上海二工大专升本复习资料-高数(1)A
上海第二大学专升本考试大纲《高等数学》(一)(AdvancedMathem..
上海第二大学专升本考试大纲《高等数学》(一)(Advanced Mathematics for higher education in Shanghai Second University(1))Previously looked at another upload document, the upload point documents shared with you!Shanghai second university upgraded examination syllabusAdvanced Mathematics (1)First, the nature of the examinationThe syllabus of advanced mathematics is formulated by Shanghai Second Polytechnic UniversityTwo, examination objectivesThe entrance examination of advanced mathematics emphasizes the investigation of students' basic knowledge, basic skills and thinking ability, computing ability, and the ability to analyze and solve problemsThree, the content and basic requirements of the examinationFunction, limit and continuity(1) examination contentsThe concept of function and basic characteristics; sequence, function limit; rules of limits; two important limits;comparison of infinitesimal and order; the continuity and discontinuity of function; properties of continuous functions on closed interval(two) examination requirements1. understand the concept of functionUnderstanding the parity, monotonicity, periodicity and boundedness of functionsUnderstand the concept of inverse function and understand the concept of composite functionUnderstanding the concept of elementary functionsA functional relationship between simple and practical problems is established2. understand the concept of sequence limit and function limit (not required to give)The two criterion of existence of the limit property (uniqueness, boundedness, number preserving) and limit (the forcing criterion and the monotone bounded criterion)3. grasp the operation of the limit of function; master the limit calculation methodGrasp two important limitsAnd use two important limits to find the limit4. understand the concepts of infinitesimal, infinity, higher order infinitesimal and equivalent infinitesimalThe limit of equivalent infinitesimal5. understand the concept of function continuity; understand the concept of function discontinuity pointThe types of discontinuity points (the first kind of removable, jump discontinuity points and second kinds of breakpoints) are distinguished6. understand the continuity of elementary functions; understand the properties of continuous functions on closed intervalsSome simple conclusions can be proved by the propertiesTwo. Derivative and differential(1) examination contentsThe concept of derivative and the rule of derivation; the derivative of function determined by implicit function and parametric equation; the derivative of higher order; the concept and arithmetic of differential(two) examination requirements1. understand the concept of derivative and its geometric meaningUnderstanding the relation between differentiable and continuous functionsThe tangent normal equation of plane curve;2. master the four operation rules of derivative and the derivation rule of compound function; master the derivation formula of basic elementary functionThe derivative of function is skilled3. master the implicit function and parameter equation of the derivative method (first order); grasp the logarithmic derivative method4. understand the concept of higher order derivativesGrasp the first and two order derivatives of elementary functionsThe n order derivatives of simple functions5. understand the concept of differentiationUnderstanding the operation of differential calculus and the invariance of first order differential formDifferentiation of functionsThree, mean value theorem and derivative application(1) examination contentsThe Rolle theorem and Lagrange theorem; L'Hospital Rule; function monotonicity and convexity and inflection point, extreme value curve(two) examination requirements1. understand the Rolle mean value theorem and Lagrange mean value theorem (the analysis and proof of the theorem is not required), and prove some simple conclusions with the mean value theorem2. master used l'Hopital's rule forThe method of equal infinitive limit3. understand the concept of function extremumThe method of judging the monotonicity of the function and the extremum of the function by derivative is mastered. The monotonicity of the function is used to prove the inequality, and the application problem of the simpler maximum and minimum is obtained4. judge the concavity and convexity of curves by derivativeThe inflection point of the curveFour, indefinite integral(1) examination contentsPrimitive function and indefinite integral conceptIndefinite integral substitution methodIndefinite Integration by parts(two) examination requirements1. understand the concepts and properties of primitive functions and indefinite integrals2. master the basic formula of indefinite integral, change element integration method and parts integration method (desalination special integration skills training)The general method of integral of rational function does not requireSome simple rational functions can be properly trained as examples of two kinds of integral methodsFive, definite integral and its application(1) examination contentsThe concept and properties of definite integralIntegral variable upper limit functionnewton-leibniz formulaIntegral integration method and partial integration method for definite integralThe generalized integral on infinite interval and the application of definite integral -- calculating the area of plane figure and volume of revolving body(two) examination requirements1. understand the concept of definite integralUnderstanding the properties of definite integral and the mean value theorem of integrals2. understand the concept and property of integral variable upper limit functionMaster Newton Leibniz formulaCorrect calculation of definite integral by using this formula correctly3. master definite integral change element method and partial integration method4. understand the element method of definite integralThe area of an accounting plane figure and the volume of a revolving body5. understand the concept of generalized integrals on infinite intervalsAnd the generalized integral on infinite interval is obtainedSix. Differential equations(1) examination contentsBasic concepts of differential equationsSeparable variable differential equations and homogeneous equationsLinear differential equation of first orderTwo order linear differential equation with constant coefficients(two) examination requirements1. understand the differential equations and the order, solution, general solution, initial conditions and particular solutions of differential equations2. master the solution of differential equations with separable variables3. solving homogeneous equations (which can be transformed into separable variable differential equations)4. understand the constant variation method of first order linear differential equationGrasp the solution of first order linear differential equation5. understand the structure of solutions of two order linear differential equationsGrasp the two order constant coefficient homogeneous linear differential equation solution method6. the special solution method of the two order constant coefficient non-homogeneous linear differential equation with the free term as the simple function by the method of undetermined coefficientsSeven 、 space analytic geometry vector algebra(1) examination contentsSpace rectangular coordinate system, vector and its operation, space plane and its equation, space straight line and its equation, two times curved surface(two) examination requirements1. understand the concept of space Cartesian coordinate systemUnderstand the concept of vector and its representation; find the distance between two points in space2. grasp the operation of vector (linear operation, scalar