表面层分子取向增高,中心部位取向减弱