product, vector product)Understand the condition of two vectors vertical and parallel3. will seek plane equation, straight line equation4. master the plane and plane, straight line and plane, straight line and line parallel and vertical conditionsThe distance from point to plane will be calculated5. understand the concept of surface equationUnderstanding the equation and its figure of two quadric surfacesEight. Multivariate functional differential calculus(1) examination contentsThe concept of two variable function, the limit and continuity of two variables functionDerivation rules of partial derivative, total differential and multivariate functionImplicit function derivation formulaGeometric applications of multivariate functional differential calculusExtreme value of multivariate function(two) examination requirements1. understand the concept of two variable functionUnderstanding the concept of multivariate functions2. to understand the concept of limit and continuity of two variables functionThe limit of some simple functions of two variables3. understanding the concepts of partial derivatives and total differential functions of two variablesNecessary conditions and sufficient conditions for the existence of total differentialGrasp the calculation method of partial derivative and total differential of multivariate function4. grasp the first derivative of the multivariate composite function5. solving the first order partial derivative of implicitfunction6. understand the tangent of the curve and the normal plane, tangent plane and normal of the surfaceAnd they will find their equations;7. understanding the concept of extreme value and conditional extreme value of two variables functionThe extremum of a simple function of two variablesUnderstanding the Lagrange multiplier methodThe application of some simple maximum and minimum values will be discussedNine. Multivariate function calculus(1) examination contentsThe concept and properties of double integral and three integral, double integral and calculation of three integralCurvilinear integral and Green formula(two) examination requirements1. understand the concept and nature of double integral2. master the calculation method of double integral (Cartesiancoordinates, polar coordinates)3. understand the concept of three integralThree simple integrals (Cartesian coordinates, cylindrical coordinates) that can be calculated simply4. understand the concept of two types of curvilinear integralsUnderstanding the properties of two kinds of curvilinear integrals and the relation between two kinds of curve integralsGrasp the calculation method of two kinds of curve integral6. master Green formulaMastering the condition and application of plane curve integral and path independentTen, infinite series(1) examination contentsThe concept and properties of series of constant termsThe discrimination of convergence and divergence of constant term series and the concept and property of power seriesPower series expansion of function(two) examination requirements1. understand infinite series and the concepts of convergence, divergence, sumUnderstanding the basic properties of infinite series and the necessary conditions for convergence2. grasp the convergence of geometric series and series3. to grasp the ratio of positive series of convergence methodUnderstanding the comparison and convergence method of positive series4. master Leibniz's theorem of alternating seriesUnderstanding the concept of absolute convergence and conditional convergenceThe absolute convergence and conditional convergence of alternating series5. understand the concept of power seriesGrasp the convergence radius, convergence interval, convergence domain and the solution of sum function of power series6., the McLaughlin expansion uses some simple functions to expand into power seriesFour, teaching materialsA series of textbooks for advanced application talents training in the new centuryHigher mathematics (upper and lower)Chief editor, Department of Applied Mathematics, Tongji UniversityHigher Education PressFive. Reference booksAdvanced Mathematics (Sixth Edition)Upper and lower volumes)Tongji University Applied Mathematics Department editor in chief, Tongji University pressGuide to the complete solution of advanced mathematics exercisesEditor in chief of Applied Mathematics Department, Shanghai Second Polytechnic UniversitySix, examination rulesThe proportion of each part of the higher mathematics in the test paper is about one yuan function calculus, about 50%Space analytic geometry and multivariate function calculus about 30%The differential equation is about 10%Series 10% or soThe test paper includes three types of questions:multiple-choice questions, filling in the blanks and answering questionsMultiple-choice questions and cloze tests accounted for about 40% of the total scoreAnswer questions accounted for about 60% of the total scoreAccording to the relative difficulty, the test questions are divided into easy questions, middle questions and difficult questionsThese three difficulty questions accounted for 40%, 40% and 20% of the total score respectivelyThe questions of all types are sorted according to the principle of "easy to difficult"Calculators are not allowed in examsThe examination form is written in closed formThe exam time is 120 minutesThe full score of the test paper is 150 One。
2023年 上海 专升本 高等数学 考纲
2023年上海专升本高等数学考纲2023年上海专升本高等数学考纲引言:高等数学是专升本考试中的一门重要科目,也是考生们普遍认为难度较大的科目之一。
为了帮助考生更好地备考,下面将对2023年上海专升本高等数学考纲进行详细介绍。
一、数列与数学归纳法数列是数学中的一种重要概念,也是专升本高等数学考试中的重点内容之一。
2023年上海专升本高等数学考纲要求考生掌握数列的概念、性质以及常见数列的求和公式等内容。
此外,数学归纳法也是数列的重要证明方法,考生需要了解归纳法的基本原理和应用。
二、函数与极限函数与极限是高等数学中的核心概念之一,也是专升本高等数学考试的重点内容。
考生需要掌握函数的定义、性质、图像和基本函数的性质等知识。
此外,极限也是函数的重要概念,考生需要了解极限的定义、性质以及常见函数的极限求解方法。
三、导数与微分导数与微分是高等数学中的重要内容,也是专升本高等数学考试的考点之一。
考生需要了解导数的定义、性质以及常见函数的导数求解方法。
此外,微分也是导数的一种应用,考生需要了解微分的定义和求解方法。
四、积分与定积分积分与定积分是高等数学中的重要概念,也是专升本高等数学考试的重点内容。
考生需要了解积分的定义、性质以及常见函数的积分求解方法。
此外,定积分是积分的一种应用,考生需要了解定积分的定义和求解方法。
五、级数与幂级数级数与幂级数是高等数学中的重要内容,也是专升本高等数学考试的考点之一。
考生需要了解级数的概念、性质以及常见级数的求和方法。
此外,幂级数是级数的一种特殊形式,考生需要了解幂级数的性质和求解方法。
六、多元函数与偏导数多元函数与偏导数是高等数学中的重要概念,也是专升本高等数学考试的考点之一。
考生需要了解多元函数的概念、性质以及常见多元函数的求导方法。
此外,偏导数是多元函数的一种特殊形式,考生需要了解偏导数的定义和求解方法。
七、常微分方程常微分方程是高等数学中的一种重要应用,也是专升本高等数学考试的考点之一。
专转本——高等数学 各章节题型重点总复习 (上)
重点题型第一章 函数1.求函数的定义域:◆ 一般类型:考虑五个要素,即“分母、根式、对数式、反三角式、复合式(取交集)” ◆ 已知函数定义域,求其它函数的定义域:(注意:实质上就是不等式取范围的问题,另外要深刻理解对应法则f 和定义域D )2.求函数解析式: ◆ 已知f (x ),求f[g (x )]◆ 已知f[g (x )],求f (x )(同样要深刻理解对应法则f 和定义域D )3.判断函数是否相同:两个要素,即“对应法则f (化简),定义域”4.判断函数的奇偶性:◆ 定义域的对称性以及f (x )与f (-x )之间的关系◆ 奇偶函数的运算性质(奇偶,奇奇,偶偶——加减乘除)第二章 极限与连续1.求极限:∞/∞ 总的思想:分母无穷大、指数0<a<1使值趋于0 而约去 (1.一般式 2.根号下的一般式 3.利用指数特性进行变换,是趋于0值)0/0 总的思想:清零 (1.因式分解 2.根式有理化 3.无穷小替换 4.洛必达法则,如:211lim ()tan x x xx→-)∞-∞ 总的思想:结合以上两种方法,先同分,再有理化0-0 总的思想:结合以上两种方法,先同分,再有理化1∞ 总的思想:利用两个重要极限中的e 值无穷小与有界量 (以“x →0、x →∞,x*sin (1/x )、(1/x )*sinx 为例拓展思考)初等变换◆分子分母同除以,利用指数特性◆和差化积,利用无穷小的等效替换◆对含有e量的思考与变形(“e x-1”)洛必达法则(有待进一步学习,非常重要)注意其使用条件,只使用于:∞/∞、0/0两种类型,有拓展类型注意:要学会综合利用各种方法处理,其中典型题:Page442.给出分段函数式,求分段点处的极限/或者说成是该点处是否存在极限值(考虑带参数的情况)利用“左极限=右极限”;3.函数的连续性◆给出函数式(带参),在x0处连续,求参数与以上2相比,只多了一个连续的条件◆给出函数式的极限值,求参数(难点在于“∞/∞、0/0“型)解决方法:◆判断间断点的类型第一要考虑到间断点有哪几个点(对函数式来说是无意义的点),第二要考虑到分子为0的情况,此情况可能会产生可去间断点附:【无意义的点一定是间断点】◆求函数的连续区间(初等函数在定义域内都是连续的,因此只需对间断点进行分析)通常是针对于分段函数(要知道为什么会这么说),结合左右极限与分断点处的值进行分析4.“零值定理”的应用,证明方程在某一范围内至少存在一个根(有时候避讳说范围,而改成说至少存在一个正根)1.令F(x)(这一步是关键,有时候涉及到变形,比如:f(x)=g(x)、f(x)-g(x)=0有解) 2.说明F(x)在[a,b]内连续 3.F(a)F(b)异号5.难点概念分析附:几个等价无穷小夹逼准则sinx~x arcsinx~x tanx~x arctanx~x单调有界数列e x-1~x a x-1~x ln(1+x)~x (1+x)n-1~nx(是难点,用到的要注意)第三章导数和微分1.用导数定义求函数的导数a)已知某点的导数,利用对导数定义中的△x进行变化(包括n△x、+-△x),以求形式的一致b)改变形式,即“+ f(x0)-f(x0)”,得到两个导数c)对f(0)=0的函数要注意,当x→0时,有f(x)/x=f’(0)2.在某x0连续,求该点处的导数利用求导的定义求,因为有一个关糸(极限/连续/导数/微分),解题方法是利用定义求导结合求极限得出结果典型:“f(x)=(x502-1)*g(x),其中g(x)在x=1处连续,g(1)=4, 求f’(1)”3.已知分段函数f(x),讨论分断点x0处的可导性,并且求导a)在大题目中,必须使用求导的定义求b)在小题目中,可以求分断点两端函数在该点处的导数(快、简洁)4.复合函数的求导方法与微分方法a)由外到内,逐层求导b)由外到内,逐层微分5.隐函数所确定函数的导数和微分a)隐函数所确定函数的导数和微分总的思想是,分别对方程两边的x和y求导或微分(记住y是x的函数),然后再进行整理求一阶导数和一阶微分求二阶导数和二阶微分(第一次会产生x、y、y’,第二次会产生x、y、y’、y’’,因此第一次要总结出y’的结果;其次是要注意每一步的化简)b)乘积式、幂指数的求导与微分(要知道这么做的好处以及为什么放在这个地方叙述?)总的思想是,利用“对数求导法”6.由参数方程所确定的函数的求导方法利用一阶微分形式的不变性,即“dy=y’*dt dx=x’dt”利用“dy/dx=(dy/dt)/(dx/dt) ”即“dy/dx=(dy/dt)*(dt/dx)”7.求函数的高阶导数(要多多练习——从“化简与找规律”的方面入手)总的思想是,先求出开始的几阶导数,然后观察总结规律,必要时用数学规纳法证明几个常见的高阶导数:1)(ex)(n)=e x(xex)(n)=(x+n)*e x2)(sinx)(n)=sin(x+n*π/2) (cosx)(n)=cos(x+n*π/2)3)对(xu)(n)的形式要分情况(如果有时候想不通,就以(x3)(n)次方为例):n∈/N,(x u)(n)=u*(u-1)*(u-2)*(u-n+1)*x u-nn∈N, 若n≦u,则有(x u)(n)= u*(u-1)*(u-2)*(u-n+1)*x u-n若n>u,则有(xu)(n)=0拓展:[ln(1+x)](n)=(-1)n-1*(n-1)!*(1+x)-n[1/(1+x)](n)=(-1)n*n!*(1+x)-n-1[(1+x) u] (n)= u*(u-1)*(u-2)*(u-n+1)*(1+x)u-n8.涉及到切线的问题(关键是求切点(x0、y0))a)已知曲线方程,并给出可以求出切点与斜率的提示【该曲线与x、y轴(或者是某条线)交点处的切线】,求该点处的切线方程(关键是求切点(x0y0)与斜率k)、b)已知曲线方程,并给出某点处的切线方程(1.含有参数,通常是斜率k;2.但如果不是斜率,则比较简单),求参数值解题步骤:1.令点为(x0y0) 2.将切线表示成y_x_x0之间的关糸(如何表示:1.借助曲线可得x0与y0之间的关糸,统一为x0 2.与此切线进行形式对比,以确定x0,进而确定参数k对b)有典型:设曲线y=x2+3x+1上某点处的切线方程为y=mx,求m的值解:y0=x20+3x0+1 y’0=2x0+3代入切线方程得y=(2x0+3)x+1-x20 与y=mx进行对比因此可得x0=+-1,即可得m值9.微分的应用涉及到的问题包括:1.近似计算 2.求未知函数的变化率1.近似计算(首先要明白这种计算的依据) a) 一般计算b) 公式套用:nx x n +≈+11 sinx ≈x tanx ≈x e x≈1+x ln(1+x)≈x2.未知函数的变化率容易出错的题目:1) y=(x-1)(x-2)2(x-3)3,求y’(1)2) y=110110+-x x ,求dy/dx,dy|x=0;注意,对于这两道题要有心得,即看到无穷小与某个不确定的数进行乘积时,不可轻易将 值定义为零第四章 中值定理与导数的应用1.求“单调区间和极值点”,“最值”,“凹凸区间和拐点”求“单调区间和极值点”的解题步骤: 1) 求f(x)的定义域2) 求驻点(即导数存在的点)及导数不存在的点 求f’’(x)=0的点和f’’(x )不存在的点 3) 列表讨论(这个是必须的)附:①对于导数f ’(x 0)不存在的点有三种情况,1.函数本身在该点处没有定义 2.该点处的导数趋于无穷大(对于一般函数来说,导数不存在都是这种情况) 3.该点处的左右导数不一样②对于以上3)为什么说是必须的要明白,需要理解“极值点的存在与驻点及导数不存在的点之间的关糸”和“拐点的存在与y ’’=0的点及y ’’不存在的点之间的关糸”,以“x 3 x 4x 1/3为代表进行分析2.证明题● 证明根的存在性问题主要是针对等式中含有导数式,利用罗尔定理构造辅助函数● 利用导数证明不等式 拉格朗日中值定理函数的单调性(求导 最值) 函数的凹凸性 典型:①证明不等式ba b -<ln ab <aa b -(0<a<b)解析:隐含两个条件,即“a<Ɛ<b (lnx)’=1/x,单调递减”(拓展:有时候题中会出现f ’(x)单调性,实则和这个问题是一样的)②证明当0<x<π/2,tanx>x+x 3/3解析:1.令f(x)= tanx_(x+x 3/3) 2.求f ’(x)单调性得f ’(x)=(tanx-x)(tanx+x)>0 3.f(0)=0,则有f(x)>f(0)=0 故问题成立③证明当x>0 y>0时,有不等式xlnx+yln y ≥(x+y)ln 2y x + 等号仅当x=y 时成立 解析:1两边同除以2变形为2ln ln yy x x +≥2y x +ln2y x + 2.分析为中值与平均值的比较(lnx ) 3.证明lnx 的凹凸性 ●应用中值定理的证明(主要是验证定理对函数的正确性)1)确定条件2)根据定理结论,求f ’(ε)值 3)确认ε∈定义区间3.关于方程根的问题主要的解决方案是:结合端点值、求导确定单调性、极值(零值定理) 题型:1.在某个区间有几个根 2.证明方程有且仅有一个根4.作图题1) 确定义域2) 令y’=0 y’’=0确定极值点和拐点 3) 列表4) 确定渐近线5) 找出五个重要的点,作草图5.应用题【包含边际分析(主要是征对“经济”中的“利润”问题分析)】附:对f’(x) f’’(x)结合的各种情况作出分析图(选择题中常出现)。
上海第二工业大学试卷编号:A0607)2004-2005学年第三学期期末考试高等教学A试卷(A)
∫ 4. f (x) =
x
t
(t
−1)dt
的极小值是
0,
−
1
。
0
6
5.函数 y = 2x2 − ln x 在区间 ( 1 , +∞) 内单调递增; 2
6.若点(1,0)是曲线 y = ax3 + bx2 + 2 的拐点,则 a= 1 ,b= -3
。
∫ 7.设
f ( x)dx = ln(1 + x2) + C ,则 f (x) = 2x ; 1+ x2
5
-4
-2
-5
-10 -15
-20
2
4
2.求该封闭图形饶 x 轴旋转一周所成旋转体的体积。(6 分) 解:由题意知得到的旋转体的体积是
2
∫ ∫ ∫ V =
3 π (3 − x2 )2 dx −
1
π
(2
x
)2
dx
−
3 π (3 − x2 )2 dx
0
0
1
24 =
3
π
−
4π
−
12 (−3 +
2
3)π = 88 π
x)在
x0
处连续,则
lim
x → x0
f ( x)
=
f
(x0 )
函数 f (x) = 1 + x + 2 的连续区间为 (−2, −1) ∪ (−1,1)∪ (1,+∞ )。 1− x2
3.设函数 f (x) 在[a,b] 上连续,在 ( a, b) 内可导,则存在点ξ∈ ( a, b)使 f (b) − f (a)= f '(ξ)(b − a) 。
专升本高等数学复习资料(含答案)
专升本高等数学复习资料一、函数、极限和连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同4.函数y =的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -= 20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(lim 0x f x →存在,则此极限是唯一的 B .若极限)(limx f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ).A . 0B . 1C .∞D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a26.设b a<<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin 为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim0→为正整数)等于( ) A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .21 35.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sinlim≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限xx sin lim 2π-→=( )A .0B .1C .1-D .2π- 38.当∞→x时,函数x x)11(+的极限是( )A .eB .e -C .1D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2- 42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .x x x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x +B .x tanC .()x cos 12-D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe - 56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(= B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续 64.下列函数在0=x处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-00)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x xx xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,则函数)(x f ( ) A .当0→x 时,极限不存在 B .当0→x 时,极限存在 C .在0=x 处连续 D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在 73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .3 83.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A .21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a等于( )A .a x ln 1B .a x ln 1C .x x a log 1D .x 189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100- D .100-92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( ) A .211k k =B .121-=⋅k k C .121=⋅k k D .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f -> D .)()(0x f x f -<101.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f (或)('0x f 不存在),下列说法不正确的是( ) A .若0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 B .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值 C .若0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0=x f ,0)(''0≠x f ,若0)(''0>x f ,则函数)(x f 在0x 处取得( )A .极大值B .极小值C .极值点D .驻点 103.b x a <<时,恒有0)(>''x f ,则曲线)(x f y =在()b a ,内( )A .单调增加B .单调减少C .上凹D .下凹 104.数()e x f x x =-的单调区间是( ) .A .在),(+∞-∞上单增B .在),(+∞-∞上单减C .在(,0)-∞上单增,在(0,)+∞上单减D .在(,0)-∞上单减,在(0,)+∞上单增 105.数43()2f x x x =-的极值为( ).A .有极小值为(3)fB .有极小值为(0)fC .有极大值为(1)fD .有极大值为(1)f -106.x e y =在点(0,1)处的切线方程为( )A .x y +=1 B .x y +-=1 C .x y -=1 D .x y --=1107.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) A .)0,61(- B .)0,1(- C .)0,61( D .)0,1(108.抛物线xy =在横坐标4=x的切线方程为 ( )A .044=+-y xB .044=++y xC .0184=+-y xD .0184=-+y x109.线)0,1()1(2在-=x y 点处的切线方程是( )A .1+-=x y B .1--=x y C .1+=x y D .1-=x y110.曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(1,1),则该曲线的方程是( ) A .12++-=x x y B .12-+-=x x y C .12++=x x y D .12-+=x x y111.线22)121(++=x e y x 上的横坐标的点0=x 处的切线与法线方程( )A .063023=-+=+-y x y x 与B .063023=--=++-y x y x 与C .063023=++=--y x y x 与D .063023=+-=++y x y x 与112.函数处在点则0)(,)(3==x x f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线 113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0=x 处的导数,0)0('=f 则0=x 称为)(x f 的( )A .极大值点B .极小值点C .极值点D .驻点 115.曲线)1ln()(2+=x x f 的拐点是( )A .)1ln ,1(与)1ln ,1(-B .)2ln ,1(与)2ln ,1(-C .)1,2(ln 与)1,2(ln -D .)2ln ,1(-与)2ln ,1(-- 116.线弧向上凹与向下凹的分界点是曲线的( )A .驻点B .极值点C .切线不存在的点D .拐点 117.数)(x f y =在区间[a,b]上连续,则该函数在区间[a,b]上( )A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值 118.下列结论正确的有( )A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程y x e xy+=确定的隐函数)(x y y ==dxdy( )A .)1()1(x y y x -- B .)1()1(y x x y -- C .)1()1(-+y x x y D .)1()1(-+x y y x120.=+=x y y xe y ',1则( )A .yy xe e -1 B .1-y y xe e C .yyxe e -+11 D .y e x )1(+121.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -122.设x x g e x f x cos )(,)(-==,则=)]('[x g fA .xe sin B .xecos - C .xecos D .xesin -123.设)(),(x t t f y φ==都可微,则=dyA .dt t f )(' B .)('x φdx C .)('t f )('x φdt D .)('t f dx124.设,2sin x e y =则=dy ( )A .xd e x2sin B .x d ex2sin sin 2C .xxd e x sin 2sin 2sin D .x d e x sin 2sin125.若函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) A .与x ∆等价的无穷小量 B .与x ∆同阶的无穷小量 C .比x ∆低阶的无穷小量 D .比x ∆高阶的无穷小量126.给微分式21xxdx -,下面凑微分正确的是( )A .221)1(xx d ---B .221)1(xx d -- C .2212)1(xx d ---D .2212)1(xx d --127.下面等式正确的有( ) A .)(sin sin x x x xe d e dx e e= B .)(1x d dx x=-C .)(222x d edx xe x x -=-- D .)(cos sin cos cos x d e xdx e x x =128.设)(sin x f y =,则=dy ( )A .dx x f )(sin ' B .x x f cos )(sin ' C .xdx x f cos )(sin ' D .xdx x f cos )(sin '-129.设,2sin x e y =则=dyA .xd e x 2sin B .x d ex2sinsin 2C .x xd e xsin 2sin 2sinD .x d e x sin 2sin三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .0)('=x f B .)()(F'x f x = C .0)(F'=x D .0)(=x f131.若函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,则有( )A .I x x x ∈∀=Φ),(F )('B .I x x x ∈∀Φ=),()(FC .I x x x ∈∀Φ=),()(F' D .I x C x x ∈∀=Φ-,)()(F132.有理函数不定积分2d 1x x x⎰+等于( ). A .2ln 12x x x C ++++ B .2ln 12x x x C --++ C .2ln 12x x x C -+++ D .2ln 122x xx C -+++ 133.不定积分x 等于( ).A .2arcsin x C +B .2arccos xC + C .2arctan x C +D .2cot arc x C +134.不定积分2e e (1)d xxx x-⎰-等于( ).A .1exC x -++ B .1e x C x -+ C .1e x C x ++ D .1e xC x--+135.函数x e x f 2)(=的原函数是( )A .4212+x e B .x e 22 C .3312+x e D .x e 231136.⎰xdx 2sin 等于( )A .c x +2sin 21 B .c x +2sin C .c x +-2cos2 D .c x +2cos 21137.若⎰⎰-=xdx x x dx x xf sin sin )(,则)(x f 等于( )A .x sinB .xx sin C .x cos D .x xcos138. 设x e -是)(x f 的一个原函数,则⎰=dx x xf )('( )A .c x e x+--)1( B .c x e x ++--)1( C .c x e x +--)1( D . c x e x ++-)1(139.设,)(x e x f -= 则⎰=dx xx f )(ln ' ( ) A .c x +-1 B .c x+1C .c x +-lnD .c x +ln140.设)(x f 是可导函数,则()')(⎰dx x f 为( )A .)(x f B .c x f +)( C .)('x f D .c x f +)('141. 以下各题计算结果正确的是( )A .⎰=+x x dxarctan 12B .c xdx x +=⎰21 C .⎰+-=c x xdx cos sin D .⎰+=c x xdx 2sec tan 142. 在积分曲线族⎰dx x x中,过点(0,1)的积分曲线方程为( )A .12+x B .1)(525+x C .x 2 D .1)(255+x143.⎰dx x 31=( )A .c x +--43 B .c x+-221 C . c x +-221 D . c x +-221 144.设)(x f 有原函数x x ln ,则⎰dx x xf )(=( )A .c x x ++)ln 4121(2B .c x x ++)ln 2141(2 C .c x x +-)ln 2141(2D .c x x +-)ln 4121(2 145.⎰=xdx x cos sin ( )A .c x +-2cos 41 B .c x +2cos 41 C .c x +-2sin 21 D .c x +2cos 21146.积分=+⎰dx x ]'11[2( ) A .211x + B .c x ++211 C .x tan arg D .c x +arctan147.下列等式计算正确的是( )A .⎰+-=c x xdx cos sin B .c x dx x +=---⎰43)4(C .c x dx x +=⎰32 D .c dx xx +=⎰22 148.极限⎰⎰→xxx xdxtdt000sin lim的值为( )A .1-B .0C .2D .1149.极限⎰⎰→x xx dx x tdt 0202sin lim的值为( )A .1-B .0C .2D .1150.极限4030sin limx dt t xx ⎰→=( )A .41 B .31 C .21D .1 151.=⎰+2ln 01x t dt e dxd( ) A .)1(2+xe B .ex C .ex 2 D .12+xe152.若⎰=xtdt dx d x f 0sin )(,则( )A .x x f sin )(=B .x x f cos 1)(+-=C .c x x f +=sin )( D .x x f sin 1)(-=153.函数()⎰+-=xdt t t tx 0213φ在区间]10[,上的最小值为( )A .21 B .31C .41D .0 154.若()⎰+==xtxc dt t e x f e x x g 02122213)(,)(,且23)(')('lim=+∞→x g x f x 则必有( )A .0=cB .1=cC .1-=cD .2=c155.⎰=+xdt t dx d14)1(( )A .21x + B .41x + C .2121x x+ D .x x+121 156.=⎰]sin [02dt t dx d x( ) A .2cos x B .2cos 2x x C .2sin x D .2cos t157.设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x ax x tdt x f x在0=x 点处连续,则a 等于( )A .2B .21C .1D .2- 158.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F x a≤≤=⎰则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f a x x x F xa⎰-=)(lim x F a x →=( ) A .2a B .)(2a f a C . 0 D .不存在160.函数x2sin 1的原函数是( )A .c x +tanB .c x +cotC .c x +-cotD . xsin 1-161.函数)(x f 在[a,b]上连续, ⎰=xadt t f x )()(ϕ,则( )A .)(x ϕ是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x ϕ的一个原函数C .)(x ϕ是)(x f 在[a,b]上唯一的原函数 D . )(x f 是)(x ϕ在[a,b]上唯一的原函数162.广义积分=⎰+∞-0dx e x ( )A .0B .2C .1D .发散 163.=+⎰dx x π2cos 1( )A .0B . 2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x -=⎰( )A .)(x FB .)(x F -C . 0D . 2)(x F165.下列广义积分收敛的是( )A .⎰+∞1xdx B .⎰+∞1xxdx C .dx x ⎰+∞1D .⎰+∞132xdx166.下列广义积分收敛的是( )A .⎰+∞13x dx B .⎰+∞1cos xdx C .dx x ⎰+∞1ln D .⎰+∞1dx e x167.⎰+∞->apxp dx e )0(等于( )A .pae- B .pae a-1 C .pa e p -1 D .)1(1pa e p --168.=⎰∞+ex x dx2)(ln ( ) A .1 B .e1C .eD .∞+(发散) 169.积分dx e kx-+∞⎰收敛的条件为( )A .0>kB .0<kC .0≥kD .0≤k170.下列无穷限积分中,积分收敛的有( ) A .⎰∞-0dx e x B .⎰+∞1xdxC .⎰∞--0dx e x D .⎰∞-0cos xdx171.广义积分⎰∞+edx xxln 为( ) A .1 B .发散 C .21D .2 172.下列广义积分为收敛的是( )A .⎰+∞e dx x xln B .⎰+∞e x x dx lnC .⎰∞+e dx x x 2)(ln 1 D .⎰+∞e dx x x 21)(ln 1173.下列积分中不是广义积分的是( ) A .⎰+∞+0)1ln(dx x B .⎰-42211dx x C .⎰11-21dx x D .⎰+03-11dx x174.函数()f x 在闭区间[a,b]上连续是定积分⎰badx x f )(在区间[a,b]上可积的( ). A .必要条件 B .充分条件C .充分必要条件D .既非充分又飞必要条件 175.定积分121sin 1xdx x -+⎰等于( ). A .0 B .1 C .2 D .1- 176.定积分⎰-122d ||x x x 等于( ). A .0 B . 1 C .174 D .174- 177.定积分x x x d e )15(405⎰+等于( ). A .0 B .5e C .5-e D .52e178.设)(x f 连续函数,则=⎰22)(dx x xf ( )A .⎰40)(21dx x f B .⎰2)(21dx x f C .⎰40)(2dx x f D .⎰4)(dx x f179.积分⎰--=-11sin 2xdx x e e xx ( )A .0B .1C .2D .3 180.设)(x f 是以T 为周期的连续函数,则定积分⎰+=Tl ldx x f I )(的值( )A .与l 有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关 181.设)(x f 连续函数,则=⎰2)(dx xx f ( ) A .⎰+210)(21dx x f B .⎰+210)(2dx x f C .⎰2)(dx x f D .⎰2)(2dx x f182.设)(x f 为连续函数,则⎰1)2('dx x f 等于( )A .)0()2(f f - B .[])0()1(21f f - C .[])0()2(21f f - D .)0()1(f f - 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分⎰b adx x f )(的值必定( )A .大于零B .大于等于零C .小于零D .不等于零 184.下列定积分中,积分结果正确的有( ) A .c x f dx x f ba+=⎰)()(' B .)()()('a f b f dx x f ba+=⎰C .)]2()2([21)2('a f b f dx x f ba-=⎰D .)2()2()2('a f b f dx x f b a -=⎰185.以下定积分结果正确的是( ) A .2111=⎰-dx x B .21112=⎰-dx x C .211=⎰-dx D .211=⎰-xdx 186.⎰=adx x 0)'(arccos ( ) A .211x-- B .c x+--211 C .c a +-2arccos πD .0arccos arccos -a187.下列等式成立的有( ) A .0sin 11=⎰-xdx x B .011=⎰-dx e xC .a b xdx abtan tan ]'tan [-=⎰D .xdx xdx d xsin sin 0=⎰188.比较两个定积分的大小( ) A .⎰⎰<213212dx x dx x B .⎰⎰≤213212dx x dx xC .⎰⎰>213212dx x dx x D .⎰⎰≥213212dx x dx x189.定积分⎰-+22221sin dx x xx 等于( ) A .1 B .-1 C .2 D .0 190.⎰=11-x dx ( )A .2B .2-C .1D .1- 191.下列定积分中,其值为零的是( ) A .⎰22-sin xdx x B .⎰2cos xdx xC .⎰+22-)(dx x e xD .⎰+22-)sin (dx x x192.积分⎰-=21dx x ( )A .0B .21 C .23 D .25 193.下列积分中,值最大的是( ) A .⎰12dx xB .⎰13dx x C .⎰14dx x D .⎰15dx x194.曲线x y -=42与y 轴所围部分的面积为()A .[]⎰--2224dy y B .[]⎰-224dy y C .⎰-44dx x D .⎰--444dx x195.曲线x e y =与该曲线过原点的切线及y 轴所围形的为面积( )A .()⎰-exxdx xe e1 B .()⎰-1ln ln dy y y yC .()⎰-1dx ex exD .()⎰-edy y y y 1ln ln196.曲线2x y x y ==与所围成平面图形的面积( )A .31B .31- C .1 D .-1四、常微分方程 197.函数y c x =-(其中c 为任意常数)是微分方程1x y y '+-=的( ). A .通解 B .特解 C .是解,但不是通解,也不是特解 D .不是解 198.函数23x y e =是微分方程40y y ''-=的( ).A .通解B .特解C .是解,但不是通解,也不是特解D .不是解 199.2()sin y y x y x '''++=是( ).A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程 200.下列函数中是方程0y y '''+=的通解的是( ). A .12sin cos y C x C x =+ B .x y Ce -=C .y C =D .12x y C e C -=+专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数.6.解:令t x-=1,则t t t t t f 21212211)(--=---+=,所以xx x f 212)(--= ,故选D 7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B 12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1lim lim x e x e x x e x e →→-==-,故选B .24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim20=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n nn ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim2121lim 21sin==∞→x x x x x ,故选B 29.解:nmnx mx nx mx x x ==→→00lim sin sin lim 故选A30.解:因为1tan lim230=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B31.解:1cos 1cos 1lim cos cos lim=+-=+-∞→∞→xxx xx x x x x x ,选A32.解:因为01lim )(lim 0=-=++→→)(xx x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(limx f x →不存在,故选D33.解:41414010])41(lim [)41(lim e xx x x x x =+=+→→,选D34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xxx x x x x ,选C 35.解:110sin 11sinlim 0-=-=⎪⎭⎫⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sinlim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim21=++→ax x x ,7-=a ,选B41.解:2),2(lim tan lim 00=+=-+→→a x xaxx x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C43.解:因为22lim )2sin(lim2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim0=+→xx x ),故选B45.解:因为33lim )3tan(lim2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim1)1(21lim11=++=-+-→→x x xx xx x ,故选C47.解:因为021lim 11lim 00==-+++→→xxx x ax ax ,所以1>a ,故选A48.解:因为02tan lim 20=→xxx ,故选D 49.解:由书中定理知选C 50.解:因为01cos 1lim=∞→xx x ,故选C51.解:因为6ln 13ln 32ln 2lim 232lim00=+=-+→→x x x x x x x ,选B 52.解:选A 53.解:1sin )cos 1(2lim20=-→x x x ,选C54.解:因为1)(lim =+∞→x f x ,选A55.解:选A 56.解:0sec 1sin lim0=+→xxx ,选C57.解:选C58.解:,11sinlim20=+→xx x x x 选D59.解:根据连续的定义知选B 60.C 61.解:选A 62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x ,011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C67.解:选C 68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B 70.解:313lim)(-=-=∞→nxnxx f x ,选A71.解:)0(2111limf x x x ≠=-+→,选A72.解:选C 73.解:因为0)11cot(lim )(lim211=-+=++→→x arc x x f x x , π=-+=--→→)11cot(lim )(lim 211x arc x x f x x 故选B74.解:选D 75.解:因为2lim ,lim-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C76.解:因为11sinlim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选C81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→x x x x x x f x f x x ,故选B84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C85.解:因为0lim→h )(')()h - x (000x f hx f f -=-,故选B 86.解:因为=--→h f h f h )1()21(lim 021)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D87.解:222242)('',2)('xx x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim)0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D 94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y ey x g x f -⋅='=-,选A97.C 98.A 99.B 100.A 101. C 102.B 103.C。
成人高考(专升本)高等数学(一)知识点复习资料
C.关于坐标原点对称 D.关于直线 y=x对称 [答]B.
,由于不论 x为何值,总有 ,所以它的图形总是在 x轴的上 。
[主要知识内容] (一)函数的概念 1.函数的定义
由方程 为隐函数。
确定的函数关系
(4)在 ,称
内,下列函数中是无界函数的是
定义 设在某个变化过程中有两个变量 x和 y,变量 y 例如
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=
的
例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
, 等都是初等函数。
y=arcsin x 和 。
的定义域都是 附录:常用的初等数学基本公式
一、乘法公式;反之,因式分解公式
,
第一节 极限
[复习考试要求]
个常数 1.我们称:当
1.理解极限的概念(对极限定义
、
、有
等形式的描述不作要求)。会求函数在一点处的 (3)当 左极限与右极限,了解函数在一点处极限存在的充分必
就是一个隐函数,它可以转化成显 (A)
(B)
随变量 x的变化而变化,如果变量 x在实数集合 D或 D 的某一个子集合中每取一数值时,变量 y依照某一法则 函数的形式
(C) y=sin x(D)
f总有一个确定的数值与之对应,则称变量 y为变量 x 要注意的是:并非所有隐函数都可以转化为成显函数。 (四)反函数
专升本高数二复习资料
专升本高数二复习资料专升本高数二复习资料高等数学是专升本考试中的一门重要科目,对于许多准备参加考试的考生来说,高数二是其中的重点和难点。
为了帮助考生更好地备考高数二,提高考试成绩,本文将介绍一些高数二的复习资料和学习方法。
一、教材选择在复习高数二时,选择一本好的教材是非常重要的。
推荐的教材有《高等数学》、《高等数学(上册)》、《高等数学(下册)》等。
这些教材内容全面,讲解详细,适合考生系统地学习和复习高数二的各个知识点。
二、重点知识点高数二的知识点较多,但有一些是重点和难点,需要特别重视。
其中包括:1. 一元函数微分学:包括导数的定义、求导法则、高阶导数、隐函数求导等。
这些知识点是高数二的基础,需要熟练掌握。
2. 一元函数积分学:包括不定积分、定积分、换元积分法、分部积分法等。
这些知识点需要掌握积分的基本概念和常用的积分方法。
3. 微分方程:包括一阶微分方程和二阶线性常系数齐次微分方程。
这些知识点需要理解微分方程的概念和解法,并能够应用到实际问题中。
4. 无穷级数:包括数项级数、收敛性判定、幂级数等。
这些知识点需要熟悉级数的性质和收敛判定方法。
三、复习方法1. 制定学习计划:根据自己的时间安排和复习进度,制定合理的学习计划。
将复习内容分为小模块,每天安排一定的学习时间,有计划地进行复习。
2. 理解概念和原理:高数二的知识点较多,需要理解其中的概念和原理。
不仅要记住公式和定理,还要能够理解其背后的数学思想和推导过程。
3. 多做题:高数二的复习离不开大量的练习题。
通过做题可以巩固知识,提高解题能力。
可以选择一些习题集或者模拟试卷进行练习,同时注意分析错题和解题思路。
4. 做题技巧:在做题过程中,可以掌握一些解题技巧。
比如,对于一些复杂的题目,可以先分析题目要求,找出关键信息,然后采用适当的方法进行解题。
5. 多思考和讨论:在学习高数二的过程中,可以多思考和讨论一些问题。
可以和同学、老师或者网上的学习群组交流,互相学习和帮助。
专升本高数复习资料(超新超全)
专升本高数复习资料(超新超全)严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
4.掌握隐函数的求导法与对数求导法。
会求分段函数的导数。
5.了解高阶导数的概念。
会求简单函数的高阶导数。
6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。
第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。
2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。
会利用函数的单调性证明简单的不等式。
3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。
4.会判断曲线的凹凸性,会求曲线的拐点。
5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
专升本高等数学复习资料含答案
专升本高等数学复习资料一、函数、极限和连续 .函数)(x f y =的定义域是〔 〕.变量的取值范围 .使函数)(x f y =的表达式有意义的变量的取值范围.全体实数 .以上三种情况都不是 .以下说法不正确的选项是〔 〕.两个奇函数之和为奇函数 .两个奇函数之积为偶函数 .奇函数及偶函数之积为偶函数 .两个偶函数之和为偶函数 .两函数一样那么〔 〕.两函数表达式一样 .两函数定义域一样.两函数表达式一样且定义域一样 .两函数值域一样.函数y = 〕.(2,4) .[2,4] .(2,4] .[2,4).函数3()23sin f x x x =-的奇偶性为〔 〕.奇函数 .偶函数 .非奇非偶 .无法判断 .设那么)(x f 等于( ). . . . . 分段函数是( ).几个函数 .可导函数 .连续函数 .几个分析式和起来表示的一个函数 .以下函数中为偶函数的是( ) .x e y -= .)ln(x y -= .x x y cos 3= .x y ln =.以下各对函数是一样函数的有( ) .x x g x x f -==)()(与 .xx g x x f cos )(sin 1)(2=-=与. .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与.以下函数中为奇函数的是( ) . .x x y sin = . .23x x y +=.设函数)(x f y =的定义域是[],那么)1(+x f 的定义域是( ).]1,2[-- . ]0,1[- .[] . [].函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( ).)2,2(- .]0,2(- .]2,2(- . (].假设=---+-=)1(,23321)(f xx x x x f 则( ).3- . .1- . .假设)(x f 在),(+∞-∞内是偶函数,那么)(x f -在),(+∞-∞内是( ).奇函数 .偶函数 .非奇非偶函数 .0)(≡x f.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,那么)()()(x f x f x F -+=必是( ).奇函数 .偶函数 .非奇非偶函数 .0)(≡x F. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 那么)2(πf 等于 ( ) .12-π .182-π . 0 .无意义.函数x x y sin 2=的图形〔 〕.关于ox 轴对称 .关于oy 轴对称 .关于原点对称 .关于直线x y =对称.以下函数中,图形关于y 轴对称的有( ).x x y cos = .13++=x x y. . .函数)(x f 及其反函数)(1x f-的图形对称于直线( ).0=y .0=x .x y = .x y -=. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( ).关于x 轴对称 .关于y 轴对称 .关于直线x y =轴对称 .关于原点对称.对于极限)(limx f x →,以下说法正确的选项是〔 〕.假设极限)(lim 0x f x →存在,那么此极限是唯一的 .假设极限)(lim 0x f x →存在,那么此极限并不唯一.极限)(limx f x →一定存在.以上三种情况都不正确 .假设极限A )(lim 0=→x f x 存在,以下说法正确的选项是〔 〕.左极限)(lim 0x f x -→不存在 .右极限)(lim 0x f x +→不存在.左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等.A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x.极限的值是( ). .1e. .e .极限的值是( ).. . .∞ . 1-.,那么〔 〕.0,2==b a.1,1==b a .1,2==b a .0,2=-=b a.设b a<<0,那么数列极限l i m n n n n a b →+∞+是.a .b . .b a + .极限的结果是. .21.51 .不存在.∞→x lim 为( ). .21. .无穷大量 . 为正整数〕等于〔 〕.nm .mn . ..,那么〔 〕.0,2==b a.0,1==b a .0,6==b a .1,1==b a.极限( ).等于 .等于 .为无穷大 .不存在.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 那么=→)(limx f x ( ). . .1- .不存在 .以下计算结果正确的选项是( ) . . . . .极限等于( ) . .∞ . .21 .极限的结果是.1- . . .不存在 .为 ( ) . .k1. .无穷大量 .极限( ). . .1- .2π-.当∞→x时,函数的极限是( ).e .e - . .1-.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,那么=→)(lim 0x f x. . .1- .不存在.a xax x x 则,516lim21=-++→的值是( ) . .7- . ..设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,那么a 的值是( ). .1- . .2- .无穷小量就是〔 〕.比任何数都小的数 .零 .以零为极限的函数 .以上三种情况都不是 .当0→x 时,)2sin(3x x +及x 比拟是( ).高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .当0→x 时,及x 等价的无穷小是〔 〕 .xx sin .)1ln(x + .)11(2x x -++ .)1(2+x x.当0→x 时,)3tan(3x x +及x 比拟是〔 〕.高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .设,1)(,)1(21)(x x g x xx f -=+-=那么当1→x 时〔 〕.)(x f 是比)(x g 高阶的无穷小 .)(x f 是比)(x g 低阶的无穷小 .)(x f 及)(x g 为同阶的无穷小 .)(x f 及)(x g 为等价无穷小.当+→0x时, 11)(-+=a x x f 是比x 高阶的无穷小,那么( ).1>a .0>a .a 为任一实常数 .1≥a.当0→x 时,x 2tan 及2x 比拟是〔 〕.高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .“当0x x→,A x f -)(为无穷小〞是“A x f x x =→)(lim 0〞的〔 〕.必要条件,但非充分条件 .充分条件,但非必要条件 .充分且必要条件 .既不是充分也不是必要条件 . 以下变量中是无穷小量的有( ) . . . ..设时则当0,232)(→-+=x x f x x ( ).)(x f 及x 是等价无穷小量 .)(x f 及x 是同阶但非等价无穷小量 .)(x f 是比拟x 高阶的无穷小量 .)(x f 是比拟x 低阶的无穷小量. 当+→0x时,以下函数为无穷小的是( ). .xe 1 .x ln.. 当0→x 时,及2sin x 等价的无穷小量是 ( ) .)1ln(x + .x tan .()x cos 12- .1-x e . 函数当∞→x时)(x f ( ).有界变量 .无界变量 .无穷小量 .无穷大量. 当0→x 时,以下变量是无穷小量的有( ).xx 3 . .x ln.x e -. 当0→x 时,函数是( ).不存在极限的 .存在极限的 .无穷小量 .无意义的量 .假设0x x→时, )(x f 及)(x g 都趋于零,且为同阶无穷小,那么( ). . . .不存在.当0→x 时,将以下函数及x 进展比拟,及x 是等价无穷小的为( ).x 3tan .112-+x .x x cot csc - ..函数)(x f 在点0x 有定义是)(x f 在点0x 连续的〔 〕.充分条件 .必要条件 .充要条件 .即非充分又非必要条件 .假设点0x 为函数的连续点,那么以下说法不正确的选项是〔 〕.假设极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,那么0x 称为)(x f 的可去连续点.假设极限)(lim 0x f x x +→及极限)(lim 0x f x x -→都存在但不相等,那么0x 称为)(x f 的跳跃连续点.跳跃连续点及可去连续点合称为第二类的连续点 .跳跃连续点及可去连续点合称为第一类的连续点 .以下函数中,在其定义域内连续的为( ).x x x f sin ln )(+= .⎩⎨⎧>≤=0sin )(x ex xx f x.⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f .⎪⎩⎪⎨⎧=≠=001)(x x xx f.以下函数在其定义域内连续的有( ) . .⎩⎨⎧>≤=0cos 0sin )(x xx xx f.⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f . .设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 那么)(x f 在点0=x 处( ).连续 .左连续 .右连续 .既非左连续,也非右连续 .以下函数在0=x处不连续的有( ).⎪⎩⎪⎨⎧=≠=-00)(2x x e x f x .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f . .⎩⎨⎧≤->+=0)1ln()(2x xx x x f .设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 那么在点)(1x f x 处函数=( ) .不连续 .连续但不可导 .可导,但导数不连续 .可导,且导数连续 .设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,那么)(x f 在0=x 点( ).不连续 .连续且可导 .不可导 .极限不存在 .设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0( ).)(0x x f ∆+ .x x f ∆)('0 .)()(00x f x x f -∆+ .x x f ∆)(0.函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,那么函数)(x f ( ) .当0→x 时,极限不存在 .当0→x 时,极限存在 .在0=x处连续 .在0=x 处可导.函数的连续区间是( ).),2[]2,1[+∞⋃ .),2()2,1(+∞⋃ .),1(+∞ .),1[+∞ .设,那么它的连续区间是( ).),(+∞-∞ . .)0()0,(∞+⋃-∞ . .设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 那么函数在0=x 处( ).不连续 .连续不可导 .连续有一阶导数 .连续有二阶导数 .设函数 ,那么)(x f 在点0=x 处( ).连续 .极限存在 .左右极限存在但极限不存在 .左右极限不存在 .设11cot)(2-+=x arc x x f ,那么1=x 是)(x f 的〔 〕.可去连续点 .跳跃连续点 .无穷连续点 .振荡连续点 .函数的连续点是( ).)1,1(),1,1(),0,1(-- .是曲线y e y -=上的任意点.)1,1(),1,1(),0,0(- .曲线2x y =上的任意点.设,那么曲线( ).只有水平渐近线2-=y .只有垂直渐近线0=x .既有水平渐近线2-=y ,又有垂直渐近线0=x .无水平,垂直渐近线.当0>x时, ( ).有且仅有水平渐近线 .有且仅有铅直渐近线.既有水平渐近线,也有铅直渐近线 .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 .设函数)(x f 在点0x 处可导,那么以下选项中不正确的选项是〔 〕. .xx f x x f x f x ∆-∆+=→∆)()(lim)('000.00)()(lim)('0x x x f x f x f x x --=→ .hx f h x f x f h )()21(lim)('0000--=→ .假设e cos x y x =,那么'(0)y =( ). . .1- .2 .设x x g e x f x sin )(,)(==,那么=)]('[x g f ( ).xe sin .xecos - .xecos .xesin -.设函数)(x f 在点0x 处可导,且2)('0=x f ,那么hx f h x f h )()21(lim 000--→等于( ).1- . . .21- .设)(x f 在a x =处可导,那么x x a f x a f x )()(lim0--+→( ) .)('a f .)('2a f . .)2('a f.设)(x f 在2=x 处可导,且2)2('=f ,那么=--+→hh f h f h )2()2(lim〔 〕. . . . .设函数)3)(2)(1()(---=x x x x x f ,那么)0('f 等于〔 〕. .6- . . .设)(x f 在0=x 处可导,且1)0('=f ,那么〔 〕. . . . .设函数)(x f 在0x 处可导,那么0lim→h ( ).及0x 都有关 .仅及0x 有关,而及无关.仅及有关,而及0x 无关 .及0x 都无关 .设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,那么=)1('f 〔 〕.21. 21- . 41 .41- .设==-)0('')(2f e x f x 则( ).1- . .2- . .导数)'(log x a等于( ). . . .x1.假设),1()2(249102+-++=x x x x y 那么)29(y ( ). .! . .×× .设',)(',)()(y x f e e f y x f x 则存在且=( ).)()()()('x f x x f x e e f e e f + .)(')(')(x f e e f x f x ⋅ .)(')()(')()(x f e e f e e f x f x x f x x ⋅++ .)()('x f x e e f.设=---=)0('),100()2)(1()(f x x x x x f 则 ( ). .! .!100- .100- .假设==',y x y x 则( ).1-⋅x x x .x xxln .不可导 .)ln 1(x x x +.处的导数是在点22)(=-=x x x f ( ). . .1- .不存在 .设==-',)2(y x y x 则( ).)1()2(x x x +--.2ln )2(x x -. .)2ln 1()2(x x x+--.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 那么 ( ).)(x f 在),(b a 内必有最大值或最小值 .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使 .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使 .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使.设那么=dxdy( ) . . . . .假设函数)(x f 在区间)b a,(内可导,那么以下选项中不正确的选项是〔 〕.假设在)b a,(内0)('>x f ,那么)(x f 在)b a,(内单调增加 .假设在)b a,(内0)('<x f ,那么)(x f 在)b a,(内单调减少 .假设在)b a,(内0)('≥x f ,那么)(x f 在)b a,(内单调增加.)(x f 在区间)b a,(内每一点处的导数都存在.假设)(y x f =在点0x 处导数存在,那么函数曲线在点))(,(00x f x 处的切线的斜率为〔 〕.)('0x f .)(0x f . ..设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,那么1k 及2k 的关系为〔 〕. .121-=⋅k k .121=⋅k k .021=⋅k k.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,那么对于区间()b a ,上的任何点x ,以下说法正确的选项是〔 〕.)()(0x f x f > .)()(0x f x f < .)()(0x f x f -> .)()(0x f x f -<.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f 〔或)('0x f 不存在〕,以下说法不正确的选项是〔 〕 .假设0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 .假设0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值.假设0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值.如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值.0)('0=x f ,0)(''0≠x f ,假设0)(''0>x f ,那么函数)(x f 在0x 处取得〔 〕.极大值 .极小值 .极值点 .驻点.b x a <<时,恒有0)(>''x f ,那么曲线)(x f y =在()b a ,内〔 〕.单调增加 .单调减少 .上凹 .下凹 .数()e x f x x =-的单调区间是( ) ..在),(+∞-∞上单增 .在),(+∞-∞上单减 .在(,0)-∞上单增,在(0,)+∞上单减 .在(,0)-∞上单减,在(0,)+∞上单增.数43()2f x x x =-的极值为〔 〕..有极小值为(3)f .有极小值为(0)f .有极大值为(1)f .有极大值为(1)f -.x e y =在点()处的切线方程为( ).x y +=1 .x y +-=1 .x y -=1 .x y --=1.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) . .)0,1(- . .)0,1(.抛物线x y =在横坐标4=x 的切线方程为 ( ).044=+-y x .044=++y x .0184=+-y x .0184=-+y x.线)0,1()1(2在-=x y 点处的切线方程是( ).1+-=x y .1--=x y .1+=x y .1-=x y .曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(),那么该曲线的方程是( ) .12++-=x x y .12-+-=x x y.12++=x x y .12-+=x x y.线上的横坐标的点0=x 处的切线及法线方程( ).063023=-+=+-y x y x 与 .063023=--=++-y x y x 与 .063023=++=--y x y x 与 .063023=+-=++y x y x 与.函数处在点则0)(,)(3==x x f x x f ( ).可微 .不连续 .有切线,但该切线的斜率为无穷 .无切线.以下结论正确的选项是( ).导数不存在的点一定不是极值点.驻点肯定是极值点.导数不存在的点处切线一定不存在.0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件.假设函数)(x f 在0=x 处的导数,0)0('=f 那么0=x 称为)(x f 的( ).极大值点 .极小值点 .极值点 .驻点.曲线)1ln()(2+=x x f 的拐点是( ).)1ln ,1(及)1ln ,1(- .)2ln ,1(及)2ln ,1(-.)1,2(ln 及)1,2(ln - .)2ln ,1(-及)2ln ,1(--.线弧向上凹及向下凹的分界点是曲线的( ).驻点 .极值点 .切线不存在的点 .拐点.数)(x f y =在区间[]上连续,那么该函数在区间[]上( ).一定有最大值无最小值 .一定有最小值无最大值.没有最大值也无最小值 .既有最大值也有最小值.以下结论正确的有( ).0x 是)(x f 的驻点,那么一定是)(x f 的极值点 .0x 是)(x f 的极值点,那么一定是)(x f 的驻点 .)(x f 在0x 处可导,那么一定在0x 处连续 .)(x f 在0x 处连续,那么一定在0x 处可导.由方程y x e xy +=确定的隐函数)(x y y ==dxdy ( ) . . . ..=+=x y y xe y ',1则( ). . . .y e x )1(+.设x x g e x f x sin )(,)(==,那么=)]('[x g f 〔 〕.x esin .x e cos - .x e cos .x e sin - .设x x g e x f x cos )(,)(-==,那么=)]('[x g f.x esin .x e cos - .x e cos .x e sin - .设)(),(x t t f y φ==都可微,那么=dy.dt t f )(' .)('x φdx .)('t f )('x φdt .)('t f dx.设,2sin x e y =那么=dy 〔 〕.x d e x 2sin .x d e x 2sin sin 2 .xxd e x sin 2sin 2sin .x d e x sin 2sin .假设函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) .及x ∆等价的无穷小量 .及x ∆同阶的无穷小量.比x ∆低阶的无穷小量 .比x ∆高阶的无穷小量.给微分式,下面凑微分正确的选项是( ). . . ..下面等式正确的有( ).)(sin sin x x x x e d e dx e e = ..)(222x d e dx xex x -=-- .)(cos sin cos cos x d e xdx e x x = .设)(sin x f y =,那么=dy ( ).dx x f )(sin ' .x x f cos )(sin ' .xdx x f cos )(sin ' .xdx x f cos )(sin '-.设,2sin x e y =那么=dy.x d e x 2sin .x d e x 2sin sin 2 .x xd e x sin 2sin 2sin .x d e x sin 2sin三、一元函数积分学.可导函数)(F x 为连续函数)(x f 的原函数,那么( ) .0)('=x f .)()(F'x f x = .0)(F'=x .0)(=x f.假设函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,那么有( ) .I x x x ∈∀=Φ),(F )(' .I x x x ∈∀Φ=),()(F .I x x x ∈∀Φ=),()(F' .I x C x x ∈∀=Φ-,)()(F.有理函数不定积分等于〔 〕.. .. ..不定积分等于〔 〕..2arcsin x C + .2arccos x C +.2arctan x C + .2cot arc x C +.不定积分等于〔 〕.. .. ..函数x e x f 2)(=的原函数是( ). .x e 22 . .x e 231.⎰xdx 2sin 等于( ). .c x +2sin .c x +-2cos 2 ..假设⎰⎰-=xdx x x dx x xf sin sin )(,那么)(x f 等于〔 〕.x sin .x x sin .x cos .. 设 x e -是)(x f 的一个原函数,那么⎰=dx x xf )('〔 〕.c x e x +--)1( .c x e x ++--)1( .c x e x +--)1(. c x e x ++-)1( .设,)(x e x f -= 那么 ( ). . .c x +-ln .c x +ln.设)(x f 是可导函数,那么()')(⎰dx x f 为〔 〕.)(x f .c x f +)( .)('x f .c x f +)('. 以下各题计算结果正确的选项是( ). ..⎰+-=c x xdx cos sin .⎰+=c x xdx 2sec tan. 在积分曲线族⎰dx x x 中,过点()的积分曲线方程为( ).12+x . .x 2 ..( ).c x +--43 . . ..设)(x f 有原函数x x ln ,那么⎰dx x xf )(( ). .c x x ++)ln 2141(2. ..⎰=xdx x cos sin ( ). . . ..积分( ). . .x tan arg .c x +arctan.以下等式计算正确的选项是( ).⎰+-=c x xdx cos sin .c x dx x +=---⎰43)4(.c x dx x +=⎰32 .c dx x x +=⎰22.极限的值为〔 〕.1- . . ..极限的值为〔 〕.1- . . ..极限( ).41 .31 .21 ..〔 〕.)1(2+x e .ex .ex 2 .12+x e.假设,那么〔 〕.x x f sin )(= .x x f cos 1)(+-=.c x x f +=sin )( .x x f sin 1)(-=.函数在区间]10[,上的最小值为〔 〕 .21.31 .41.0.假设()⎰+==xt x c dt t e x f e x x g 02122213)(,)(,且那么必有〔 〕.0=c .1=c .1-=c .2=c.( ).21x + .41x + . ..( ).2cos x .2cos 2x x .2sin x .2cos t .设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x a x x tdtx f x在0=x 点处连续,那么a 等于〔 〕.2 .21 .1 .2-.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F x a ≤≤=⎰那么)(x F 是)(x f 的() .不定积分 .一个原函数 .全体原函数 .在],[b a 上的定积分.设则为连续函数其中,)(,)()(2x f dt t f a x x x F xa ⎰-=)(lim x F a x →( ).2a .)(2a f a . .不存在.函数的原函数是( ).c x +tan .c x +cot .c x +-cot ..函数)(x f 在[]上连续, ⎰=xa dt t f x )()(ϕ,那么( ).)(x ϕ是)(x f 在[]上的一个原函数 .)(x f 是)(x ϕ的一个原函数 . )(x ϕ是)(x f 在[]上唯一的原函数 . )(x f 是)(x ϕ在[]上唯一的原函数.广义积分=⎰+∞-0dx e x ( ). . . .发散 .=+⎰dx x π02cos 1( ). . 2 .22 ..设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x-=⎰( ).)(x F .)(x F - . . )(x F.以下广义积分收敛的是〔 〕. . . ..以下广义积分收敛的是〔 〕.⎰+∞13x dx . . . .等于( ).pa e - . . ..( ). .e1 .e .∞+(发散) .积分dx e kx -+∞⎰0收敛的条件为〔 〕 .0>k .0<k .0≥k .0≤k .以下无穷限积分中,积分收敛的有( ) .⎰∞-0dx e x ..⎰∞--0dx e x .⎰∞-0cos xdx.广义积分为( ). .发散 .21 . .以下广义积分为收敛的是( ). .. ..以下积分中不是广义积分的是( ).⎰+∞+0)1ln(dx x .. ..函数()f x 在闭区间[]上连续是定积分⎰b adx x f )(在区间[]上可积的〔 〕. .必要条件 .充分条件.充分必要条件 .既非充分又飞必要条件.定积分等于〔 〕.. . . .1-.定积分⎰-122d ||x x x 等于〔 〕. . . .174 .174- .定积分x x x d e )15(405⎰+等于〔 〕. . .5e .5-e .52e.设)(x f 连续函数,那么〔 〕. . . ..积分〔 〕. . . ..设)(x f 是以为周期的连续函数,那么定积分⎰+=T l l dx x f I )(的值( ) .及l 有关 .及有关 .及l 均有关 .及l 均无关 .设)(x f 连续函数,那么〔 〕 . . . ..设)(x f 为连续函数,那么等于〔 〕.)0()2(f f - . . .)0()1(f f -.数)(x f 在区间[]上连续,且没有零点,那么定积分⎰b adx x f )(的值必定( ) .大于零 .大于等于零 .小于零 .不等于零.以下定积分中,积分结果正确的有( ).c x f dx x f b a +=⎰)()(' .)()()('a f b f dx x f b a +=⎰ .)]2()2([21)2('a f b f dx x f ba-=⎰ .)2()2()2('a f b f dx x f b a -=⎰ .以下定积分结果正确的选项是( ). . .211=⎰-dx .211=⎰-xdx .⎰=adx x 0)'(arccos ( ). . . .0arccos arccos -a.以下等式成立的有( ).0sin 11=⎰-xdx x .011=⎰-dx e x .a b xdx ab tan tan ]'tan [-=⎰ .xdx xdx d x sin sin 0=⎰ .比拟两个定积分的大小( ) .⎰⎰<213212dx x dx x .⎰⎰≤213212dx x dx x .⎰⎰>213212dx x dx x .⎰⎰≥213212dx x dx x .定积分等于( ). . . . .⎰=11-x dx ( ). .2- . .1-.以下定积分中,其值为零的是( ).⎰22-sin xdx x .⎰20cos xdx x .⎰+22-)(dx x e x .⎰+22-)sin (dx x x .积分⎰-=21dx x ( ). .21 .23 .25 .以下积分中,值最大的是( ) .⎰102dx x .⎰103dx x .⎰104dx x .⎰105dx x .曲线x y -=42及y 轴所围局部的面积为〔 〕. . . ..曲线x e y =及该曲线过原点的切线及轴所围形的为面积〔 〕. .. . .曲线2x y x y ==与所围成平面图形的面积( ) .31 .31- . .四、常微分方程.函数y c x =-〔其中c 为任意常数〕是微分方程1x y y '+-=的〔 〕. .通解 .特解 .是解,但不是通解,也不是特解 .不是解.函数23x y e =是微分方程40y y ''-=的〔 〕..通解 .特解 .是解,但不是通解,也不是特解 .不是解.2()sin y y x y x '''++=是〔 〕..四阶非线性微分方程 .二阶非线性微分方程.二阶线性微分方程 .四阶线性微分方程.以下函数中是方程0y y '''+=的通解的是〔 〕..12sin cos y C x C x =+ .x y Ce -= .y C = .12x y C e C -=+专升本高等数学综合练习题参考答案. . .. 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].. 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数. .解:令t x -=1,那么tt t t t f 21212211)(--=---+=,所以 ,应选 .解:选 . 解:选 . 解:选 .解:选 . 解:110≤+≤x ,所以01≤≤-x ,应选 . 解:选 . 解:选 . 解:选.解:选 . 解:)(x f 的定义域为)4,1[-,选.解:根据奇函数的定义知选 . 解:选 . 解:选.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选 . . .解:这是00型未定式,应选. .解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 应选..解:因为所以0)(lim 20=+→b ax x ,得0=b ,所以2=a ,应选 .解:b b b b b a b b n n n n n n n n n ==+≤+≤=2选.解:选 .解:因为∞→x lim 2121lim 21sin==∞→x x x x x ,应选 .解:n m nx mx nx mx x x ==→→00lim sin sin lim 应选 .解:因为所以0)(lim 20=+→b ax x ,得0=b ,,所以1=a ,应选 .解:1cos 1cos 1lim cos cos lim =+-=+-∞→∞→xx x xx x x x x x ,选 .解:因为01lim )(lim 00=-=++→→)(x x x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(lim 0x f x →不存在,应选 .解:41414010])41(lim [)41(lim e x x x x x x =+=+→→,选 .解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xx x x x x x ,选 .解:110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x ,选.解:kkx x kx x x x 11lim 1sin lim ==∞→∞→选 .解:,选 .解:选 . 解:选.解:06lim 21=++→ax x x ,7-=a ,选 .解:2),2(lim tan lim 00=+=-+→→a x x ax x x ,选 .解:根据无穷小量的定义知:以零为极限的函数是无穷小量,应选 .解:因为22lim )2sin(lim 2020=+=+→→xx x x x x x x ,应选 .解:因为,应选 .解:因为33lim )3tan(lim 2020=+=+→→xx x x x x x x ,应选 .解:因为21)1(21lim 1)1(21lim 11=++=-+-→→x x xx xx x ,应选 .解:因为021lim 11lim 00==-+++→→xx x x a x a x ,所以1>a ,应选 .解:因为,应选.解:由书中定理知选.解:因为,应选 .解:因为6ln 13ln 32ln 2lim 232lim 00=+=-+→→x x x x x x x ,选 .解:选.解:,选.解:因为1)(lim =+∞→x f x ,选.解:选.解:,选.解:选.解:选 .解:根据连续的定义知选..解:选.解:选.解:, ,选.解:选 .解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x , 011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选 .解:选.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选.解:选.解:,选 .解:)0(2111lim0f x x x ≠=-+→,选 .解:选 .解:因为0)11cot (lim )(lim 211=-+=++→→x arc x x f x x , π=-+=--→→)11cot (lim )(lim 211x arc x x f x x 应选 .解:选.解:因为2lim ,lim 0-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选 .解:因为,所以有水平渐近线1=y ,但无铅直渐近线,选. . 解:e cos e sin x x y x x '=-,(0)101y '=-=.选. . 解:x x g cos )('=,所以x e x gf cos )]('[=,应选. .解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选 .解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选 .解:因为=--+→hh f h f h )2()2(lim 0 )2('2f ,应选 .解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→xx x x x x f x f x x ,应选 .解:因为 )0('2f ,应选.解:因为0lim →h )(')()h - x (000x f h x f f -=-,应选 .解:因为 21)1('222)1()21(lim 0=-=----→f h f h f h )( ,应选 .解:222242)('',2)('x x x e x e x f xe x f ---+-=-=,2)0(''-=f 选.解:选 .解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选 .解:!100)100()2)(1(lim )0()(lim )0('00=---=-=→→xx x x x x f x f f x x ,选 .解:)'('ln x x e y =)ln 1(x x x +=,选 .解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选 .解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选 .解:选 .解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y e y x g x f -⋅='=-,选 . . . . . . ..解:()1e x f x '=-.令()0f x '=,那么0x =.当)0,(-∞∈x 时0)(>'x f ,当),0(+∞∈x 时0)(<'x f ,因此()e x f x x =-在)0,(-∞上单调递增, 在),0(+∞上单调递减.答案选..解:根据求函数极值的步骤,〔〕关于x 求导,322'()462(3)f x x x x x =-=- 〔〕令'()0f x =,求得驻点0,3x =〔〕求二阶导数2"()121212(1)f x x x x x =-=- 〔〕因为''(3)720f =>,由函数取极值的第二种充分条件知27)3(=f 为极小值. 〔〕因为''(0)0f =,所以必须用函数取极值的第一种充分条件判别,但在0x =左右附近处,)('x f 不改变符号,所以(0)f 不是极值.答案选..1)0('=y ,曲线x e y =在点()处的切线方程为x y =-1,选 .解:函数162131)(23+++=x x x x f 的图形在点)1,0(处的切线为x y 61=-,令0=y ,得,选 .,抛物线x y =在横坐标4=x 的切线方程为,选.,切线方程是1-=x y ,选.1,)(2=+-=c c x x x f ,选 .解:3)0('),121(2'2=++=y x e y x ,切线方程x y 32=- 法线方程,选 .选 .由函数取得极值的必要条件〔书中定理〕知选.解:选.解:,)1(22)1(4)1(2'',12'22222222x x x x x y x x y +-=+-+=+= 422222)1(2)1(2)22()1(4'''x x x x x x y ++--+-= ,)1(124)1(4)1(23233222x x x x x x +-=+-+=令0''=y 得1,1-=x ,0)1('''≠±y , )2ln ,1(及)2ln ,1(-为拐点,选.选 .选 .选.解:)'1()'1('y xy y e xy y y x +=+=++,选 .解:''y xe e y y y +=,选,应选.解:x x g cos )('=,所以x e x g f cos )]('[=,应选 .解:x x g sin )('=,所以x e x g f sin )]('[=,应选.解:选 .解:=dy;sin 2sin 2x d e x 应选 .解:因为)()('0x o x x f dy ∆+∆=,所以,应选.解:选 .解:选 .解:x x f y cos )(sin ''=,选 .解:选. . .解:222111d d (1)d ln 11112x x x x x x x x x C x x x -+⎰=⎰=-+=-++++++⎰. 所以答案为..解:由于(2arccos )x '=,所以答案为. .解:22e 11e (1)d (e )d e x xx x x x C x x x -⎰-=⎰-=++ .解:选.解:因为c x x xd xdx x xdx +===⎰⎰⎰2sin sin sin 2cos sin 22sin ,应选 .解:对⎰⎰-=xdx x x dx x xf sin sin )(两边求导得x x x x x xf sin cos sin )(-+= ,应选.解:c e e x dx x f x xf x xdf dx x xf x x +--=-==--⎰⎰⎰)()()()(',应选 .解:c xc x f dx x x f +=+=⎰1)(ln )(ln ',应选 .解:()')(⎰dx x f )(x f ,应选.解:选 .解:1,5225=+=⎰c c x dx x x ,应选.解:,选.解:x x x x f ln 1)'ln ()(+==,⎰⎰+=dx x x x dx x xf )ln ()(c x x x x x xd x +-+=+=⎰2222241ln 21212ln 21,选 .解:⎰⎰=xdx xdx x 2sin 21cos sin ,选.解:选 .解:选.解:因为 ,应选.解:因为 ,应选 .解:414sin lim sin lim 3304030==→→⎰x x x dt t x x x ,应选 .解:因为,应选.解:因为x sin =,应选 .解:043)21(313)('22>+-=+-=x x x x x x φ,所以)0(φ为 函数在区间]10[,上的最小值 ,应选.解: 所以1=c ,应选 .解:=+=+⎰x x dt t dx d x21)1(214 ,应选 .解:选 .解:212sin lim sin lim 0200===→→⎰x x x tdt a x xx ,应选 .解:由于)()('x f x F =,应选.解:因为=→)(lim x F a x )()(lim lim )(lim 222a f a ax dt t f x dt t f a x x xa a x a x x a a x =-=-⎰⎰→→→,选 .解:选 .解:选 .解:100=∞+-=-∞+-⎰xx e dx e ,选 .解:22cos 2cos 22cos 10020===+⎰⎰⎰dx x dx x dx x πππ,选 .解:,⎰-=-xdt t f x F 0)()(令u t -=,那么)()())(()(00x F du u f du u f x F x x-=-=--=-⎰⎰,选 .解:因为2112311231=∞++-=+-+∞⎰x x x dx ,应选 .解:因为21121213=∞+-=-+∞⎰x xdx ,应选.解:=∞+-=-+∞-⎰a e pdx e px a px 1 ,应选 .解:1ln 1)(ln 2=∞+-=⎰∞+e x x x dx e ,应选 .解:010∞+-=--∞+⎰kx kxe kdx e ,所以积分dx e kx -+∞⎰0收敛,必须0>k 应选 .解:,选 .解:e x dx xx e ∞+=⎰∞+ln ln ln ,发散,选 .解:因为1ln 1)(ln 12=∞+-=⎰∞+e x dx x x e ,选 .解:选 .解:假设〔〕在区间[]上连续,那么〔〕在区间[]上可积。
高等数学专升本教材上海
高等数学专升本教材上海高等数学是一门以微积分为基础的数学课程,它是许多理工科专业的重要基础学科之一。
对于许多希望通过专升本考试提升学历的学生来说,高等数学的学习是必不可少的。
本教材旨在提供给专升本考生一份全面且易于理解的高等数学教材,特别针对上海地区的考生进行编写。
1. 微积分基础知识1.1 极限的概念数列与函数的极限是微积分中的基础概念。
本教材中将详细介绍数列与函数极限的定义及其相关性质,并通过一系列例题帮助学生理解。
在此基础上,介绍一元函数的连续性与可导性的概念,并且给出求导公式与求极限的常用方法。
1.2 导数与微分导数是微积分的重要概念之一,它描述了函数在某一点上的斜率。
本教材将详细讲解导数的定义、性质和求导规则,并提供大量的例题和练习题供考生巩固练习。
此外,还将介绍微分的概念和微分运算规则,并帮助考生理解微分与导数之间的关系。
2. 微分方程2.1 一阶微分方程微分方程是数学中的重要工具,用于描述自然界和社会现象中的变化规律。
本教材将首先介绍一阶微分方程的基本概念和解法,包括可分离变量法、齐次方程和一阶线性方程等。
随后,将讲解一阶微分方程的应用问题,并通过实例帮助学生理解。
2.2 高阶微分方程高阶微分方程是一阶微分方程的推广,对于考生而言,掌握高阶微分方程的解法是至关重要的。
本教材将介绍常系数线性齐次方程和常系数非齐次方程的解法,并通过典型例题帮助学生掌握解题技巧。
3. 级数与数项级数级数与数项级数是数学分析中的重要内容,也是高等数学考试中的常见考点。
本教材将从级数的定义及其性质入手,详细讲解级数的收敛与发散性质,以及如何判断数项级数的收敛性。
此外,还将介绍级数求和的常用方法和技巧,并通过大量的例题帮助学生巩固掌握。
4. 多元函数与多元微积分4.1 多元函数的极限与连续性多元函数是高等数学中的重要内容之一,它描述了多个变量间的关系。
本教材将介绍多元函数的极限与连续性的概念,并通过例题引导学生应用相关理论进行求解。
上海专升本历年高等数学-真题
上海专升本历年高等数学-真题本文档收集了上海专升本历年的高等数学真题,旨在帮助考生进行备考准备。
以下是部分真题的概述和相关考点介绍。
真题概述1. 2015年真题- 考题内容:微分方程、数列、级数、概率分布、多元函数等- 考试形式:选择题、计算题、证明题- 考试难度:适中2. 2016年真题- 考题内容:函数、极限、导数、积分、曲线、平面几何等- 考试形式:选择题、计算题、应用题- 考试难度:较难3. 2017年真题- 考题内容:三角函数、数列、级数、导数、微分、积分等- 考试形式:选择题、填空题、计算题、证明题- 考试难度:中等偏难4. 2018年真题- 考题内容:导数、微分、积分、空间解析几何、数列等- 考试形式:选择题、填空题、证明题、应用题- 考试难度:适中5. 2019年真题- 考题内容:函数、极限、微分、积分、曲线与曲面、多元函数等- 考试形式:选择题、计算题、证明题、应用题- 考试难度:较难考点介绍1. 微分方程:包括一阶微分方程、二阶线性微分方程和常系数齐次线性微分方程等。
2. 数列与级数:涉及数列的表示、求和、极限等概念与性质。
3. 函数与极限:包括函数的定义与性质、连续性、极限存在性等。
4. 导数与微分:涉及导数的定义与性质、基本导数公式、微分的概念与应用等。
5. 积分与应用:包括定积分、不定积分、面积、曲线长度等的计算与应用。
6. 曲线与曲面:涉及曲线、曲面的方程、性质、参数方程等内容。
7. 空间解析几何:涉及点、直线、平面的位置关系、投影、距离公式等。
8. 多元函数:包括多元函数的偏导数、梯度、极值、条件极值等。
注意:以上为一些主要的考点和内容概述,并不完整,考生应综合参考历年真题进行备考。
上海第二大学专升本考试大纲《高等数学》(一)
3.会求平面方程、直线方程
4.掌握平面与平面、直线与平面、直线与直线平行与垂直的条件
会求点到平面的距离
5.了解曲面方程的概念
了解常用二次曲面的方程及其图形
八、多元函数微分学
(一)考试内容
二元函数概念、二元函数极限、连续
偏导数、全微分、多元函数的求导法则
不定积分换元法
不定积分分部积分法
(二)考试要求
1.理解原函数与不定积分的概念和性质
2.掌握不定积分的基本公式、换元积分法和分部积分法(淡化特殊积分技巧的训练
对于有理函数积分的一般方法不作要求
对于一些简单有理函数可作为两类积分法的例题作适当训练)
五、定积分及其应用
(一)考试内容
二重积分与三重积分的概念与性质、二重积分与三重积分的计算
曲线积分、格林公式
(二)考试要求
1.理解二重积分的概念与性质
2.掌握二重积分的计算方法(直角坐标、极坐标)
3.了解三重积分的概念
会计算简单的三重积分(直角坐标、柱面坐标)
4.理解两类曲线积分的概念
了解两类曲线积分的性质及两类曲线积分的关系
4.掌握多元复合函数一阶偏导数的求法
5.会求解隐函数的一阶偏导数
6.了解曲线的切线与法平面、曲面的切平面与法线等概念
并会求它们的方程;
7.理解二元函数极值与条件极值的概念
会求简单的二元函数的极值
了解拉格朗日乘数法
会求一些比较简单的最大值与最小值的应用问题
九、多元函数积分学
(一)考试内容
一、 数、极限与连续
(一)考试内容
专升本高等数学复习资料(含答案)
专升本高等数学复习资料〔含答案〕专升本高等数学复习资料一、函数、极限和连续 1.函数y?f(x)的定义域是〔B 〕y?f(x)的表达式有意义的变量x的取值范围A.变量x的取值范围 B.使函数C.全体实数 D.以上三种情况都不是 2.以下说法不正确的选项是〔 C 〕 A.两个奇函数之和为奇函数 B.两个奇函数之积为偶函数 C.奇函数与偶函数之积为偶函数 D.两个偶函数之和为偶函数 3.两函数相同那么〔 C 〕A.两函数表达式相同 B.两函数定义域相同C.两函数表达式相同且定义域相同 D.两函数值域相同 4.函数y?4?x?x?2的定义域为〔〕4) B.[2,4] 4] D.[2,4)A.(2,C.(2,5.函数f(x)?2x3?3sinx的奇偶性为〔〕A.奇函数 B.偶函数 C.非奇非偶 D.无法判断1?x,那么f(x)等于( )2x?1xx?21?x2?x A. B. C. D.2x?11?2x2x?11?2x6.设f(1?x)?7.分段函数是( )A .几个函数 B.可导函数 C.连续函数 D.几个分析式和起来表示的一个函数 8.以下函数中为偶函数的是( ) A.y?e?x B.y?ln(?x) C.y?x3cosx D.y?lnx9.以下各对函数是相同函数的有( ) A.f(x)?x与g(x)??x B.f(x)?1?sin2x与g(x)?cosx?x?2xf(x)?与g(x)?1 D.f(x)?x?2与g(x)??x?2?xC.x?2x?210.以下函数中为奇函数的是( )ex?e?x A.y?cos(x?) B.y?xsinx C.y?32? D.y?x3?x211.设函数y?f(x)的定义域是[0,1],那么f(x?1)的定义域是( )[?1,0] C .[0,1] D. [1,2]A .[?2,?1] B.?x??2?x?012.函数f(x)??2?0x?0的定义域是( ) ??x2?20?x?2A.(?2,2) B.(?2,0] C.(?2,2] D. (0,2]13.假设f(x)?1?x?2x?33x?2x,那么f(?1)?( )A.?3 B.3 C.?1 D.1 14.假设f(x)在(??,??)内是偶函数,那么f(?x)在(??,??)内是( )A.奇函数 B.偶函数 C.非奇非偶函数 D.f(x)?015.设f(x)为定义在(??,??)内的任意不恒等于零的函数,那么F(x)?f(x)?f(?x)必是( A.奇函数 B.偶函数 C.非奇非偶函数 D.F(x)?0??1?x?116.设f(x)??x?1,?2x2?1,1?x?2 那么f(2?)等于 ( )??0,2?x?4A.2??1 B.8?2?1 C. 0 D.无意义17.函数y?x2sinx的图形〔〕A.关于ox轴对称 B.关于oy轴对称 C.关于原点对称 D.关于直线y?x对称18.以下函数中,图形关于y轴对称的有( )A.y?xcosx B.y?x?x3?1C.y?ex?e?x .y?ex?e?x2 D219.函数f(x)与其反函数f?1(x)的图形对称于直线( )A.y?0 B.x?0 C.y?x D.y??x20. 曲线y?ax与y?logax(a?0,a?1)在同一直角坐标系中,它们的图形( )A.关于x轴对称 B.关于y轴对称 C.关于直线y?x轴对称 D.关于原点对称21.对于极限limx?0f(x),以下说法正确的选项是〔〕 A.假设极限limx?0f(x)存在,那么此极限是唯一的 B.假设极限limx?0f(x)存在,那么此极限并不唯一1)C.极限limx?0f(x)一定存在D.以上三种情况都不正确 22.假设极限limx?0f(x)?A存在,以下说法正确的选项是〔〕A.左极限C.左极限D.x?0?limf(x)不存在 B.右极限lim?f(x)不存在x?0x?0x?0?limf(x)和右极限lim?f(x)存在,但不相等x?0x?0x?0?limf(x)?limf(x)?limf(x)?A ?lnx?1的值是( )x?ex?e1A.1 B. C.0 D.eelncotx24.极限lim的值是( ).+x?0lnxA. 0 B. 1 C .? D. ?1 23.极限limax2?b?2,那么〔〕 25.limx?0xsinxA.a?2,b?0 B.a?1,b?1 C.a?2,b?1 D.a??2,b?0 a?b,那么数列极限limnan?bn是n???26.设0?A.a B.b C.1 D.a27.极限limx?0?b12?3121x的结果是A.0 B.28.lim C.1 D.不存在 51为( )x??2x1A.2 B. C.1 D.无穷大量2sinmx(m,n为正整数〕等于〔〕 29. limx?0sinnxxsinA.mn B.nm C.(?1)m?nmn?mn D.(?1) nmax3?b?1,那么〔〕 30.limx?0xtan2xA.a?2,b?0 B.a?1,b?0 C.a?6,b?0 D.a?1,b?1 x?cosxx??x?cosx( )31.极限limA.等于1 B.等于0 C.为无穷大 D.不存在232.设函数?sinx?1?f(x)??0?ex?1?x?0x?0x?0 那么limx?0f(x)?( )A.1 B.0 C.?1 D.不存在 33.以下计算结果正确的选项是( )A.xxlim(1?)x?e B .lim(1?)x?e4 x?0x?04411111x?x?4 C .lim(1?)x?eD .lim(1?)x?e4x?0x?04434.极限1lim?()tanx等于( ) x?0x A. 1 B.? C .0 D.1235.极限lim?xsin?x?0?11??sinx?的结果是 xx?A.?1 B.1 C.0 D.不存在 1?k?0?为 ( )x??kx1 A.k B. C.1 D.无穷大量k36.limxsin37.极限limsinx=( )x???2A.0 B.1 C.?1 D.?38.当x??时,函数(1??21x)的极限是( ) xA.e B.?e C .1 D.?139.设函数?sinx?1?f(x)??0?cosx?1?x?0x?0,那么limf(x)?x?0x?0A.1 B.0 C.?1 D.不存在x2?ax?6?5,那么a的值是( ) 40.limx?11?xA.7 B.?7 C. 2 D.341.设?tanax?f(x)??x??x?2x?0x?0,且limx?0f(x)存在,那么a的值是( )2A.1 B.?1 C .2 D.?42.无穷小量就是〔〕A.比任何数都小的数 B.零 C.以零为极限的函数 D.以上三种情况都不是43.当x?0时,sin(2x?x3)与x比拟是( )3A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 44.当x A.?0时,与x等价的无穷小是〔〕x B.ln(1?x) C.2(sinx1?x?1?x) D.x2(x?1)45.当x?0时,tan(3x?x3)与x比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 46.设f(x)?1?x,g(x)?1?x,那么当x?1时〔〕2(1?x)A.C.f(x)是比g(x)高阶的无穷小 B.f(x)是比g(x)低阶的无穷小 f(x)与g(x)为同阶的无穷小 D.f(x)与g(x)为等价无穷小47.当xA.a48.当x?0?时, f(x)?1?xa?1是比x高阶的无穷小,那么( ) ?1 B.a?0 C.a为任一实常数 D.a?1?0时,tan2x与x2比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 49.“当x?x0,f(x)?A为无穷小〞是“limf(x)?A〞的〔〕x?x0A.必要条件,但非充分条件 B.充分条件,但非必要条件 C.充分且必要条件 D.既不是充分也不是必要条件 50.以下变量中是无穷小量的有( ) A.lim(x?1)(x?1)1 B.limx?0ln(x?1)x?1(x?2)(x?1) C.lim51.设 A. C.111cos D.limcosxsin x??xx?0xxf(x)?2x?3x?2,那么当x?0时( )f(x)与x是等价无穷小量 B.f(x)与x是同阶但非等价无穷小量 f(x)是比x 较高阶的无穷小量 D.f(x)是比x较低阶的无穷小量52.当x?0?时,以下函数为无穷小的是( )111 A.xsin B.ex C.lnx D.sinxxx53.当x?0时,与sinx2等价的无穷小量是 ( )1? A.ln(54.函数x) B.tanx C.2?1?cosx? D.ex?11y?f(x)?xsin,当x??时f(x) ( )x4。
2024年上海成人高考专升本高等数学(一)真题及答案
2024年上海成人高考专升本高等数学(一)真题及答案1. 【选择题】当x→0时,ln(1+x2)为x的( )A. 高阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 低阶无穷小量正确答案:A参考解析:2. 【选择题】A.B.C.D.正确答案:C参考解析:3. 【选择题】设y(n-2)=sinx,则y(n)=A. cosxB. -cosxC. sinxD. -sinx正确答案:D参考解析:4. 【选择题】设函数f(x)=3x3+ax+7在x=1处取得极值,则a=A. 9B. 3C. -3D. -9正确答案:D参考解析:函数f(x)在x=1处取得极值,而f'(x)=9x2+a,故f'(1)=9+a=0,解得a=-9.5. 【选择题】A.B.C.D.正确答案:B参考解析:6. 【选择题】A. sin2xB. sin2xC. cos2xD. -sin2x正确答案:B参考解析:7. 【选择题】A.B.C.D.正确答案:D参考解析:8. 【选择题】函数f(x,y)=x2+y2-2x+2y+1的驻点是A. (0,0)B. (-1,1)C. (1,-1)D. (1,1)正确答案:C参考解析:由题干可求得f x(x,y)=2x-2,f y(x,y)=2y+2,令f x(x,y)=0,f y(z,y)=0,解得x=1,y=-1,即函数的驻点为(1,-1).9. 【选择题】下列四个点中,在平面x+y-z+2=0上的是A. (-2,1,1)B. (0,1,1)C. (1,0,1)D. (1,1,0)正确答案:A参考解析:把选项中的几个点带入平面方程,只有选项A满足方程,故选项A是平面上的点.10. 【选择题】A.B.C.D.正确答案:B 参考解析:11. 【填空题】参考解析:12. 【填空题】参考解析:13. 【填空题】参考解析:14. 【填空题】参考解析:15. 【填空题】参考解析:16. 【填空题】参考解析:17. 【填空题】参考解析:18. 【填空题】参考解析:19. 【填空题】参考解析:20. 【填空题】过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为____.参考解析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,即3x-y-z-4=0.21. 【解答题】参考解析:22. 【解答题】参考解析:23. 【解答题】求函数f(x)=x3-x2-x+2的单调区间.参考解析:24. 【解答题】求曲线y=x2在点(1,1)处的切线方程.参考解析:25. 【解答题】参考解析:26. 【解答题】参考解析:27. 【解答题】参考解析:28. 【解答题】证明:当x>0时,e x>1+x.参考解析:设f(x)=e x-1-x,则f'(x)=e x-1.当x>0时,f'(x)>0,故f(x)在(0,+∞)单调递增.又因为f(x)在x=0处连续,且f(0)=0,所以当x>0时,f(x)>0.因此当x>0时,e x-1-x>0,即e x>1+x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数(1)模拟卷(A )
一、填空题:(本大题共10小题,每小题4分,共40分)
1. 设42
,0()2,0x x f x x
a x ⎧+-≠⎪
=⎨⎪=⎩
在0x =点连续,则_____a =。
2. 若22
lim(1)lim sin x x x k x x x
-→∞→∞-=,则常数______________
=k 。
3. 设3()f x x =,则0(2)(2)
lim
_________________h f h f h
→--=。
4. 函数2()2f x x x =+-在[2,1]-上满足罗尔定理条件的___________
=ξ。
5. 设()f x 的一个原函数为x e ,则()_____________________x f x dx '=⎰。
6. 设2
2
z x y xy =+,则2___________z
x y
∂=∂∂。
7. 通过点(1,2,1)-且平行于直线210
210x y z x y z +--=⎧⎨+-+=⎩的直线方程为______________。
8. 设22(,)(1)arctan()f x y x y xy =+-,则(1,1)
_______________f
x
∂=∂。
9. 函数
1
2x
-在点0x =的幂级数展开式为____________________。
(要注明收敛域) 10.微分方程x y y e -'=的通解为__________________。
二、选择题:(本大题共5小题,每小题4分,共20分) 11.若()f x 在(,)a b 上二阶可导,()f x 在(,)a b 上单调增加且
为凹的条件为( ) (A) ()0,()0f x f x '''>>; (B )()0,()0f x f x '''><; (C )()0,()0f x f x '''<>;
(D )()0,()0f x f x '''<<。
12. 下列广义积分发散的是 ( ) (A) 0
x e dx +∞
-⎰ (B)
1
x
xe dx +∞
⎰ (C) 3
1
dx x +∞
⎰ (D)221
ln dx x x +∞⎰ 13.设积分区域D :2214x y ≤+≤,则2D
dxdy =⎰⎰ ( ) (A )30π;
(B )15π; (C )6π; (D )3π。
14. 设级数1
1
(3)2n n n a n
∞
=++
∑收敛,则lim n n a →∞= ( )
(A )12-; (B )14-; (C )1
6
-; (D ) 0
15.函数( )是微分方程2xy y '=的解。
(A )2y x =; (B )y x =;
(C )2y x =; (D )
1
2
y x = 三、计算题(本大题共7小题,每题8分,共56分) 16. 20
40
sin lim
ln(1)
x x t t dt
x →+⎰
17. 1
lim(1)tan
2
x x
x π→-
18. 设y 与x 函数关系由方程1y y xe =-确定,求
x dy dx
=。
19. 设2cos()z x y =+,求:
,,z z dz x y
∂∂∂∂ 20. 计算2
2D
x d y
σ⎰⎰
, D 是由曲线1xy =与直线2,x y x ==所围成平面区域。
21. 计算曲线积分323(2)()L
xy x dx x x y dy -++-⎰,其中L 是圆周221x y +=上由点
(1,0)A 到点(1,0)B -的一段弧。
22. 求微分方程2dy x y dx x
-=满足(1)0y =的特解。
四、解答题(本大题2小题,每小题8分,共16分)
23. 判定级数11
(1)!(1)n n n n n ∞
-=+-∑是否收敛?若收敛,是绝对收敛还是条件
收敛
24.问曲线32y x x =-+在哪点处的切线与直线23y x =+平行,并求切线方程。
五、应用题(本题12分)
25. 设抛物线2y ax bx c =++过原点(0,0),且当[0,1]x ∈时,0y ≥。
试确定,,a b c 的
值,使抛物线2y ax bx c =++与直线1,0x y ==所围图形的面积为1
3
,且使图形绕x
轴旋转而成的旋转体体积最小。
六、证明题(本题6分)
26.证明:当1x >时,有x e xe >。